
NASA Contractor Report

ICASE Report No. 89-46

181927

ICASE
m

i_ _ --__'E...... _r_NcE WITH ACLASS OF

ALGORITHMS FOR NONLINEAR OPTIMIZATION USING

INEXACT FUNCTION AND GRADIENT INFORMATION

Richard G. Carter

Contract No. NAS1-18605

June i989

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

11

1

I ASA
National Aeronaulics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(_ASA-CR-I_I 9_7) NUMERICAL EXPERIENCE

A CLA_S UF ALGUnITHMS FqR N_WLINEAR

OPTIMILATION USING INEXACT

GRADIENT INFORMATION Final

37 p

WITH

FUNCTION AND

Regort (ICA_E)
CSCL 1 2A G3/64

N90-12232

Unclds

0239279

Numerical Experience With a Class of

Algorithms For Nonlinear Optimization Using

Inexact Function and Gradient Information

Richard G. Carter *

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

Abstract

For optimization problems associated with engineering design, parameter estima-

tion, image reconstruction, and other optimization/simulation applications, low accu-

racy function and gradient values are frequently much less expensive to obtain than

high accuracy values. We investigate the computational performance of trust region

methods for nonlinear optimization when high accuracy evaluations are unavailable or

prohibitively expensive, and confirm earlier theoretical predictions than the algorithm

is convergent even with relative gradient errors of 0.5 or more. The proper choice
of the amount of accuracy to use in function and gradient evaluations can result in

orders-of-magnitude savings in computational cost.

"This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1 Introduction

Consider the nonlinear optimization problem

minimize f(z) (1)

xE_ _

where the function f has gradient V f, with Vf assumed to be Lipschitz continuous. We are

concerned with numerically solving this problem when function and gradient values are not

known exactly.

Problems of this nature frequently occur in engineering design, parameter estimation,

and many other situations. Consider, for example, the design of a heat sink for transferring

excess heat away from an electronic component. Given the geometry of the sink (expressed,

perhaps, as the spacing, thickness, and length of each cooling fin) and the heat flux from

the component, one can mathematically model the temperature distribution in the sink and

the surrounding medium by a system of partial differential equations. If we wish to find

the design geometry which minimizes the time-averaged temperature of the component, we

must numerically solve this system of PDE's at each iteration of the optimization algorithm

to determine a value for the objective function f. Furthermore, a value for the gradient of f

must be computed at each iteration either through successively perturbing each component of

x and recomputing f to obtain a finite difference approximation, or through directly solving

a larger system of PDEs. Clearly, exact function and gradient values are not attainable, and

the computational expense of any approximation at a given iteration increases very rapidly

as the required accuracy is increased. Let h be the discretization mesh size selected and

md be the number of spatial dimensions in the PDE, so that the number of elements in the

discretization is given by k = o((1/h)'_'_). If the order of the solution method is given by

error = o(h"*), and the computational expense for the linear algebra associated with the

problem is CPU = o(k"_), we have

CPU/iteration = o(error-') (2)

for I = __mLm_. Although this estimate is admittedly crude, it seems to hold for many
rn0

applications and indicates that computational expense per iteration can rise eztremeIy rapidly

as more accurate solutions are required. In our example, if a full three-dimensional model of

the sink is being used with a direct linear algebra solver and an o(h 2) solution method, we

would have rnd = 3, rnl = 3 , rn0 = 2; hence 1 would be 3 and a thousand-fold increase in

computational time would be needed to increase the accuracy of any given approximation by

one digit. Problems involving systems of ODEs tend to be more benign with much smaller

values of l(¼ to _), but computational expense still increases geometrically with accuracy.

Since low accuracy function and gradient evaluations can be orders of magnitude less

expensive than high accuracy evaluations, it behooves us to consider optimization algorithms

that do not require the maximum possible accuracy at each iteration. Trust region methods

are a natural candidate for investigation because of their reputation for robustness and

efficiency. A number of authors have established global convergence results for trust region

methods using inexact gradients ([12], [3], [17]), and inexact function evaluations have also

been treated [4]. In this paper, we investigate the numerical behavior of the algorithms

presented in [3] and [4] in order to answer the following questions.

1. How much error can we allow in our evaluations before the algorithm fails? Does this

level agree with theoretical predictions?

2. The performance of the algorithm will certainly decrease when less accurate evaluations

are used. How fast does performance degrade and how problem-dependent is the rate

of degradation?

3. How does this lessened performance balance with the greatly decreased computational

cost associated with less accurate evaluations?

J

4. How well do the techniques suggested in [3] for estimating and controlling gradient

error work in practice?

The remainder of this paper is organized as follows.

In Section 2, we present the trust region algorithm and review the conditions on permis-

sible levels of error established in [3]. These conditions depend on some of the parameters of

the trust region method but are remarkably relaxed: typically relative errors in the gradient

of 0.5 or more are permissible. In Section 3, we examine the performance of the algorithm

on the set of standard test problems from Mot6, Oarbow, and Hillstrom [13] when synthet-

ically generated errors are added to the gradients at each iteration. Our results confirm

the theoretical predictions for the algorithm, and we note that the number of iterations

required by the algorithm tends to increase exponentially with the relative error induced

in the gradient. When balanced against (2), however, we find that allowing low accuracy

evaluations is still attractive. In Section 4, we examine the performance of the algorithm

on a parameter identification problem found in the literature in order to confirm our results

without resorting to synthetically induced errors or invoking (2). We also verify a technique

for estimating and controlling error when the gradient is approximated by finite differences.

Section 5 summarizes our results.

