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Abstract

" This paper describes a parallel algorithm for computing the eigenvalues and eigenvector_
of a non-symmetric matrix. The algorithm is based on a divide-and-conquer procedure and
uses an iterative refinement technique.

1 Introduction

The algebraic eigenvalue problem is one of the fundamental problems in computational mathe-

matics. It arises in many applications and therefore represents an important area of algorithmic

research. The problem has received considerable attention which has resulted in reliable methods

[16, 15, 14]. However it is reasonable to expect that calculations might be accelerated through

the use of parallel algorithms. A fully parallel algorithm for the symmetric eigenvalue problem

was recently proposed in [6]. This algorithm is based on a divide-and-conquer procedure out-

- lined in [3]. The latter was based on work by [9] and [1]. The fundamental principle behind this

algorithm is that the partitioning by rank-one tearing interlaces the eigenvalues of the modified

problem with the eigenvalues of the original problem. This approach in turn enables rapid and

"This work was supported in part by the National Science Foundation Science and Technology Center Cooper-

ative Agreement No. CCR-8809615, and in part by the Applied Mathematical Sciences subprogram of the Omce

i of Energy Reseaxch, U.S Department of Energy, under Contract DF_,-AC05-84OR21400.
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accurate determination, in parallel, of the eigenvalues and subsequent eigenvectors.

In this paper we propose a parallel algorithm for the solution of the non-symmetric eigenvalue

problem. The approach uses some of the features of the divide-and-conquer algorithm for the

symmetric case mentioned earlier. In particular, the original problem is divided into two smaller

and independent subproblems by a rank-one modification of the matrix. (We assume that

the matrix has already been reduced to Hessenberg form and that the rank-one modification

removes a subdiagonal element). Once the eigensystems of the smaller subproblems are known,

it is possible to compute those of the original matrix. In the non-symmetric case, however, the

eigenvalues of the modified matrix do not interlace with those of the original matrix. Indeed,

the eigenvalues can scatter anywhere in the complex plane.

In our algorithm for the non-symmetric case, the eigensystem of the subproblem is used only

to construct initial guesses for an iterative process that yields the desired eigensystem of the

original problem. Under suitable conditions, Newton's method or a continuation method can

be used to find the eigenpairs of the original problem. We report here on our application of an

iterative refinement approach based on Newton's method; we shall not pursue the continuation

method in this paper. Work on the continuation approach has been reported by [12].

In section 2 we describe the algorithm using an iterative refinement procedure based on New-

ton's method. Section 3 covers the deflation step required to overcome multiple convergence to a

particular eigenvalue. In section 4 the convergence behavior is discussed. In section 5 we discuss

the case when the matrix or its rank one modification has a defective system of eigenvectors.

Section 6 estimates the amount of work the parallel algorithm requires and compares this to

the standard techniques. Section 7 describe3 the parallel algorithm and the different parallel

implementations of the new algorithm, and gives numerical results. Section 9 describes how our

ideas extend to the generalized eigenvalue problem.

I
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2 The Algorithm

Given a matrix H, an eigenpair (xo, Ao) of H can be thought of as a solution to the following

polynomial system

Hz - Az = 0(S) L(z)- 1

where L(x) is a scalar equation. Here, we set L(x) = ctx, where e, is the s th unit vector. Let

( Hx-Ax)= ey - I •

Then, finding an eigenpair of H reduces to finding a zero of F,. In what follows, unless oth-

erwise mentioned, H is assumed to be a real, unreduced (no zeros on the subdiagonal), upper-

Hessenberg matrix of order n. This is no restriction on the type of problems we want to solve,

since if H has a zero on the subdiagonal then, finding its eigenvalues reduces to finding those

" of the blocks on the diagonal. We note also that as a consequence of our assumption that H is

unreduced, an eigenvalue of H can only have geometric multiplicity one: this is quite easy to

see since the first n - 1 columns of H - Al are linearly independent. We will assume for now

that H has a simple spectrum. We can write H as

( Hll Hl_ )H -- Ol,,(k),_(k) T".i "k 1122

where//11 and//22 are upper-Hessenberg of dimensions k × k and n - k × n - k, respectively;

a = hk+1,k, and e!k) is the ith unit vector of length k.

Let//o=11--,....k+l_(")_(n)T then Ho= ( Hll 1H12 ),anda(Ho)=a(Hll)Ua(H22)( where'k, 0 H22

o(M) is the spectrum of M). The algorithm can then be described as follows: We first find the

k eigenpalrs of Hn and the n - k eigenpairs of 1122by some method, perhaps the QR algorithm.

These eigenpairs are then used to construct initial approximations to the eigenpairs of 11 in the

following way: if A is an eigenvalue of 1111 and x is the corresponding eigenvector, then A is

viewed as an approximate eigenvalue of H with the corresponding approximate eigenvector taken

(0)to be where n - k zeros are appended to x. Note that is an exact eigenvector of

i o,
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H0 corresponding to A. On the other hand, if A is an eigenvalue of H22 and x is the corresponding
] \

eigenvector, then ( 0 ) where k zeros are prefixed to x is taken e.s an approximate
eigenvector

X ' °
\ 1

of H corresponding to the approximate eigenvalue A. If Ais not an eigenvalue of H11 then the last

k components of ( x0 / , i.e., those of x, are the trailing components of an exact eigenvector
n

\ /

°f H° c°rresp°nding t° A' namely: ( (Hll - A)-IHI2x ) " H°wever' if A is an eigenvalue °fx

Hll, and hence a necessarily multiple eigenvalue of H0, then if A has geometric multiplicity one,

no eigenvector of H0 will have the components of x as its trailing components.

Having constructed these initial guesses, we now use them as starting points for Newton's

method to find the zeros of F_, i.e._ the eigenpairs of H. Hence, given an approximate zero

(x,A) of Fs the next approximation is

x'=z+y;A _=A+#,

where (y, #) is the solution of the system

0 0 ' (1) -

where r = Ax - Hx.

Newton's method comes into this problem in a rather "natural" way. Indeed, suppose that

(x,A) is an approximate eigenpair of H,

tt x ._ Ax ,

and let us find a way to compute a correction (y,#) to this approximate eigenpair. Clearly,

(y,/t) should satisfy

+ y)= + +

Rearranging the latter equation yields

(H-),)y- _z = Ax - Hz + _y. (2) .

N,,w ;f w,_ ;_nar_ the second ordor term p y, and if we impose a _n_ormalization condition on z_ say........... o ......

xs = 1 and assume that the desired eigenvector should satisfy lthe same condition, then (y,/_) is
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the solution of

(- )()H ,_I -z y =
" est 0 p 0 '

with r as above. But, this is the same equation that we obtain when a Newton iteration is

applied to the function Fs to find a correction to (x, _), as we can see from (1). We note here

a result from [4], where the author studied an iterative refinement technique to compute the

correction (y,#) to (x,A) from equation (2) (i.e., without ignoring the second order term) and

proved that in exact arithmetic, that method and Newton's method produce the same final

iteration.

So far we have not attempted to answer the question of which subdiagonal entry to introduce

the zero. We will use first order perturbation theory in order to shed some light on this issue.

Let E = --aek+le T, where as above: (_ = hk+l,k (note that H + E = H0, introduced above).

Then classical results from function theory ([11], v. 2, pp. 119-134) allow us to state that in a

small neighborhood of zero, we have

(H + eE)z(e)= $(e)z(e),

for all e in that neighborhood and for differentiable (x(e),)_(e)) corresponding to a simple eigen-

pair (x,$) of H. Clearly: x(0) = x and )_(0) = )_. Let yH be the left eigenvector of H

corresponding to )_. Then differentiating both sides we have (with primes indicating deriva-

tives),

Hz'(e) + Ez(e) + eEx'(e) = A'(e)x(e) + A(e)z'(e).

Multiplying by y_/and setting e = 0 we get

yHEz = A'(0)yHz,

and therefore

" I,V(0)I--lyHExl- lallYk+xllxkl
lyHxI lyHxI . (3)

The quantities that vary with k in this expression for the rate of change of ,k, are the factors in

the numerator. However, I_1,lyk+aland Izklare not really independent of one another: indeed,

, ,
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if a = 0, then at least one of yk+l or Zk is zero. Hence for a small, we can expect one of yk+l

and :Vk to be correspondingly small, since the components of the eigenvectors vary continuously.

Therefore, we have found it sufficient in practice to look for the smallest subdiagonal entry in a

pre-specified range, and accept it as the subdiagonal entry (in that range) with respect to which

the eigenvalues of the matrix are least sensitive, and set it equal to zero.

An outline of the algorithm follows:

Algorithm 2.1 Given an upper-Hessenberg matrix H, the following algorithm computes the

eigensystems of two submatrices of H and uses them as initial guesses for starting Newton

iterations for determining the eigensystem of H.

Determine subdiagonal element a where H = 0 _1 H_ ' should be split;

Determine initial guesses from eigensystems of the 2 diagonal blocks Ha a and H22;

For each initial guess (Ai, vi) iterate until convergence:
i,

• T 0 /_ 0 ; Ai *- )ki -t-/_ ; xi *-- xi q- y;

end;

Check for duplicates and deflate if necessary;

More will be said about the last step, deflation, in section 3. The algorithm just described is

inherently parallel. Indeed, the eigensystems of Hl1 and H22 can be computed in parallel. After

which Newton's method can be started with different initial guesses on different processors.

Furthermore, the dividing process can be applied recursively to obtain yet smaller subproblems,

i.e., Hla and H22 can be divided each into subproblems. This will permit the use of more

processors. However, care must be exercised if the algorithm is to be kept efficient. More will

"II be said about this in section 6 (work estimate). In practice, the original matrix will be dense

imll
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and we will need to reduce it to upper-Hessenberg form as a first step; this can be done in a

, stable fashion through a sequence of orthogonal similarity transformations.

. A brief study c_ some sufficient conditions guaranteeing the convergence of our method will be

touched upon in section 4. Now assuming that the algorithm converges, it could happen that the

same eigenpair of H is obtained more than once: i.e.,starting from two (or more) distinct initial

approximations Newton's method converges to the same eigenpair of H. We have investigated

methods to obtain further eigenpairs of H should this happen (see section 3).

We end this section with some implementational details. Our algorithm will accept (z, A) as

an eigenpair of H when [[Hz- Ax[[/[[x[I[[H[[ < tol, where tol is some specified tolerance of order

c, the machine unit roundoff. Under these conditions ([10]), (x,A)is an exact eigenpair of a

matrix obtained from H by a slight perturbation: Indeed,

" (H+._.ff_ xlrxH)x=Az '

,a

where r = Ax - Hz.

Starting from two complex conjugate initial approy.imations, Newton's method will converge

to two complex conjugate zeros of Fs, or the same real zero. To prove this it suffices to look at

one iteration and show that when the current approximations are complex conjugate, Newton's

method yields two complex conjugate corrections, or the same real correction. The system we

have to solve starting from (x,)_) is _1). For (:_, _) this becomes

- _I -_ y'

But this is the same linear system obtained when the conjugate of bath sides in (1) is taken,

knowing that the matrix is real and hence H = H. Therefore: yr = _ and #r = #. This will

. allow significant savings in the computations.

Lastly when starting from a real initial guess, only real corrections are computed. Therefore

the imaginary part of the eigenvalue should be perturbed if convergence to a complex eigenpair
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is to be made possible. In practice we have done this when real arithmetic does not lead

to convergence after a pre-specified number of corrections. To illustrate the situation when

perturbing the imaginary part of the eigenvalue is necessary we mention the very simple case of

a 2 x 2 real matrix whose eigenvalues are complex.

3 Deflation

When Newton's method is applied to solve the eigensystem of a matrix H, it is possible that

starting from distinct initial guesses we converge to the same eigenpair of H. In fact a naive

implementation of the algorithm in section 2 may result in many eigenvalues being found multiple

times and consequently some eigenvalues not bein_ found at all since the number of initial guesses

is n (at most). To avoid this unwanted situation, we included a deflation step in our algorithm

which is designed to obtain further zeros using Newton's method. In this section we prop,,se
a

various methods for doing this. Basically, these methods fall into two classes.

m

Assume that when algorithm 2.1 is applied to the n × n matrix .rI (we will assume for simplicity

that it has no multiple eigenvalues) the eigenpair (z, _) of H i_ obtained more than once, i.e., the

algorithm c_nverges to (x, ,_) from several distinct initial guesses (X{oi), _(o0), i = 1,..., r, r > 1.

Then the :methods of one class produce a n- 1 × n- 1 matrix H' such that a(H _) = a(H)- (_}

and apply _lgorithm 2.1 to H' starting from r - 1 of these initial guesses; indeed, we can expect

r - 1 eigenpairs of H to have been missed. If the algorithm converges, thel, it will do so to

eigenpairs different from (z, ,k) since _ is no longer in the spectrum.

The otl',e_ class of methods will reapply algorithm 2.1 to the original matrix H starting from

r - 1 of the initial guesses mentioned above, but will force convergence away from (x, ,k) by

ensuring at all steps that the current eigenvector forms a non zero angle with z.

w

A common drawback that these methods have is that they tend to serialize the computation.i

However, it has been our experience that the need to deflate arises infrequently, less than 5% of



the time in our tests.

3.1 Deflation using elementary transformations

We now describe one possible deflating similarity transformation. The assumptions on H, ,_ and

x are as above.

Since we are assuming H to be upper-Hessenberg with no zeros on the subdiagonal, then

zn i_ 0 and the elementary transformation

M =

ioeo_

° •

M = "- • , (4)
1 x._l

o 0 X n

is non-singular. The inverse of this matrix is

• °° •

M-1 = 1 _z._, . (5)
_n

0 ±

It is easy to see that M-ix = en. Now we let

B = M-1HM. (6)

Then it is easy tc.verify that the last column of H is Re,.,. Furthermore the leading principal

submatrix of order n- 1 of H, which we will call H _, is upper Hessr ,t)erg, has the property that

=o(H)-

and differs from the leading n- 1 × n - 1 principal submatrix of H in the last column only. In

fact, if we let hn-1 be the iast column of the leading principal submatrix of H of order n- 1,

" then it is straightforward to verify that the last column of H' is hn-1 - hn,,.,_lz', where

Zn_l

,,
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The strategy we have just described is given in [16] and applies regardless of whether the eigenpair

(x,)_) is real or not. However, when (x,,k) is real we get a real matrix H'. In the case when

(x, _) is not real, the last column of H' alone is not real since, as we remarked earlier, the other

columns are those of a leading principal submatrix of H. Hence the leading principal submatrix

of H' of order n- 2 is real. Also in this ca._e the complex conjugate of (z,A), (_,)_), is an

eigenpair of H, and therefore _ is an eigenvalue of H; a corresponding eigenvector is

_'1 -- 2:1x.