2 The trust region algorithm and permissible error

in function and gradient evaluations

The trust region method for solving (1) generates a sequence of iterates{xk} by approxi-

mately solving a sequence of constrained quadratic model problems. Each local quadratic

model is of the form

¢_k(zk + s) = fk + gTs + lsTBks
"Z

3

(3)

where fk is an approximation to/(zk), gk is an approximation to the gradient V/(xk), and

the symmetric matrix Bk E _"×" is an approximation to the Hessian matrix V2f(xk). At

each iteration, we take zk+l = zk + sk , where st is an approximate solution to the trust

region subproblem

minimize q2k(xt+ s) s/t IIDks[I_ /Xt. (4)

sEE"

The positive scalar At is known as the trust radius, and the nonsingular matrix Dt E _N

is the scaling or preconditioning matrix (often taken to be a fixed diagonal matrix). At each

iteration, At is adjusted so that the ball llDt skll _<At represents the region over which we

expect (3) to adequately model the function f,

A number of techniques are available for computing an approximate solution to (4).

An excellent survey of the main classes of these methods can be found in [12]. In our

computations, we chose to use an optimal locally constrained, or OL C technique [6]. Similarly,

a number of techniques can be used to generate the Hessian approximation {Bt}, but we

selected the popular BFGS secant update

when (gt+x - 9k)Tst > 10-S(gk+l -- gk)T(gk+l 9k), and Bt+l = Bt otherwise. Since gt is

only an approximation to Vf(xk), [4] and [3] suggest that upper bounds of the form

or

IIBtll _<c_ (6)

Tg[Btgt _<c_gtgt (7)

be directly enforced for some appropriately large ca. This could be easily done by using the

replacement operation

Bk := rain{l, ll_kl-----T}Bk (8)

at each iteration. Although bounds such as (6) and (7) are needed to establish convergence

results, in practice we found (8) unnecessary.

A simple version demonstrating the salient features of the trust region algorithm is as

follows.

Algorithm (1): The trust region method.

Let the constants 0 < rh < r/2 < r/a < 1 be prespecitled. Select an initial guess z0 C _t¢ and

an initial trust radius A0. Compute fo and go, and compute or initialize Bo. For k = O, 1,...

until "convergence" do:

(a) Determine an approximate solution sk to problem (4).

(b) Calculate the predicted function reduction.

predt`(,k) T _-,_Bt`st`
= -gk st` -- 2

and the computed function reduction

(9)

credt`(st`)= A- A+I.

If necessary, recompute fk+t and/or ft` to greater accuracy.

(c) Gompute the ratio

(10)

(d) If pk < rh, then the step is unacceptable. Set At` := _At` and return to (a).

(11)

(e) If 71 <_ Pk < 7/2, then set Ak+l = _Ak,1

Else if r/a < pk _< (2 - 7/s), then set Ak+l = 2Ak,

Else set Ak+l = Ak.

(f) Set zk+l = xk + sk, compute gk+l, and compute or update Bi+I.

End loop

End algorithm

Typical values for the step acceptance/trust radius update parameters are 771= 0.001, r/2 =

0.1, and 773 = 0.75. Notice that no step is accepted unless pk >_ 71, and that the trust radius

is never reduced unless pk _< _/2. Further notice that .gk is only computed once per major

iteration.

Two conditions are required of the approximate function values. Define

We then require

and

aredk(sk) = f(zk)- f(x_ + sk).

[aredKsk)- credKsk)[-> 0,1 predt,(sk)

(12)

(13)

[aredk(s,)- cred,(sk)l < O,z Icreddsk)[(14)

for some constants (I,1 and (I*. A stronger variation of these conditions that is typically

more practical is

and

IA+I- f(=k+a)l+ IA - f(=k)l __ _/,1 predi(si) (15)

1A+1- f(=k+x)l + IA- f(_k)l __ 0,_-Icredd_k)l (16)

Assuming error estimates are awilable for Ilk- f(zk)I, [3]suggests that (15) and (16) be

enforced by using the following procedure in place of step (b) of Algorithm (1).

Procedure 2

Let a • (0,1) be prespecified. Given zi,sk,g/k, and an estimate for [fk-/(xk)], do the

following.

(i) Calculate predk(sk) and emax = (/:predk(sk).

(ii) If necessary, recompute fk to greater accuracy so that [fk - f(k)l _ a emax.

(iii) Compute fk+t so that lfk+l - _ (1 - _)emax.

(iv) Compute credk(sk). If (16) is satisfied, then exit procedure, else reduce emax and

return to (ii).

End procedure

The permissible level of error in the gradient evaluations can be characterized in two

different ways. The preferable condition is

for some constant (g,with

IIDile ll
IID %,[I

_< (g (17)

ek = gk- V/(zk). (18)

Under appropriate assumptions on f and {Ok}, equation (17) leads to the strong global

convergence result limk-.oo]]gkll ---- limk-_oo][Vf(zk)[I ---- 0. The weaker convergence result

liminfk-.oo [Igkl[----0 can be obtained using the condition

-1 7"

(Dk ek) (D-blgk) <
(D-fl gk) 7, (Dbl gk) -

(19)

If eachscalingmatrix D_ is taken to be the identity, (17) and (19) become simply

and

(20)

Finally, we must specify the allowed values for the error bounds ¢'I,1,¢'/,2 and (f,3.

values are given by the inequalities -

(21)

These

and

(g + (f,1 < 1 - 7]2 (22)

0 <___s,2< 1, (23)

with _ > 0 and _1,1 >- 0. These limits are remarkably generous. If n2 (the parameter

=controlling trust radius reduction) is 0.1, we could select _f,1 = 0.05, ¢f,2 = 0.99, and G - 0.8

-- less than one significant bit of accuracy in the components of the gradient approximation.