M-;_ = • .

5:n-1 -- Xn-1
e_a
Xn

Since e(H') = a(H)- {)_}, A is an eigenvalue of H' and a corresponding eigenvector is the

vec_*or_ of length n - 1, whose components are the first n - 1 components of a scalar multiple

of M-I_:

)

where i2 = -1. This is due to the special structure of H. Now recall that H' has no zeros on

the subdiagonal, and so we know that the last component of _ is nonzero. Note that _ is real.

We can carry out a deflation that produces a matrix H" of order n - 2 with the property that

o(n") = - {X},

in the same way we obtained H' from H using the elementary transformation of order n - 1

! ._ °° ° •

i:r_-2
0 _.-I

By a previous remark about this deflation strategy, we know that H" differs from the leading

principal submatrix of H' of order n - 2 (which is real) in the last column only. The last column

of H" is hn_ 2 hn-l,n-2x', where hn_ 2 is the last column of the leading principal submatrix of

H' and z" is the vector whose components are the first n - 2 components of _. Since all of the

i quantities involved are real, H" is real.

m
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We remark here, as can be readily realized, that H I (or H I_)is quite cheap to obtain in practice

once an eigenpair of H is available. It requires O(n) operations consisting of a vector normal.

ization, a scalar-vector multiplication and a vector-vector addition. However the conditioning

of the matrix M might raise concern. Indeed:

condo(M) = []M[I_IIM-I[[_ _ max([xi])max ([xi[ _\lznl/

which can be large if Xn << xi. Having noted this, it is clear that the ill-conditioning of M can be

easily detected, and therefore one of the more stable (and costlier) methods which we introduce

next and in the following sections can be used.

It is possible to prevent the ill-conditioning of M from bearing on the algorithm by avoiding

a similarity transformation. More precisely, the eigenvalue problem we want to solve can be

thought of as a generalized eigenvaiue problem,

Hz = ABz,

with B = I. We want to find a(H) = a(H,I). Now we know that given any non-singular M

and M I,

a(H,I) = a(M'HM, M'M).

Given a particular eigenpair (x, ,_) we would like to choose M and M _ in a way that solves

the problem we set to ourselves at the beginning of this section, namely, we want to reduce

the problem to one where ,_ is no longer in the spectrum. A closer look at the similarity

transformation introduced above, reveals that its deflating property is due to the fact that

M-ix = en. But then M -1 is not the only matrix that can be used to accomplish this. In fact

the following matrix M I can be chosen to reduce x to a multiple of en:
m

M I = DM -1,

where D is the diagonal matrix with the following entries

( d.-I i¢ _ _1

'- ' J Ix, l-'"d,=-_'_, if _ > 1i_nl
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i.e., D is chosen so that all the entries in M t are less than or equal to one. Then we have

(:1°) (°!°)M'HM = c_ , M'M= , (7) °

with

Also,

a(H',D')=a(H,I)-{_.}

and therefore by this transformation A has been "removed" from the spectrum. Working on the

solution of a generalized eigenvalue problem from this point on will not in general cause any

dramatic increase in the cost of the algorithm mainly because D _ is diagonal. A Newton step

with this problem involves the following computation

(Ht-AiD'eT -D'xi )( y)0 I_ = ( ri )0 , AI _-..Ai + D ; xi ,--- xi + y (8) .

where

ri = AiD_xi - Hxi.

Clearly the previous computation involves an O(n) increase in the cost of one step: this comes

from the multiplications by D t. The details on how equation (8) is derived are given in section 9.

If A is complex, then after deflating A and its conjugate _ the resulting matrices H _and D _ are

complex in general. This is the major drawback of this method.

Finally we mention another approach that can be of interest when the similarity _ransfor-

mation (6) involves a very ill-conditioned M (4). This approach consists of interchanging two

components of x and the corresponding columns and rows in H so that the !ast component of

x is large enough. More precisely: Let x, be the largest component of x (in absolute value) and

let Pns be the matrix obtained from the identity matrix by permuti:Lg the n th and s th columns.

Then (P,_ox,)_) is an eigenpair of the matrix PnsHPno, since

( Pn°H Pn, )( Pn°x ) = ,_Pn,z.
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Now scale the vector Pr,ax so that the last component is 1 and call that vector _. Thes_ as

above, the elementary transformation

7 M- "" •

0 1

can be used to deflate the matrix Pn, HPn,. The fact that here P,_,HPn, is not upper-Hessenberg

is of no consequence. In fact, we can make the following general statement: Given any matrix

A of order n, and any eigenpalr (z,)_) of A, then a matrix Q satisfying

Q-ix = el or Q-ix = en,

can be used to deflate A, in the sense that

Q-1AQ = [Ae,,B,] or Q-'AQ = [B2, Ae,],

respectively; where B1 and B2 are n × (n - 1) matrices.

!
Having thus deflated the matrix PnsHPns, the leading principal submatrix of order n - 1 of

i-lpn, HPn_M, (9)

call it H', has all the eigenvalues of H except A (if A is simple). However, H' is not upper-

Hessenberg in general and therefore will be reduced back to Hessenberg form before applying

Newton's iterations; this is meant to save on the cost of factorizing the Jacobian when solving

the linear systems arising at each step of Newton's iteration. Note that it is only the trailing

diagonal submatrix oF order n - s + 1 x n - 8 + 1 of H' that needs to be reduced and that if

s = n - 1 or s = n, then H' is upper-Hessenberg. Moreover s needs not be chosen so that z_ is

the largest component of x (in absolute value). Indeed, since the size of the matrix to be reduced

to upper-Hessenberg form increases when s approaches 1, it is more advantageous to choose the
!

largest s for which the ratios xi/x, are moderate. We wish therefore to define a threshold t for

,_ _-._ ..¢,_. ..... _;,.o _ho b_is -f wh;_h s will he d_t_r_mined.
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Let /t be the computed form of the matrix in (9). In [16], chap. 9, Wilkinson established

that if IlXlloo _ 1, then the eigenvalues of H are the exact eigenvalues of a matrix/t' satisfying

IIH- H'lloo_<II,'11oo+ (,,- 1)(, ,!

where r is the residual Ax - Hz and ( is the machine epsilon. With no assumptions on the

infinity norm of x, this inequality becomes

IIH - .,_'11_o_<II,'11oo+ (n - 1)llxlloo_. (10)

Since in our algorithm, our computed eigenpairs have residuals on the order of nllHllooe. , we

propose IIHIIoo as a value for t.

In addition to destroying the structure of the matrix, this last method of deflation suffers from

the fact that in the case when the eigenvalue to be deflated is non-reM, the resulting matrix H'

is complex and therefore will considerably increase the cost of finding subsequent eigenpairs if

a Newton process is restarted from a real initial guess.

!

3.2 Deflation with help from the left eigenvector

The method we introduce now is different in spirit from the ones in the previous section, in that

no attempt is made at modifying the matrix.

Assume that (x, A) is an exact eigenpair of//and that A is simple:

Hz = Az.

No assumption is made about the remaining eigenvalues of//.

Let (x, X) be such that

(_,X)_,tt(z,X)=(A O)0 J

where the right hand side is the Jordan canonical form of H. Now set

-" le, •
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Then it is clear that yH is a left eigenvector of H corresponding to R and furthermore that

" yHX = O.