3 Algorithm Performanceo n Mor6-Garbow-Hillstrom

Test Problems With Synthetically Induced Errors

The Mor6-Garbow-Hillstrom test set [13] contains eighteen"typical" optimization problems.

These problems are all algebraically defined, and thus function and gradient values are

both inexpensive to compute and available to high accuracy. In order to test the effects

of gradient error, we synthetically induced a random error into each gradient computed.

More specifically, we computed a vector wk with each component selected from a uniform

distribution on [-1,1] and then set gk = Vf(xk) + ek with

= 7

ek = 100 * wk * llvf(_k)ll/2 =, (24)

8

where m is the smallest positive integer for which (20) is satisfied. For our first set of tests

no errors were induced in the computation of function values.
|

_ur optimization code, we used an implementation of the Dennis-SchnabeI routines

|

an OLC step computation technique. The model Hessians Bk were computed using

............ idard BFGS procedure (5). We emphasize that no special techniques were used to

if or gradient error when computing Bk, nor were safeguards such as (8) enforced.
I

_ue for _72 in the optimization code was 0.1, so that the theory in [4] and [3] suggests
=
l

_ limit of 0.9 for _g.
!

_ach problem in the test set, we considered twenty different values of _g ranging
|

i to 0.95. For each value of _g, we ran the algorithm with a number i of different

_tions for the random number generator used to compute ek values, and tabulated

L
!mum, median, and maximum number of iterations required to converge to a local
!

r. In all, over 5000 test cases were run on a network of SUN 3/50 workstations in

N 77 double precision.

ires (1) through (5) show plots of our results for selected problems. Let K(_g) denote
r

iber of iterations required for convergence as a function of relative gradient error.

|

Lical axis in each plot represents the natural log of K(_g) , while the three traces in

it represent the observed minimum, median, and maximum values.

res (1) through (3) are typical of most of our test cases, in which performance

exponentially:

K(_g) _ K(0) exp(b_g), (25)

with observed decay coefficients b ranging from roughly 2 to 6 for the various problems.

Figures (4) and (5) represent anomalous cases where ln(K((g)) has significant variation from

linearity at small and large values of (a.

Although the exponential performance degradation given by (25) is a telling argument

ZDepending on the computational expense associated with a problem and the observed variability of
results, between 5 and 100 test cases were run for each value of _9"

12.00

i I.O0

10,00

Relative error In gradient ((e)

Figure 1: Number of iterations versus (_ for the Watson Test Function.

8.00

?.60

'7.00

6.00

8.50

IS.O0

4,SO

4 ,oo

_1.50

_I.O0

O.O0

#

#

ee f

t ,'

v ,"
I

e .'

° l ."

,o .,

e" " ,." -

• °,"

• ## ,"

,o ,''°'°'°''

• °,

0.|4 0,4O 0.'7_

Relative error In gradient ((,)

Figure 2: Number of iterations versus ¢'_ for the Brown and Dennis Test Function.

10

6.90)_l_;-,,l,,,,l,,,il |,,,,i_,l_,i_l,,,,l,,r_

8.00

7.60

?.00

e.80

e.O0

8.50

6.00

4.80

4.00

13.80

e_ J

fr ,'

#0 ,'

pt
,o

ge ,.

o'
t t

#
e ,°

t e ,

I i
..#

f * 7

t ,,

#* ,.'

0 ,,

,,

po* o,"

re" ..o°
• ,o

• °.o

oo °°°"

p

• , , I * * LLJJJ_L, I , * * * I L_L, , I i i ,

0.00 0.14 0.48 0.72

Relative error in gradient ((.)

Figure 3: Number of iterations versua (. for the Extended Powell Singular Teat Function.

8.00

4.80

4.00

13.50

13.00

ILeO

2.00

i .150

1.00

0.00

O.OO

0.00

!

,,,so ..,°'

1• ,°"

b'_. 01 •""""

#l • ...'"

..o°,"/
,o,''

•" ,.oO-°''°°'"

• ,°."

o_ _ o,.,o°°

0.117 0.84 0.01

R la lve error In gradient

Figure 4: Number of iterationa verau. _'w for the Gausaian Test Function.

11

7.00

I_.80

(LO0

.150

"_" _.00

4.80

4.00

_I.BO

.00

_.50

2.00

0.01

: Z

t" ""

- e S _

p. "-. .

pp_" . ."
.'

. a°_l ,s I • ° ° o... ° •

•" • .

ui,l,,,Jl**,ll,*,,l,*,,l*,,,I,,,,I,,i,Ii,,JllJ,,

oar/' 0.64 0.01

Relative error In gradient

Figure 5: Number of iterations versus _o for the Trigonometric Test Function.

against using low accuracy gradients if high accuracy evaluations are obtainable without

greatly increased computational expense, low accuracy evaluations are still attractive in

cases where the computational expense increases rapidly with increasing accuracy. Suppose,

for instance, that

CPU/iteration i (26)

for some constants c_ and I. The total computational expense for solving a given problem

will then be proportional to (;IK(c'g). Figures (6) through (10) show the predicted total

computational cost of the median curves for K(_,) in figures (1) through (5) for the values

I =], 1, and 2 (with each curve normalized so that the minimum value is 1.0).

Notice that each curve of total computational cost increases very rapidly as ¢g --* 0 or

¢8 --* 1, and has a relatively large, flat minima. This behavior holds for both the "typical"

cases (figures (6) through (8)) and the anomalous cases (figures (9) and (10)). Interestingly,

12

f_O.00

18.00

16.00

14,00

i! ILL00

10.00

B.00

0.00

4.00

2.00

0.00

0.00

.ij,; ii. iiii ;iiiiii iii_iiiii,*iiiii_i i ii,i,,,i i i'i

:I

:I I---I :

:i /
. i ; I
. , , t

: l

'/: //
" 'i-2

: , : /
i t o'" I

i i ,"" t #

•, I ," /
. t "" I

I i , • ' o

"; I ." . .#

"o, _. o,.." .."

-i , ,_ i , , , , i ** ** |_j,xJ_l_J_ i * * i I , , , i , J I I I * , , ,IJ_LU

0,10 0,40 0.00

RelaLlve error i. gradient ((,)

Figure 6: Computational cost profilesfor the Watson Test Function.

1

Ilo.o0

119.00

10.oo

14.00

IILO0

10.00

000

:i

0.00

4.00

ILoo

0.00

0,00

:_'_' i I l iiiiJiii'l I' '_iJ I " " "tT_ -
!

!
!

!

I
t
!
t

I
I
I

I
I
!

I

-'_ I,,2

°.° _

*O**oo**.o... _

"lllllllllillllllllllllllllllllllll IIII II IIIllllll

0.14 0,40 0.? 11_

Relative error in gradient ((w)

Figure 7: Computational cost profilesfor the Brown and Dennis Test Functio.

13

0.114 0.4B 0.72

Relative error in gradient ((9)

Figure 8: Computational coat profiles for the Extended Powell Singular Test Function.

20.00

18.00

le.oo

14.oo

lt,,oo

io.oo

8.00

,;; |;; ; ;i **i **i_|_'*_i P"'I I ' i; ;i ;;;'.

!

• !
, !

, !

: i

i ;
: ; /'...:
n I ," .

" _,,l = 2 t = i ,",_
"; |ml ,,

0.o0 O.II'e 0.84 0.8 t

Relative error in gradient (_,)

8 .'00

4.00

R.O0

0.00

Figure 9: Computations] cmt profiles for the Oauseian Test Function.

14

i

/

i

i

_=

i
Z

_o.00

t 8.o0

le.OO

14.oo

1_.oo

1o.oo

8.00

e.oo

4.00

R.O0

0.00

i,_;i,,_i_,,,i_,,_i_,,,li_,,ii_,,i l,_ii_iii
• l

I
t

!
!

i i

i ,

; , a

, ,_ : i

•. :';

_, ." s

". J_! ',,I-|

................... :::.-.- _.;"

0.00 0.2? 0.84 O.e I

Relative error In gradient ((9)

Figure 10: Computational cost profiles for the Trigonometric Test Function.

combining the idealizations (25) and (28) into

CPU '_ K(O)c_¢;'exp(b¢,)

yields the theoretical "best" value

(27)

I

Using the observed "typical" value b = 4 yields the rule of thumb choice

(28)

l

which worked quite well for all of our test problems.

A number of variations on these numerical tests were also tried.

also considered the idealization

(29)

Rather than (26) we

15

i

CPU/iteration _ c2(_-' + c3, (30)

where c3 represents a fixed "overhead" cost per iteration. For moderate values of c3, the

character of the overall computational cost behavior remained unchanged. Errors in function

values were also considered with (g fixed at 0.1. The algorithm proved to be quite insensitive

to these errors for _f,1 < 0.5. Indeed, the algorithm works in practice even if (1,1 > 1 provided

the average value of [aredk(sk) -- credk(sk)] / predk(sk) is sufficiently less than 1 - r/2 - (g.

As pointed out in [4], this is a very reasonable result since function values are only used to

update the trust radii, and a mistake at any given iteration will not cause the algorithm to

fail.

4 Algorithm performance on a parameter identifica-

tion problem

The test problems of the last section are widely recognized as representing "typical " op-

tirnization problems, and because they were algebraically defined, we were able to run an

enormous number of test cases to examine the ranges of possible behavior in the presence of

errors. It should be remembered, however, that our interpretation of these results rests both

on the character of the synthetic noise added to each gradient evaluation and on idealization

(26). In order to verify our results, we also tested our algorithm on the following parameter

identification problem from [10] and [11]:

Consider the accidental release of the radioactive gas tritium into an enclosure surround-

ing a nuclear reactor. The tritium will react with water vapor in the containment to produce

other tritium-based species via

T2 + H2 0 _ HT + HTO, (31)

and some of the HTO may be adsorped into the surface of the containment. This adsorped

tritium species represents a significant clean-up problem.

•l

i

16

Given the reaction rate constant in (31) and the adsorption and release rates of HTO on

the surfaces of the containment, the physical problem can he modeled by a system of four

coupled initial value ODEs:

Y'(t;x) = h(t,Y(t;x)),Y(O;x) = }Io, (32)

with the components Y : _ × _3 _ _4 being species concentrations. Unfortunately, the

rate constants are not directly measurable. Maroni et aI performed an experiment in which

a known amount of tritium was introduced into a small enclosure and the total tritium

concentration Y1 +]z2 + Y3 was measured at m discrete time points. The rate constants

xl, x2, and x3 can then be estimated by minimizing f : _4 __. _ with

f(x) = _ i----1 3"----1

where O, is the observed experimental concentration

(33)

Oi = Yl(ti)+ Y2(ti)+ Y3(t/), (34)

and x 4 is an additional variable representing an unknown experimental bias in the instrument

for measuring (34).

Equation (33) is a classical inverse problem. Note that each function evaluation for a

given iterate zk involves the numerical solution of four coupled ODEs. Gradient values

can be computed via finite differences, or by the numerical solution of a system of sixteen

coupled ODEs. Although the latter technique is usually preferable in practice, we used the

more ditTicult approach of estimating gk by finite differences so that we could investigate a

techniques suggested in [3] for estimating and controlling gradient error.