!
This property can be used to modify Newton's method to avoid converging to the eigenpair

(z, A) a second time. Indeed, given A we can compute the left eigenvector yH corresponding

to it and use it to confine the current eigenvector to the space X. Therefore we can expect

to converge to an eigenvector linearly independent of x and hence corresponding to a different

eigenpair (since (z,,k) was assumed to be simple). When (z,A) has been obtained once, our

algorithm for avoiding it then consists of the following major steps:

Compute the left eigenvector yH corresponding to _, with IlYlI2 = 1;

Given the current eigenpair (z, #) compute the Newton correction from algorithm 2.1;

Let z' be the approximate eigenvector obtained after adding the Newton correction
q

to z, choose the next eigenvector z" as:
!

z" -- (I- yyH)z';

In the last step we are just projecting z_ onto the space X. The need might arise to do more

than one projection if convergence to more than one known eigenvalue is to be avoided.

It is obvious why we need the known eigenpair to be simple for the algorithm just outlined to

work. If _ is multiple then left eigenvectors are no longer necessarily orthogonal to X. In fact,

the algorithm will be adversely affected if the eigenvalue _ is ill-conditioned, i.e., if yHx is very

small. Indeed, in this case, if the current eigenvector z = ax 4- Xr, where v is a vector of length

n - 1, then,

" (I- yyH)z = z -- (yHz)y = ax 4- Xv - (ctyHx)y _ z,

f
showing that z is hardly modified by the projection and therefore suggesting that the algorithm

t

' will not necessarily prevent a second convergence to (x,,_).
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The algorithm generalizes to the case when A is multiple in the following way" let V be a

right invariant subspace corresponding to A. Let (V, Vc) be such that

0 d ' f

where the right hand side is again the Jordan canonical form of H. dh is the Jordan block

corresponding to A; since H is assumed to be unreduced, there can be only one such block. If

we set

w '

then clearly U H is a left invariant subspace corresponding to A and furthermore

UHVc= O.

This last property will allow UH to be used in much the same way the left eigenvector waz

used earlier. However, the practical usefulness of this method is restricted to the case when the

eigenvalue A is simple: indeed, the problem of determining the invariant subspace associated
!

with a multiple eigenvalue A is an extremely difficult one and can be prohibitively expensive.

This method in its simplest form (using the left eigenvector) adds O(n 2) work to the cost

of finding one eigenpair distinct from (x, A): this is the cost of computing the left eigenvector

corresponding to A; the cost of a single projection is O(n).

3.3 Deflation withorthogonal transformations

We present now a very stable method for obtaining an upper-Hessenberg matrix H' with the

property that it has all the eigenvalues of// except for A [16]. We assume for now that the

eigenpair (x,A)is ezact.

The strategy consists of n - 1 major steps, at each of which a new zero is introduced in the I

last column of H - AI starting from the bottom. The configuration at the beginning of the r th
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step looks like

( )H _ . ° •

! ** 0

with zeros in the last r - 1 components of the last column. The r th step then consists in a

post-multiplication by G_, where G_ is the (possibly complex) rotation in the plane (n- r,n)

designed to annihilate the (n - r, n) element:

1

...
1

G_ = c_ 1 -s_ ,
".o

s_ 1 c_

where IlcrJl2 + IlsrJ]2 - 1. This post-multiplication will affect columns n - r and n only and

therefore will not disturb zeros previously introduced in the last column. At the (n- 1) step,

Gn-1 which is constructed to zero the (2, n) element, will also zero the (1, n) element. Indeed,

assume that after the (2, n)element has been zeroed we have some value c_in the (1, n) position;

! then we have

(.....o).(I-I- _I)a_...G___ = ... : .
** 0

Now if we develop the determinant of this matrix by the last column we get

det[(H- AI)G1...Gn-1] = ab1...bn-1,

where by is the r th subdiagonal element of (H - ,_I)G1...Gn-1.

det[(H- AI)G1...Gr,-1] = det(H - ,kI)= 0,

since (det(Gr) = 1) for r = 1,...,n- 1. But by _ 0 for all r, since we have assumed that H

had no zeros on the subdiagonal and since post-multiplication by a Gr cannot but increase the

modulus of a subdiagonal element in H - ,_I. Thus we must have a = 0 and therefore at the
!

end of the n- 1 steps just described the last column is zero• Let us set {_ = G1...G,-1 to

• __,_ ,L1L _ _ Aa._a-.'_ r_lL^_

i {;-_ =_H =G___...GH,
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and itis straightforwardto verifythat the zerosof the la.stcolumn of (H - AI)G willbe

preservedwhen itispre-multipliedby C -1,becausethesuccessivepre-multiplicationsby G_, r =
m

1,...,n - 1,willpreservethosezeros.ThereforethelastcolLumnof
!

P = Cn(H- AT)C+ At

isequalto Aen. The eigenvectorof H correspondingto A isen. Note thatH isnot upper-

Hessenberginthiscasethough.Indeed,non zeroelementswillbe introducedinthelastrow of

H;in fact,
* "'" * _i

* 0

/

H _. ".° .

** A, ... ,

This is not disturbing since if H _ is the leading principal submatrix of H of order n - 1, then

H' is upper-Hessenberg and a(H') = a(H)- {A).

If A is a multiple eigenvalue of H of (algebraic) multiplicity m then A is an eigenvalue of H _

of multiplicity m - 1.

So far we have assumed that the eigenpair (x,A) is exact. In practice, (x,A) will only be

approximate, in the sense that Hz - hz = r, is of the order of the machine _. In this case round-

off errors will in general prevent Gn-1 from annihilating the (1, n) entry. In fact, the accuracy of

the computed eigenvalue A will come into play. If A corresponds to an ill-conditioned eigenvalue

of H, then it is possible that A be a rather poor appro:dmation of the exact eigenvalue. As a

consequence the (1, n) entry might not be negligible at ali and examples do exist where this is

indeed the case [16]. A way around this difficulty is to construct the plane rotations G1,..., Gn-1

in a way to reduce the vector x to en and then apply the corresponding similarity transformation

to H. Inequality (10) from section 3.1 holds when this is done (with obvious modification in

the definition of H_). However, this will in general res_dt in introducing non-zero entries below
!

the subdiagonal of H and therefore H needs to be reduced to upper-Hessenberg form again. We

refer the reader to [2] for an example of ' _____.,___ ,_ .... ,.__,.__ _t,__, _____:,L__UCll _dLi| _Ii,I_UI'I_bUILIL_i,JLIC_¢211_'.icl, blOlI Oi bUd, b _t_ollbttttl

to the non-reM case is straightforward.
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In addition to the difficulty just mentioned, the deflation with plane rotations, suffers from

o the fact that the deflated matrix will be complex if the eigenvadue to be deflated is complex.

Indeed, it is unfortunately not true in general that when an eigenvalue and its complex conjugate
!

are deflated by this method, the resulting matrix is read.