Our numerical experiments with (33) were designed as follows. In order to approximate

f at a given point xk, (32) was solved using ODEPACK [7], which uses an adaptive solution

technique. An important feature of ODEPACK is that it allows a desired level of accuracy

(either absolute or relative) to be prespecified for each component of Y. In order to achieve

17

anaccuracyof, say,Ckin f(zk), we specified a desired accuracy of o_k-lek in each component

of Y, where ak-x was the amount of accuracy lost due to cancellation in evaluating (33) at

the last iteration. This simple procedure worked remarkably well: the actual error in fk was

typically in the range [1/10ek, 2ek] in our preliminary tests of this technique.

Each gradient was initially approximated by a central difference formula using 2n extra

function evaluations, where each function evaluation was computed with a specified desired

relative accuracy of E/. Denote this approximation ffk. We then computed a more accurate

estimate of the directional derivative of f in the direction gk (or (DTDk)-I_k if the scaling

matrix is not the identity) as suggested in [3], using the formula

1

_k = _(f(zk + 6k-ffk) -- f(mk -- 6k'ffk)). (35)

Each function evaluation in (35) was computed with a specified desired relative accuracy of

-gk/lO. The perturbation length 6k was taken to be

1

= IAl/gkgk,w (36)

a value expected to perturb two-thirds of the accurate digits of f. Using (18) and (35), we

can then estimate the error term in (21) via

Vf(k)Ty d\ (37)

If this error was significantly larger than the desired gradient error level (g, then _'k was de-

creased before the next iteration; if it was significantly smaller _'k was immediately decreased

and gk was recomputed (in practice this seldom occurred except at the first gradient com-

putation .) Figure (11) shows the agreement between actual and requested gradient error.

Even with the simple procedures used to adjust _k, the error estimate given by (35) and (37)

allows us to control, with reasonable certainty, the level of accuracy in gk.

The approximation gk can be further improved at no additional cost by setting

i

18

10-I
>,

u 0_ 2o 1

o 0-3
<

_ 10-4
t--

,--

-u 10-5o

C9
10-6

> -7e 10
Z

_ 0-8< 1

10-9
I I I I I , I I 1

10-8 10-6 10-4 10-2

Requested Grodient Accurocy

Figure 11: Actual versus Commanded error in the gradient for the Tritium Parameter Esti-

mation Problem.

so that

2,

eT9_ Vf(zk)T_ (39)
gTg_ = ! _.

Figure (12) shows the CPU time required to achieve a given level of accuracy using (38) in

addition to the previously discussed procedure for adjusting gh. We see that computational

expense increases geometrically as accuracy increases. 2

Given these methods of evaluating fh and gh to some specified accuracy, we recorded the

2The idealised cost profile (26) yields a very close fit to this plot if I is taken to be t16. However, tests
with different values of zt showed that better empirical form this problem is

CPU/gradient evaluation m callgkll-t_ 1/1°.

Nonetheless, the rule-of-thumb choice (29) with ! = t!6 proved to be close to the optimal selection in our
numerical tests.

19

3.00

2.90

2.80

2.70

2.60

n
0 2.eo

E

-- 2.40

2.30

2.20

2.10

2.00

--7.00

I, u l_JJJ

In(Relotlve

Figure 12: Solution time required for one gradient evaluation in Tritium parameter identifi-

cation problem.

computational time required to solve (33) for a number of different values of (g, and for the
• =:: .

following 3 cases.
:

1. Each fk value was computed to high relative accuracy (lO-S), and each gk value was

computed as previously described including the correction (38).

2. Each fk was computed to high relative accuracy (10-s), and each gk was computed as

described previously but without doing correction (38).

3. Each fk was computed using Procedure 2 with ¢'1,1 = 0.1 and (t,2 = 0.99, and each gl,

value was Computed as previously described including correction (38).

A somewhat different implementation of the trust region method was used rather than the

Dennis-Schnabel code used hi %he last section. First, we included nonnegativity constraints

on the first three components of = to be consistent with the physics of the problem. This

2O

24000

22000

20000
E
0
u 18000

16000
©

E

c)

0

1400O

1200O

10000

8000

6000

4000 , I tJaaua i _,llaJlj i

0-5 10-4 10-3

Requested Gradient Accuracy at

+ Case 1.

A O Case 3.

o
o o

o

I IIIIIl! I | IIIIIII I I i

10-2 10-1

Each Iteration

Figure 13: Solution time for numerical optimization of the Tritium parameter identification

problem.

was done by replacing the ellipsoidal trust region in (4) with the rectangular trust region

IID,sll- ___Ak, and by using a quadratic programming code to exactly solve the trust

region subproblem subject to the nonnegativity constraints on z. Second, we used the

Hessian safeguarding techniques proposed in [2] in addition to the standard BFCS update

(5). Third, we used a simplified stopping criteria for comparison purposes. Each test case

was terminated when fh -]" < i_(fo - f'), where f* was the optimal value of f.

Figure 13 shows the results of our tests.

Case 1 was tested for 15 different values of (g. Note that the total computational time

required is less than 8000 seconds for _'0 = 0.15, but rises to almost 16000 and 24000 seconds

for ¢'8 = 1.5 x 10 -s and _l = 0.25, respectively. Fewer data were collected for cases 2 and

3, but note that the correction (38) appears to make little difference to the algorithm when

e[gh/g[gk is small. On the other hand, using Procedure 2 rather than computing each fh

to a fixed accuracy of 10 -s resulted in a moderately faster algorithm.