Example 3.1 When the two complex eigenvalues of the 4 x 4 upper-Hessenberg matrix,

0.2190 -0.0756 0.6787 -0.6391 )

-0.9615 0.9032 -0.4571 0.8804
0 -0.3822 0.4526 -0.0641

0 0 -0.1069 -0.0252

are deflated using plane rotations as just described we obtain

1.1593- 0.0000i 0.0000 + 1.0129i 0.0000+ 0.0000i 0.0000+ 0.0000i

0.0000- 0.3053i 0.1740- 0.0C00i 0.0000 + 0.0000i 0.0000 + 0.0000i J-0.1534- 0.3540i 0.5717 + 0.0112i 0.1082 - 0.4681i 0.0000 + 0.0000i "

-0.4640 + 0.1988i 0.2187- 0.3465i 0.3964 + 0.0611i 0.1082 + 0.4681i

• After the deflation, we will be working with the upper 2 x 2 block of H _ which clearly is complex.

t 3.4 Remarks on identifying duplicate eigenvalues

We have already remarked that the computed eigenpairs from our algorithm are the exact

eigenpairs of a nearby matrix. Under those conditions ([10]),

_<IIEII/I (;  )I,

where E is the error in the matrix, and Is(Ae)l is the :ondition number of the exact eigenvalue

Ae of the original matrix H. When Ae is ill-conditioned we can expect unpredictably large errors

(compared to the tolerated size of the residual) in the computed approximations to Ae and

therefore in the duplicates if any and identifying these duplicates becomes a rather daunting

task: in particular, they will not be detected if their difference is compared to tol introduced

earlier. Conversely, it can happen that under certain conditions the tolerated size of the residual
!

be much larger than the distance between certain exact eigenvalues and therefore between certain

computed eigenvalues, in this case, it could happen that distinct computed eigenvalues wiU be

declared as duplicates if their difference is compared to tol.

_

m
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Example 3.2 We illustrate this last case with the following matrix

2 • 10-r 0 0 )

H = 2 10-r 0 .
0 2 101°

The tolerated size of the residuals for this matrix as chosen in our algorithm is tol "_ [IHIle > 1

10-6 . Therefore if we decide to declare as duplicates those eigenvalues whose difference is less

than tol then the other two distinct eigenvalues of H will be declared as duplicates.

The problems we have just raised do not have easy solutions [8], and indeed more research is

needed here.

4 Convergence

In section 2, we mentioned that computing an eigenpair of H reduces to computing a zero of

er -I "
J

The Jacobian of F, at (x,A) is

(D_(Hx-Az) Dx(Hx-Ax))(H-AI -x)F_,(x,A) = Dx(e T - 1) Dx(e T - 1) = eT 0 '

where D_(F) denotes the derivative with respect to z of the function F. In this section, we

give sufficient conditions for the convergence of our procedure. The result is a version of the

Kantorovich theorem as it applies to our case.

Theorem 4.1 (Wilkinson) Assume (z,A) is an exact zero of Fo. Then

H eT 0

is singular if and only if A is multiple.

Proof. Let us assume first that ,k is a multiple eigenvalue of H and that x is the corresponding !

t".... +_ ,,; ....... +,_,, +h,_,_ +h,_,-,_ ,_vi_t_ a. nanT._ra v_ctor y such thati _A_._, I _-a_-_ • -,,.,.,,.-. _ ....................

yn(it - Al) = 0 and yHx = O;
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y is simply a left eigenvector of H corresponding to A. Thus, (yH O) is a nonzero vector and

( )(yH0) H-AI -z =0.r 0

This proves that the Jacobian is singular.

such that

Butthenvo=Oand(H-AI)v= z'If '=O, thenvisn°nzer°since(V) #O'ands°vis
an eigenvector that is linearly independent of x, since z, = 1 and vs = 0. Hence A is a multiple

°

eigenvalue in this case. If # ¢ 0, then v is _also nonzero; if it were then we would have

#z = (H - AI)v = (H - AI)O = 0

and hence z = 0, contradicting our assumption on z. But (H- AI)2v = #(H - AI)z = 0, and
!

thus v is a nonzero vector that has grade 2. Therefore A is multiple in this case as well. o

Remark: Since we are assuming that H is upper-Hessenberg and unreduced, an eigenvaJue

can only be non-derogatory, i.e., the associated eigenspace has dimension one.

The previous result applies to the Jacobian at a zero of Fs. We wish to know more about the

Jacobian at those approximations arising during Newton's iteration and before convergence is

declared.

Theorem4.2 Assume (z,A) is not an exact zero of Fs. Then (H-AleT -X )O is singular if

and only if at least one of the following is true:

fl i) A is an eigenvalue of H and has an eigenvector whose s th component is zero.

2) z be!ong._ t.o the :_ace generated by (c!,...,e__!,c_,+!,...,c_), where ci is the i th column

of H- AI (A may or may not be an eigenvalue).
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Proof. l_ssume first that l ) is true and let y be an eigenvector, ys = O. Then ( YO) is clearly

in the null space °f the Jac°bian. If 2) h°lds, and x = (H - AI)y, with ys = O, then ( Y )is_.

in the null space of the Jacobian.

if the Jacobian is singular then there exists a vector ( y _ such that,Conversely,
\ # /

TNs implies that

- M)y =(H =o
and dearly ya = 0. We now consider two cases according to whether # is zero or not. If p is

zero, then A is an eigenvalue with corresponding eigenvector y, therefore we are in case 1). If p

is not zero then _uz and hence z is in the range of H - AI and therefore we are in case 2) since

y,=0. Note that A may or may not be an eigenvalue in this last case. [::] .

Remarks: The theorem tells us that more often than not, a singular Jacobian is an indication |

that we already have an eigenvalue, and this has been our experience indeed. The singularity

of the Jacobian is also an indication of an iU-conditioned eigensystem. In fact, if we accept that

the current eigenvector was moving in the "right" direction then if it satisfies condition 2 of the

theorem, we can say that the eigenvalue is acting like a multiple one since the eigenvector is

also in the range of (H - AI). In practice we have not encountered a situation where condition

1 applied: this is understandable again if we accept that the eigenvector is moving in the right

direction since theD the eigenvalue would be acting like an eigenvalue of geometric multiplicity

more than one, which is impossible since the matrix is unreduced (recall that zs = 1).

The second derivative of Fs is a constant bilinear operator with norm equal to 2. In fact,

_,(z,A)= (O-I -I O)o o o o •
e

Suppose now that our procedure is started with initial guess (x0, A0). _'e now give su_cient

conditions for the convergence of our procedure with the given initial guess. This is provided by
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the classical Kantorovich theorem [5]. Let us first introduce

K = IIF'_-_(zo,Ao)[I

and

_ -II(_, A_)- (xo,_o)ll,

where (xi, Al) is the first iterate, i.e.,

(zl, _) T = (zo,_o)T - F':l(zo, _o)F,(zo,,Xo).

We call (xo, Ao), ... ,(xk, Ak) the sequence of iterates produced by the algorithm.

Theorem 4.3 If/3o = /lc1 < 1/4, then the sequence (zt,, At,) converges quadratically starting

from (z0, A0).

i,

The process can be regarded as starting from any of the iterates (xi, Ai) and in fact will often

converge even when the conditions of the theorem are not satisfied at (xo, Ao). These conditions

will then be met for some (xk, Ak) at which stage convergence becomes quadratic.

5 Defective Case

Ours being a non-stationary iteration (_he iterating map is not fixed), it is not easy to analyze

the behaviour of the successive approximations. We try however to address this problem in

this section with a particular emphasis on the case when either the matrix H or the modified

matrix H0 is defective, i.e., when either one of these matrices dces not have a complete set of

• eigenvectors. As we remarked earlier, an eigenvalue of H (with no zeros on the subdiagonal) can

only have geometric multiplicity one, and therefore H is defective whenever it has a multiple
1[

eigenvalue. An eigenvalue of Ho on the other hand, can have _eometric multiplicity one or two.