21

In addition to the above 3 cases, a number of other numerical tests were made. Rather

than keeping (g fixed throughout the algorithm, we tried setting

or conversely

¢k+1 _ 1/10 if k=0 (40)
"g = L max{(2/2,10-5}

/ 10-5 if k--0 (41)

The idea behind (40) is to try to obtain the fast local convergence properties of the BFGS

method when accurate gradients are available, while the idea behind (41) is to avoid highly

accurate gradient approximations near the solution where they are likely to be most expen-

sive. Interestingly, both of these approaches performed similarly, requiring 8887 and 10647

seconds, respectively.

ek gk/gk gk is already small,Although the correction (38) appears to be of little use when W T

it does appear to be useful in preventing the algorithm from failing due to occasionally en-

countering highly inaccurate gradient evaluations. In tests where a large synthetic error was

added to the gradient approximation every p iterations, the algorithm was much more robust

when (38) was used (although the algorithm did still have problems involving convergence

to a point with gk = 0 and Vf(xk) _ 0, as predicted in [4].) In a similar vein, the gradient

accuracy test given by (35) and (37) should be useful in verifying the accuracy of analytically

derived gradients.

i

5 Summary

We have examined the numerical behavior of trust region algorithms for nonlinear optimiza-

tion when function and gradient values are not computed exactly. This class of algorithms

has proven remarkably robust, and can be successfully implemented even with very large

errors in the function and gradient evaluations.

22

In a large number of tests usingstandard test problemswith synthetically induced gra-

dient errors, we observedthat the algorithm performance,as measuredby the number of

iterations required for convergence,tends to degrade exponentially as the relative gradient

error increases. This is a telling argument for using accurate evaluations provided they can

be obtained at reasonable expense. For many optimization/simulation problems, however,

the computational expense of these evaluations rises sharply with increasing accuracy, and

low accuracy evaluations are again attractive. A good choice for the amount of relative

gradient error allowed in the algorithm can result in orders-of-magnitude savings in compu-

tational cost. If (26) holds, then the choice _g = I/4 was nearly optimal for all of our test

problems.

Using a parameter estimation problem based on the numerical solution of a system of

ODEs, we tested a technique for estimating and controlling the amount of error in a gradient

approximation. This technique was very successful when used in conjunction with the "user

specified accuracy" feature in the numerical differential equation solver ODEPACK. Actual

computational costs for various values of relative gradient error were examined to confirm

the behavior observed in the test problems with synthetically induced errors.

References

[1] T.M. Apostol. Mathematical Analysis. Addison-Wesley, Reading, Massachusetts, 1957.

[2] R.G. Carter. Safeguarding Hessian approximations in trust region algorithms. Technical

Report TR87-06, Rice University, Dept. of Mathematical Sciences, Revised October

1988.

[3] R.G. Carter. On the global convergence of trust region algorithms using inexact gra-

dient information. Technical Report TR87-12, Rice University, Dept. of Mathematical

Sciences, Revised April 1989.

23

[4] R.G. Carter. Numerical optimization in Hilbert spaceusing inexact function and gra-

dient information. TechnicalReport 89-45 , Institute for Computer Applications in

Scienceand Engineering,.lune 1989.

-=

I

=.

[5] J.E. Dennis Jr. and R.B. Schnabel. Numerical Methods for Unconstrained Optimization

and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[6] D.M. Gay. Computing optimal locally constrained steps. SIAM J. Sci. Statist. Comput.,

2:186-197, 1981.

[7] A.C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In Scientific

Computing, R. S. Stepleman et al, editor, pages 55-64. North-Holland, Amsterdam,

1983.

[8] J.D. Lambert. Computational methods in ordinary differential equations. John Wiley

and Sons, New York, 1973.

[9] J.N. Lyness. Remarks about performance profiles. Technical Memorandum 369, Applied

Mathematics Division, Argonne National Laboratory, 1981.

[10] V.A. Maroni, R.H. Land, and M. Minkoff. TSOAK-MI: A computer code used to

determine tritium reaction/adsorption/release parameters from experimental results of

air-detritiation tests. Report ANL-79-82, Argonne National Laboratory, 1979.

[11] M. Minkoff. Approaches to optimization/slmulation problems. AppI. Numer. Math.,

3:453-466, 1987.

[12] J.J. Mor& Recent developments in algorithms and software for trust region methods. In

Mathematical Programming: State of the Art, A. Bachem, M. GrStschel, and B.Korte,

editors, pages 258-287. Springer Verlag, Berlin, 1983.

[13] J.J. Mor_, B.S. Garb0w' and K.E. Hillstrom. Fortran subroutines for testing uncon-

strained optimization so£tware. TOMS, 7:136-140, 1981.

24

=_

ql
=

[14]J.J.Mor&, B.S. Garbow, and K.E. Hillstrom. Testing unconstrained optimization soft-

ware. TOMS, 7:17-41, 1981.

[15] M.J.D. Powell. A new algorithm for unconstrained optimization. In Nonlinear Program-

ming, J.B. Rosen, O.L. Mangasarian, and K. Ritter, editors, pages 31-65. Academic

Press, London, 1970.

[16] G.A. Schultz, R.B. Schnabel, and R.H. Byrd. A family of trust-region-based algorithms

for unconstrained minimization with strong global convergence properties. SIAM J.

Numer. Anal., 22:47-67, 1985.

[17] Ph. L. Toint. Global convergence of a class of trust region methods for nonconvex

minimization in Hilbert space. Technical Report 87/6, Department of Mathematics,

Facult_s Universitaires ND de la Paix, Namur, Belgium, 1987.

25

12.00

I ! .00

I0.00

g.O0

B.O0

?.00

6.00

B.O0

4.00

300

_.00

-''''I lllm'l I l'i'T_'''l I

LJ_LIILu_IJJ_LLI I , p , I , , , , I , , , , I , , , , I I I,,,

0.00 0.{20 0.40 0.60

Relative error in gradient ((g)

Figure 1: Number of iterations versus (_ for the Watson Test Function.