1 In what follows n is the order of H.
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The connection between Newton's method and inverse iteration is well known [13]• We present

a proof which motivates the subsequent analysis: we let J be the Jacobian of the map Fs at

(x, A) defined in section 2,

J = esT 0 '

and we assume that x_ = 1. The order of the Jacobian is n + 1. Then,

J = Jo + en+l VT

with

J°= 0 1

and,
0 '

0

--:1
J

Assume Jo it is not singular; this is true if and only if A is not an eigenvalue. Assume also that #

J is not singular. The correction to (x, A) is computed in the following manner:

() ()Y =j-1 r
_u 0 '

where r = Az - Hz. Using the Sherman-Morrison-Woodbury formula [10] we can write j-1 as,

1 jolen+lvTjol
j-1 = (Jo Jr en+lVT) -1 -" Jo 1 -- 1 + vTj_len+l

Therefore, letting b = 0 , we have,

Y = J-Ib = Joab- Jolen+a. (ii)
# 1 + vTJo 1en+l

It can be easily checked _hat

J°ab = 0

¢ldtLU I+nl_b

J°-len+l = 1
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where (H - AI)_ = x. Now if we let (xi,A1) be the next eigenpair we have from (11) and the

• subsequent equalities,

A1 = A + # = A + 0 - 1 + vrJolen+l 1 "

Furthermore,

vT Jff l b -1

1 + vTJo le.+1 xa

and so finally we see that our scheme reduces to the following: Given (x, A) compute the next

iterate (xi,A1) via

xi = _ (12)X$
1

A1 = A+ ---.
_go

5.1 Case when H is defective

When the algorithm is expressed as in (12) we can readily see some of the difficulties that arise

when the matrix H is defective or almost defective, which is more likely in general due to round-

off errors. These problems are similar to the kind of problems that face the application of inverse

iteration. More precisely, assume that H is almost defective with xi,..., xn as a complete set of

eigenvectors. Let Al,..., At be a cluster of eigenvalues of H and suppose that the initial approx-

imate eigenvalue A corresponds to one of these. The eigenvectors xi,..., zt corresponding to

these eigenvalues are then almost linearly dependent. In general, the eigenvector corresponding

to A can be expected to converge to the space generated by xl,...,xt. As the eigenvalue A

approaches the cluster however, continued _,orrections to the eigenvector cannot be expected to

refine it. We refer the reader to the particularly lucid account in [13] for a justification of these

claims. Solving as in inverse iteration (see INVIT [14]) is a possible way around this problem.

Computing the residual with extended precision arithmetic is also an obvious approach, and has

been successful in practice.

When approaching a singular solution, Newton's method loses its quadratic convergence rate.

We have proved earlier (Thin. 4.1) that the Jacobian is singular at multiple eigenpairs and
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r_l lmurt

Figure 1: The behavior of the algorithm for ali almost defective 25)<25 matriz. The crosses

are the eigenvalues of the original matriz; the stars are the initial 9uesses; the circles are the

eigenvalues computed by our algorithm; the dots are the iterates arisin9 in Newton's iterations.

therefore we can expect slower convergence when these are the target (see Fig. 1).

Recallthe rateofchangeof A thatwe derivedinsection2: I

l_llyk-,,-1llzkl
Im'(0)l- l:yHxI •

We wish to caution from hastily drawing conclusions about the sensitivity of the eigenwlues

of a defective matrix to our dividing process from this expression. Indeed, as an extreme case

which will help illustrate our point, the eigenvalues of a defective matrix can remain virtually

unchanged after a zero has been introduced in the subdiagonal. An example, is the 2 × 2 matrix

1 0

(' ')"

After the dividing process we have

1 0

(0 1)" "

The starting eigenpairs are then ( 0 1

exact eigenpalr. Now, even though the first starting eigenvector is orthogonal to the desired one,

the equations arising during the first of Newton's iterations can be solved in a way to produce
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the desired eigenvector from the first step: zero pivots need to be replaced by small numbers on

. the order of the machine unit roundoff (as is done in inverse iteration, INVIT [14]).

Finally, we mention that the deflation process can contribute to the improvement of the

condition of the eigenvalues. Indeed, if ,k and ,V are pathologically close (and fairly distant from

the rest of the eigenvalues), then by deflating ,k, say, R_ will have a better condition number as

an eigenvalue of the resulting matrix. Indeed, )¢ is not part of a cluster anymore.

5.2 Case when H0 is defective

It can happen in this case (e.g., if H is non-defective) that the initial dividing process would

leave us with a number of initial approximations that is smaller than n. This will inhibit

the parallelism of the algorithm in that less Newton processes can be started simultaneously.

Furthermore, whatever eigenpairs we have can be extremely poor approximations to the desired

ones. An extreme situation is illustrated by the matrix

(00o)1000
H= 0 1 0 0 "

0 0 1 0

No matter where the zero is introduced on the subdiagonal, the resulting matrix has 0 as its

only eigenvalue, and we only have two initial approximations to the four distinct eigenpairs of

H, namely:

(0)(0)( 0 ,0), ( 0° ,0),
0 1

if the zero is introduced in the (3, 2) position.

LI

Furthermore, the Jacobian is exactly singular at each of these initial approximatious. Indeed
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(0)1 ,0) is
the Jacobian at ( 0

0

/00000/
1000-1 °
01 0 0 0
0 0 10 0

0100 0

which is clearly of rank three since the first and the last columns are linearly dependent, and the

(o)0 ,0) is also singular.fourth column is zero. Similarly it can be seen that the Jacobian at ( 0
1

A remedy to this situation is to perturb the initial guess zero by a small amount thereby making

the Jacobian non singular, and indeed this has been successful in practice. The problem in

this case, as in most other similar cases, results from the particular structure of the matrix. In

order to obtain further eigenvalues, we need to deflate the matrix each time a new eigenpair is

computed which makes the algorithm almost serial.

5.3 Known failures s

Some matrices of the structure mentioned at the end of section 5.2 (companion-like matrices),

provided us with the only cases where the algorithm failed in practice to converge to the desired

eigenpairs, i.e., failed to produce eigenpairs with small residuals after a fixed number of iterations.

Should these matrices be subjected to orthogonal similarity transformations however and then

reduced back to upper-Hessenberg form, the dividing process will provide us with much better

initial approximations and indeed, will converge for all initial approximations. We are certainly

not advocating this as a viable scheme: we wanted to emphasize the fact that it is the structure

of the matrix that caused the poor approximations and the failures, and not some inherent
,J

difficulty with the spectrum of these matrices.
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6 Work Estimates

a

We assume in this section that we are given a real dense matrix A. Then the first task in our

" algorithm is to reduce A to an upper-Hessenberg matrix H. This requires 1_----_3operations (plus

lower order terms) since the orthogonal matrices used in the reduction are to be accumulated

[10].

The dividing process is now applied to H. Assume n = 2mr, for some m > 1 where r is not

necessarily relatively prime to 2. Ii we repeat the dividing process m times, we end up with 2"

matrices of size r, each of which is upper-Hessenberg. A submatrix of size _, obtained in the

dividing process will be referred to as a matrix at the level i. The matrix H itself is at the level

0, and the r matrices referred to above are at the level m. Thus, we have m . 1 levels in total.