8.00

"?.50

7.00

0..50

e.O0

5.50

5.00

4.50

4.00

3.50

3.00

0.00

.,,,ll,,,_|_,''lT'''i_''l''''i_'i'l I I -

js

lit tll ,.'_

er ."" -

• ,.

ir r st1 , .,'"'" -

7 .-*
s .,-

,,,al,,l, I, [,,Ija,, t,*,lllHLlJ,, , I' '' ' [JJ I' I ' ' '

0._4 0.4B 0.72

Relative error in gradient (Cg)

Figure 2: Number of iterations versus (_ for the Brown and Dennis Test Function.

26

B.50

8.00

7.50

7.00

0.50

0.00

I 5.50

4.50

4.00

3.[50

.... I''''l''''l''''l''''l''''l''''l''''l''''l''''
- /

I' "

r
i

t ,'

o ,°

t" "

/ ,"

n ."

- s ."

- • °."

-- tl- ,.'

. • .°.
s ...

_ 11 r ,,,

- • ."

. pl ° .°

"_._ s _ °,"

_o ,"
t ,"

T .,°

0,00 0.24 O.4B 0.72

Relative error in gradient ((g)

Figure 3: Number of iterations versus _ for the Extended Powell Singular Test Function.

qt_

C

5.00

4.50

4.00

3.50

3.00

2.50

_.00

1.50

1.00

0.50

0,00

O.OO

-''''1 (''''l''''l''''l''''l I''''1''''1''''-

s "'J'" . •

j,+' ,,

,, °

/

i I

...,°°''"

,/

0._? 0.04 0.01

Relative error in gradient (_g)

Figure 4: Number of iterations versus _g for the Gaussian Test Function.

27

.-rr-''l''''l''''l I"rrTTl''''l''''i I''''1'''

F

Figure 5: Number of iterations versus _g for the Trigonometric Test Function.

against using low accuracy gradients if high accuracy evaluations are obtainable without

greatly increased computational expense, low accuracy evaluations are sti11 attractive in

cases where the computational expense increases rapidly with increasing accuracy. Suppose,

for instance, that

CPU/it ti C_t (26) -era on ._ c2 1

for some constants ca and 1. The total computational expense for solving a given problem

will then be proportional to C_-'K(Cg). Figures (6) through (10) show the predicted total

computational cost of the median curves for K(_) in figures (1) through (5) for the values

I= }, 1, and 2 (with each curve normalized so that the minimum value is 1.0).

Notice that each curve of total computational cost increases very rapidly as Cg --+ 0 or

Cg --+ 1, and has a relatively large, flat minima. This behavior holds for both the "typical"

cases (figures (6) through (8)) and the anomalous cases (figures (9) and (10)). Interestingly,

28

20.00

I0.00

I_.00

"_ 14.00

12.00

I0.00

)'_ 8.00

8.00

4.00

I_.00

0.00

0.00

;'1''1 t I_'1''''1''''1''''1''''1 I

I=1 /
i

/
I

jI

/
= / / I--2

; #

i /
' w

:' ,,
,: /

; Ia

' /

if

/
/

st e

io_.J_"

o

i

0._0 0.40 0.60

Relative error in gradient ((g)

Figure 6: Computational cost profiles for the Watson Test Function.

!

_0.00

1(3.00

1_.00

14.00

1_.00

10.00

8.00

6.00

4.00

_.00

0.00

0.00

,,_,,la,,,i,,,,i,,,,i,,,,i,,,,i,,,,i,,,,i,,,,i,,,_
!

!

!

!

l

I -
I

!
t

I
!
I

I

I
!

I
I
I

I

il I

-_ ,=2 ,,/.../

..........T;.....
:' ' m ' I ' ' J ' I ' ' ' ' I ' ' ' ' I ' ' ' , I , , ,_L_U_JJJ_U_LLL_LLLL

0._4 0.48 0."72

Relative error in gradient (Cg)

Figure 7: Computational cost profiles for the Brown and Dennis Test Function.

29

!
0.¢14 0.48 0.72

Relative error in gradient (_g)

Figure 8: Computational cost profiles for the Extended Powell Singular Test FuncCon.

O
D

i

=_0.00 :.:';'_''i''''111'111'''1''''1 Id''Jl I I -
ii

t

!
18.00

t8.00
!
!

t
!

14.00 :- ,
!

!

12.00 !

1o.oo _ ,

8.00 -. ,
• ! •

, t " .. '

i ; : '.:
e.oo ! : : -

! ', .'

4.00 .. ,,I = 2 I =
'..i= _ ,,, :,,/...',,' !

_.00 ,,,,, _

0.00 "LjJJ_IIHj I,,,,I,,,,I,,,, I,,, ,I,,,, I,, ,, I,,, , I,,,,

0.00 O.ll[? 0.54 0.81

Relative error tn gradient ((_g)

Figure 9: Computational cost profiles for the Gaussian Test Function.

3O

8

i

20.00

18.00

16.00

14.00

1_.00

10.00

8.00

6.00

4.00

2.00

0.00

Relative error in gradient ((g)

Figure 10: Computational cost profilesfor the Trigonometric Test Function.

combining the idealizations (25) and (26) into

CPU _ K(O)c2_Zexp(b_g)

yields the theoretical "best" value

(27)

Using the observed "typical" value b = 4 yields the rule of thumb choice

l

¢;=

which worked quite well for all of our test problems.

A number of variations on these numerical tests were also tried.

also considered the idealization

(28)

(29)

Rather than (26) we

31

10-1

>.,

o O_ 2o 1

o 0-3

-_ 10-4
c-

,--

-o 10-5
12t

q_
10-6

-0
(D

> 0-71
,--

c-

O O_ 8< 1

10-9
I t 1 I I I I

10-8 10-6 10-4 10-2

Requested Orodient Accurocy

Figure 11: Actual versus Commanded error in the gradient for the Tritium Parameter Esti-
mation Problem.

so that

= (38)

k

vf(x)Ty (39)
= i

Figure (12) shows the CPU time required to achieve a given level of accuracy using (38) in

addition to the previously discussed procedure for adjusting _k. We see that computational

expense increases geometrically as accuracy increases. 2

Given these methods of evaluating f_ and gk to some specified accuracy, we recorded the

2The idealized cost profile (26) yields a very close fit to this plot if 1 is taken to be i!6. However, tests

with different values0f zt showed that better empirical form this problem is

CPU/gradientevaluation ,_ c_119_II-'q 1/10.

Nonetheless, the rule-of-thumb choice (29) with I : _ proved to be close to the optimal selection in our

numerical tests.

32

3.00

2.90

2.80

2.70

" 2.60

2.50

E
-- 2.40

2.30

2.20

2.10

2.00

--7.00

,_,Tr,,,i,,,,l_,,,t,,,,t,,,,t,,,,i,_,l,,,,i _

--4.90 --2.80 --.70

Im(Relotive Orodient Error)

Figure 12: Solution time required for one gradient evaluation in Tritium parameter identifi-

cation problem.

computational time required to solve (33) for a number of different values of (g, and for the

following 3 cases.

1. Each fk value was computed to high relative accuracy (10-a), and each gk value was

computed as previously described including the correction (38).

2. Each fk was computed to high relative accuracy (10-s), and each g_ was computed as

described previously but without doing correction (38).

3. Each fk was computed using Procedure 2 with _1,1 = 0.1 and ¢'1,2 = 0.99, and each gk

value was computed as previously described including correction (38).

A somewhat different implementation of the trust region method was used rather than the

Dennis-Schnabel code used in the last section. First, we included nonnegativity constraints

on the first three components of x to be consistent with the physics of the problem. This

33

24000

22000

6O
-o 20000
c-
O
o 18000
(D
OO
v 16000

F 14o00
F--

12000
CL

o
10000

0

o 8000
F--

6000

4000
0-5

Requested

+ Case 1.

4_. _ Case 2.

o
0 \.._--Y_ / 0

o

I lllllll I I IIIIII! I I IIIIIII I I IIIIIII I I

10 -4 10-3 10-2 10-I

Gradient Accuracy ot Eoch IteroUon

Figure 13: Solution time for numerical optimization of the Tritium parameter identification

problem.

was done by replacing the ellipsoidal trust region in (4) with the rectangular trust region

[lD,sll _< and by using a quadratic programming code to exactly solve the trust

region subproblem subject to the nonnegativity constraints on ¢. Second, we used the

Hessian safeguarding techniques proposed in [2] in addition to the standard BFGS update

(5). Third, we used a simplified stopping criteria for comparison purposes. Each test case

was terminated when fk - f* _ 1-_(fo - f*), where f* was the optimal value of f.

Figure 13 shows the results 9_fp_ur tests.

Case 1 was tested for 15 different values of (_. Note that the total computational time

required is less than 8000 seconds for (9 - 0.15, but rises to almost 16000 and 24000 seconds

for (0 = 1.5 × 10 -5 and (g = 0.25, respectively. Fewer data were collected for cases 2 and

3, but note that the correction (38) appears to make little difference to the algorithm when

T Tekgl,/gkgk is small. On the other hand, using Procedure 9. rather than computing each fk

to a fixed accuracy of 10 -8 resulted in a moderately faster algorithm.

34

NASA
_ImDnal _O_ul_s _

S_e _om,n, sIral@

1. Report No. 2. Government Accession No.

NASA CR-181927

ICASE Report No. 89-46
4. Title and Subtitle

NUMERICAL EXPERIENCE WITH A CLASS OF ALGORITHMS FOR

NONLINEAR OPTIMIZATION USING INEXACT FUNCTION AND

GRADIENT INFORMATION

7. Author(s)

Richard G. Carter

Report Documentation Page

3. Recipient's Catalog No.

5. Report Date

June 1989

6. Performing Organization Code

8. Performing Organization Report No.

89-46
10. Work Unit No.

50.5-90-21-01

11. Contract or Grant No.

NAS I- 18605

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225
12. Sponsoring Agency Name and Add_ss

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

13. Type of Report and Period Covered

Contractor Report
14. Sponsoring/_gency Code

15. Supplementaw Notes

Langley Technical Monitor:

Richard W. Barnwell
SIAM Journal on Control and Optimization

Final Report

16. Abstract

For optimization problems associated with engineering design, parameter

estimation, image reconstruction, and other optimization/simulation applications,

low accuracy function and gradient values are frequently much less expensive to

obtain than high accuracy values. We investigate the computational performance of

trust region methods for nonlinear optimization when high accuracy evaluations are

unavialable or prohibitively expensive, and confirm earlier theoretical predictions

than the algorithm is convergent even with relative gradient errors of 0.5 or

more. The proper choice of the amount of accuracy to use in function and gradient

evaluations can result in orders-of-magnitude savings in computational cost.

17. Key Words (Suggested by Author(s))

nonconvex unconstrained optimization,

inexact functions, inexact gradients,

trust region methods, global convergence

19. Security Classif. (of this report)

Unclassified

NASA FORM 1626 OCT 86

18. DistributionStatement

64 - Numerical Analysis

Unclassified - Unlimited

_. Security Cla_if. (of this pa_) 21. No. of pa_s

36
Unclassified

22. Price

NASA-Langley, 1989