Let pl = 2m be the number of submatrices at the lowest level, and p the number of processors;

dt

we will assume that p = 2q, q _<m. The cost of finding the eigenpairs of a (Hessenberg) matrix

, at the lowest level (by the QR algorithm)is roughly 18 (_)3. this figure is very approximate

and assumes among other things that two QR steps are needed before a real or two complex

conjugate eigenvalues are identified and that the matrix has an equal number of real and complex

eigenvalues [10]. Let st = _ be the size of one matrix at the level l. Let kt be the average

number of iterations needed to get one eigenpalr of a matrix at the level _. kt depends on the

matrix and on its size of course. We will make the following simplifying assumption however:

kt = k, l = 0,..., m, i.e., we assume that the average number of steps required for convergence

is the same at ali levels. Our experience with the algorithm suggests that this is a realistic

assumption as long as the size of the submatrices remains moderate. If the number of levels is

increased to the point where we are left with small submatrices, then kt becomes significantly

I L larger as l increases.J

1
i The cost of computing one correction at the level _ is roughly 6s_" indeed, one Newton

i iteration involves the solution of a linear system that is upper-Hessenberg, but for possible non-:j
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zeroS i_ the last row; the order of this linear system is st + 1. Therefore 2 multipliers at most

need be computed per column and, when updating the matrix, each of these will be used in

2(st + 1 - i) multiplications and additions, where i is the index of the column. The factorization

cf the Jacobian requires then 2s_ operations in addition to O(st) operations (including divisions

and co_aparisons). The forward solve is O(se) work and is negligible. The backsolve requires

s_ operations and computing the residual requires another s_ operations. Therefore for a real

current approximation one correction comes at the cost of 4s_. For a complex current eigenpair,

this becomes 16s_ since the dominant operations are a roughly equal number of multiplications

and additions. Since, as we indicated in section 2, only one of a conjugate pair of complex

eigenpa.irs need be corrected, we can assume that 8n 2 operations are required for correcting a

complex eigenpair. Assuming again that the matrix has an equal number of real and complex

eigenvalues, our estimate for the amount of work required for computing one correction at the

level _ becomes 6s_ operations.

'_ Newton processes on each processor. We now haveWe shall use _ initial guesses to start _

the following work estimate on one processor, assuming ali processors share equally the cost of

all the stages of the algorithm

= 3p + is +  )k4 +2-p,

where: 14"3 is the processor's contribution to the reduction of the original matrix to upper-

Hessenberg form; 18 _ is the cost of applying the QR algrithm to _ matrices of size ""P

ET_16("_'s2_/_ I is the cost of solving k linear systems with matrices of size sl, repeating this for

n initial guesses and for i = 0,.. m- 1; 2"3p • , _ is the processor's contribution to the computation

of the eigenvectors of the original dense matrix A once those of H have been computed. The
.6

expression for the work can be rewritten:

n3 (2.0 18 24k 1 )= _ _ + _ + .-T-(I- (_)_)
/Vp _ r - - -
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But p_ -- 2m and therefore p_2_ 4m and hence

Wp=_ --+8k+(lS-8k) , (13)

where for ease of reference we redefine the various parameters- n is the order of the matrix;

p is the number of processors; k is the average number of Newton iterations needed before an

eigenpair is accepted; and m is the number of zeros introduced on the subdiagonal.

The cost of getting the eigenvalues and eigenvectors by the QR algorithm is 25n 3 [10]. A

reasonable value for k is 3, however there are cases when k is 2 or less. There are also cases

where k is larger than 3, mostly with matrices of small order or defective matrices.

It is easy to verify that for k < 2 and for rn = 1 (one split) the model for the cost of the

algorithm predicts sequential speedup over QR. Our model does not predict sequential speedup

I for problems where k equals or exceeds 3 (see Fig. 2). Here are some sample values of Wp,

assuming that k = 3 and p = p_ = 2m. which means that the original problem is subdivided

into a number of problems equal to the number of available processors.

p=128_Wp=0.2396n 3 ; p=1024_Wp=0.0299n 3.

Here we have assumed that the problem is large enough to allow the efficient use of that many

processors. Note that the ratio of the work estimate from our model to the work estimate of

QR is independent of n. This is due to the simplifying assumption on k made at the beginning

of this section. That assumption has in effect "hidden" the dependency on n of the coefficient

of n 3 in our model. Figures 2, 3, 4 and 5 show plots of the work estimate for various values of

the parameters involved.

1:
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Figure 2: Variation of the Coemcient of n3 in work estimate model in terms of the number of
steps k, with m = 1, and p - 1 (see expression for work).
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? Parallel Algorithms Details and Performance

lt is fairly straightforward to see from section 2 how to obtain a parallel algorithm. We discuss

here certain details. The given, generally dense, matrix is first reduced to upper-Hessenberg form

using a blocked algorithm. Next comes the partitioning phase or "divide". This phase amounts

to constructing a binary tree with each node representing a partition into two subproblems. It

has been our practice to partition the matrix into a number of subproblems (at the lowest level)

equal to the number of processors available on the target machine. Each of these problems

may be spawned independently without fear of data conflicts; the computation at this level

(the lowest) consists of calls to the EISPACK routine HQR2. The tree 1_ then traversed in

reverse order with Newton's method applied at each node using the results from the sons as

initial approximations. Note here that the computation at a node does not have to wait for

both sons to complete in order to start" as a matter of fact, it can start as soon as one son has a

computed one eigenpair of a subproblem. In order to stress this point, we mention here that

this is quite different from the situation in the symmetric case [6], where information from both

sons is needed before computations can start at the node. However, in practice we have allowed

computations to start at a node only after at least one son has completed; the need to check for

duplicate eigenvalues and deflate if necessary has imposed further synchronization.

The algorithm has been implemented on computers with a shared memory and computers

with distributed memory architectures.

7.1 Shared memory implementation

So far we have used SCHEDULE [7] to implement the algorithm on shared memory computers.

SCHEDULE is a package of FORTRAN and C subroutines designed to aid in programming

explicitly parallel algorithms for numerical calculations. An important part of this package is

# the provision of a mechanism for dynamically spawning processes even when such a capability

is not present within the parallel language extensions provided for a given machine.



35

7.2 Distributed memory implementation

The current implementation on distributed memory machines requires that the matrix be stored

lh"

on each processor. This obviously puts constraints on the size of problems that can be solved.

With this implementation however, communication is needed only during the deflation phase.

This implementation is best described through the contribution of a particular processor. Sup-

pose that we have 4 processors at our disposal, p0,...,P3 and that accordingly the matrix H

has been divided into 4 subproblems: H0,..., H3, that their common size is n/4 and that they

occur in this order on the diagonal of the matrix. We describe now the contribution of Ps by

steps:

1) Call HQR2 to solve for the eigensystem of the matrix H2.

2) Refine the output from step 1 to get 1/2 the number of (i.e., n/4) eigenpairs of the matrix

Hl:

//! "- ,
2 O a H3

where H1 is a submatrix of H.

3) Refine the output from step 2 to get 1/4 of the number of eigenpairs (i.e., n/4) of the

matrix H.

As can be readily realized no communication between processors is needed except for check-

ing for eigenpairs to which convergence occurred from more than 1 initial approximation: for

example, the eigenpairs of H_ are generated on p2 and p3, and therefore we need to check for
2

duplicate eigenpairs (on each processor separately which requires no communications, and across

. both which requires communications).

We are currently developing another implementation where blocks of columns of the matrix

are stored on different processors. This storage scheme has been dictated to us by the need to

call HQR2 at the lowest level: indeed, the call to HQR2 requires that contiguous columns of the
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matrix reside on the same processor. Therefore storage schemes more advantageous for linear

system solving, such as wrap mapping of columns or rows, could not be used. The communication

between processors for this implementation is more intensive. Communication is indeed needed

when solving the linear systems arising in Newton's iterations as well as for the deflation phase.

Also because of the storage scheme, we can expect the processors to become successively idle

during the factorization of the Jacobian and the back solve for the correction. However, we

have implemented efficiently a scheme where the Jacobian is repartitioned by rows before the

back solve takes place: the "reshuffling" of the submatrices takes place between processors that

became idle after doing their part of the Gaussian elimination.

8 Numerical Results and Performance

In this section we present the results of the implementation of the algorithm on a number

of machines. The serial version of the code is available through NETLIB where it's called

"nonsymdc'.

The same algorithm has been run on the IBM ITS/6000/500, the AUiant FX/8, the Intel

iPSC/2 and the Intel iPSC/860. We compared our results to those of HQlZ2 from the EISPACK

collection. We have used randomly generated matrices in these tests. In these implementations

the linear solver used for the computation of the correction at each Newton step is column ori-

ented. The storage requirement for our algorithm in a serial implementation is 4n 2 + O(n). The

following are the results from the IBM RS/6000/500 implementation. The IBM RS/6000/500

is a single processor computer with a RISC-based Architecture.

Order HQtt2 D&C Ratio HQR2/D&C Distinct A
100 1.04 1.12 .93 99
200 9.31 9.18 1.01 196

300 34.1 28.1 1.2 293 •
400 94.0 65.3 1.4 395

. 500 196 136 1.4 490
1000 1741 992 1.7 1000
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In an implementation on shared memory machine, the storage allocated to the Jacobian (in

serial mode) is multiplied by the number of processors used; this is meant to prevent concurrent

write to the same memory locations. The following are some results from the Alliant FX/8
_..

implementation. The AUiant FX/8 is a parallel machine with 8 vector processors.

Order] No. ofprocs. Levels Ratio HQR2/D&C
100 ] 2 1 1.7

4 2 2.4

8 3 4.O

The results on the AUiant were in general disappointing. The storage scheme for the Jacobian

that we used on that machine seems to have inhibited the compiler performed vector optimiza-

tions. HQtt2, running on a single processor was vector-optimized.

Finally we present results from the runs on the hypercubes. The following are some results

from the Intel iPSC/2 implementation. The largest size used in each ca_e was dictated by the

memory capacity of a single node.

Order No. of procs. Levels Ratio HQR2/D&C
100 2 1 2.2

4 2 3.7

8 3 6.0

16 4 8.2
200 2 1 2.2

4 2 3.5
8 3 5.2

16 4 9.1

300 2 1 2.2
4 2 3.2

8 3 6.3
16 4 9.8
32 5 13.2

64 6 21.3

The following are some results from the Intel iPSC/860 implementation.

9

=

ii
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Order No. of procs. Levels Ratio HQR2/D&C
100 2 1 1.9

4 2 3.3

8 3 5.1
400 2 1 2.4

4 2 3.2
8 3 6.0

16 4 8.4

600 8 3 7.5
16 4 13.5

32 5 23
64 6 32

We observe here that the speedups realized by our algorithm over the QR algorithm, did not

remain linear for a large number of processors. This is due to the fact that our algorithm is much

less efficient on small matrices and we had to work with this kind of matrices when the number

of processors became large. For example, with a matrix of order 600 and using 64 processors,

matrices of average size 20 had to be solved on each node at level 5.

9 The generalized eigenvalue problem

We show here how the ideas behind our algorithm can be used to solve the generalized eigenvalue

problem.

9.1 Basic algorithm

Given an upper-Hessenberg matrix H and an upper-triangular matrix U:

we want to solve the generalized eigenvalue problem,

Hx- AUx. (14)

Without loss of generality, we can assume H to be unreduced and U to be non-singular since

otherwise the problem reduces to a smaller problem. Then our algorithm generalizes easily.
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Indeed, set

• Ho - H - _ek+l eTk,

and consider solutions of (or approximations of these)lr

Hoz = AVz, (15)

as initial approximations to the sought eigenpairs. More precisely, solving (15) reduces to solving

HllX - 'XUllz and H22z = 'XU22z.

Let's denote these solutions by (_I,'X1),...,(_,,'X-) (we have n solutions because of our as-

sumption that U is non-singular). These can be used to construct initial approximations

(zl,'x1),...,(z,,'x,) to the eigenpairs of the original generalized eigenproblem in much the

same way we did it in the case U = I. More precisely, we take

()(_,_) = ( _ a_),0 '

if 'xi 6 a(Hll, Ull) and

(°/(z_,'x_)= ( _ ,'xd,

if ,Xi 6 a(H22, U22) (an appropriate number of zeros in each case).

Finally solving the generalized eigenvalue problem (14) above is the same as solving the

problem

Hz- 'XUx= OL(x) = 1

where L(x) is a scalar equation, which we take to be a normalizing condition: eTx -- 1. Then

for each initial eigenpaJr (xi, 'xi), successive corrections can be computed via

( H- 'X,U -Uz, ) ( y ) = ( r, ) 'X,_'X,+_ ; z, _ z, + yqt _r o i, o '
where

ri = 'xiUzi- Hz_.
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A possible stopping criterion for this scheme is the condition

[]Hxi- ,_iUxil] <_ f(n)llHllllVlle,
Ilzill

where f(n) is a modest function of n. It is easy to see that starting from two complex conjugate 0

initial guesses the algorithm will compute complex conjugate corrections, therefore allowing

similar savings to those in the case U = I.

10 Deflation in the generalized case

The method of deflation presented in section 3.1 generalizes to this case in the following manner.

Let Hx = AUx (of course, in practice we only have an approximate eigenpair). Then it is true

that if w = Ux then wn _ 0: Indeed, if wn = 0, then it can be shown that w is zero using the

fact that H is unreduced. U being non singular this implies that x is zero which is not true.

Let

(v)1 = w/w,,

and

u= 1 "

We know that a(H,U) is the same as a(M_HM, M_UM) for any non-singular M and M'. For

our purposes, we take

M = [el,...,en_l,x]

and

M' = [ea,...,e,_a,u].

Then it is easy to verify that we have

( io) o)M'HM = M'UM = (16)
O Ot '

where/P is upper-Hessenberg, U_is upper-triangular and

7_= _. (:7)
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In fact in this particular case we have

. 7=A

and
"i¢

_=1.

Clearly:

a(H',U') = a(H,U)- {A'}.

Therefore, having "removed" A from the spectrum we can get further eigenpairs. We note that,

just as in the case U = I, H _ and U_ are very cheap to obtain once M _ has been determined.

Indeed, H _ differs from the n- 1 x n- 1 principal submatrix of H in the last column only,

whereas U_ is the n - 1 x n - 1 principal submatrix of U. The computation of M _ requires a

matrix-vector multiply.

It is also easy to verify that deflating two consecutive complex conjugate eigenpairs results in

real H _ and U_.
a,

The condition number of M _ might raise concern. We have

condoo(M') _ raax([wi[) 2.

It is therefore easy to detect an ill-conditioned M'. We propose to handle this situation in the

generalized case in the following manner. Let D be a diagonal matrix with its diagonal elements

di defined by

di=l, if ..w.i.<1

1MIrl

di = _w.wax if ..va.> 1_i ' Wn

then clearly

a(DM'HM, DM'UM) = a(H,U),
o

since D is non-singular. The multiplication by D cancels all the large entries in the last column

of M _. It is easy to see that (16) and (17) are satisfied when the pre-multiplication is done with

DM _instead of M _. The disadvantage of having to premultiply by D is that after the deflation

of two complex conjugate eigenpairs, the resulting H _ and U_ might still be complex.
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