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Abstract

Given a set of real matrices Cy,Cy,...,C}, we consider conditions
under which the equality

k k
LJin, max II(Co+;aiCi)wll = max  min lI(Co+§aiCi)wl|
holds. It is shown that if the matrices C;, 7 = 0,1,...,k are normal
and commute with one another then the equality holds. In particular,
this implies that if C; = A* or C; = A*~% where A is a normal matrix,
then the equality holds. An example is given to show that the equality
may fail for non-commuting matrices, when k£ > 1. It is shown that
the equality holds for arbitrary matrices if k£ = 1.

1 Introduction

The following problem arises in the analysis of iterative methods for solving
linear systems and computing eigenvalues. To solve a linear system, Az = b,
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given an initial guess z° for the solution, the GMRES method [5] generates
approximate solutions z¥, k = 1,2, ... of the form

k
2F =20 4 ZaikAz—lro,
=1
where r° = b — Az° is the initial residual. The residual vectors r* = b — Az*
are of the form

k
rk =0 — Za,-kA’rO,
i=1
and the coefficients ayy, ..., axi are chosen to make the 2-norm of r* as small
as possible. A bound on the 2-norm of the residual at any step k is given by

k
k - A L 11O
I < i, 1= D s )
The question arises as to whether this bound is ever attained; that is, whether
there is an initial residual r° such that

k k
. A0 . . AL (190
min, (7 = Yoacan®ll = min, |1~ 3 eca - ]

Q] yeeny O

In other words, we have the following max-min problem: Is the inequality

k k
. i\,.0 . i\..0
max min |(1 - i;azA ol < min, - max (1 - ;az—A el (1)
actually an equality?

A similar question arises in analyzing the Arnoldi method [1] for comput-
ing eigenvalues. Given an initial vector ¢ with ||¢|| = 1, the Arnoldi iteration
constructs a sequence of monic polynomials Py, k = 1,2, ... whose coeflicients
are chosen to minimize ||py(A)q|| over all monic polynomials p; of degree k.
The roots of these polynomials are taken as approximate eigenvalues of the
matrix A. The question arises as to whether, for each k, there is an initial
vector ¢ such that the monic polynomial P, constructed by the Arnoldi pro-
cess also minimizes ||px(A)||. A similar max-min statement of the problem
asks if the inequality
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max min a; A% ’ < m1n rnax AR ’
llall=1 o1, n, 1047 Z AN T oA Za el (2)

is actually an equality.
In this paper, we consider a somewhat more general question: Given an

arbitrary sequence of real matrices Cy,C}, ..., Ck, under what circumstances
will the equality

k
min max [(Co+ Y a;Ci)w|| = max min C'0+Za, Jw|| (3)

o150k ||w||=1 i1 [lw]]=1 150tk =

hold? It is shown that if the matrices C;, « = 0,1,...,k are normal and
commute with one another then (3) holds. In particular, this implies that if
C; = A" or C; = A¥| where A is a normal matrix, then the equality holds.
This generalizes some known results showing that equality holds in (1) and
(2) when the matrix A is normal [2,3,4]. An example is given to show that
(3) may fail for non-commuting matrices, when k > 1. It is shown that the
equality (3) holds for arbitrary matrices if & = 1. The question of whether
equality holds in (1) and (2) when k£ > 1 remains open, as does the question
of more general conditions on the matrices Cy, Cy, ..., C) that would ensure
that (3) holds.

Throughout this paper, we assume that the matrices and vectors appear-
ing in our max-min statements and related theorems are real (though, of
course, the eigenvalues and eigenvectors of these matrices may be complex).
We will use the notation A > 0 to mean that the symmetric matrix A is pos-
itive definite. For a vector w, ||w|| will always denote the 2-norm, and for a
matrix A, ||A|| will denote the corresponding matrix norm, maxjj,=1 ||Aw]||.

The next section gives the main theorems and examples.

2 Main Theorems

The first theorem gives conditions under which some linear combination of
given symmetric matrices is positive definite.



Theorem 1. Let A,, ..., A; be real n by n symmetric matrices that commute:
A;A; = AjA;, 1,5 = 1,..., k. There exist scalars o, ..., ) such that

k
Za,'A,' >0 (4)
=1

if and only if for every nonzero n-vector w, we have

(Aiw,w) # 0 (5)

for some ;.

Proof: The necessity of (5) is clear since if, for some w, (A;w,w) = 0 for all
7, then

k
(Z a;Ajw,w) = 0,
=1
for any ay, ..., k. To prove that (5) is sufficient, we must use the fact that the

symmetric matrices A; commute and hence can be diagonalized by a single
orthogonal matrix Q:

A,‘ = QA,'QT, QQT = QTQ = ], Ai = diag()\,-l, ceey /\m)

It therefore suffices to consider the diagonal matrices A;, 7 = 1,..., k. Suppose
no linear combination of these matrices is positive definite. Then the linear
subspace spanned by A;, i = 1,...,k and the convex cone of positive definite
diagonal matrices have empty intersection and so they can be separated.
That is, there is a diagonal matrix D = diag(dy,...,d,) such that

k
tT‘(D Z a,'Az') =0, (6)
=1
for all ay, ..., ) and
tr(DP) > 0, (7)

for all positive definite diagonal matrices P. From (7), it follows that the
diagonal elements of D are nonnegative, with at least one d; being positive.

Define w to be the vector (v/dj, ..., \/d,)T. {From (6) we have for each i,
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tT(DA,) == Zdj/\ij = (A,-w,w) = 0,

J=1

which contradicts (5). O

We now use Theorem 1 to establish conditions under which the optimal
coefficients ay, ..., ay on both sides of equality (3) are zero.

Theorem 2. Let Ci,...,C, be real square matrices such that each pair
(C; + CT) and (C; + CT) commute. Suppose

k
min max (I + > a;Ci)wl|| = 1. (8)
Q] yeeny (637 wll= =1
Then
k
max min ||(I + Y «;Ci)w| = 1. 9)
wll= QY yeeny (097 i—1

Proof: For a given vector w, we have

k
min (I +) aiCi)w| =1

O yeury =

if and only if (C;w,w) = 0 for all 7; i.e., if and only if ((C; + CT)w,w) =0
for all 2. Suppose (9) does not hold. Then for any vector w # 0 there is an
such that

((Ci + CTw,w) #0.

JFrom Theorem 1, there is a linear combination

k
Y ai(Ci+C)

1=1

that is positive definite. For e sufficiently small, then,

)



k k
1 = X aiCill® = |1 — ed_au(Ci+ O+ 0O(e*) < 1,
=1

i=1

which contradicts the assumption (8). O

Theorem 2 is now used to establish certain conditions under which equal-

ity (3) holds.

Theorem 3. Let Cy,C4,...,C) be nonsingular normal matrices that com-
mute. Then

k k
min  max [|(Co+ Y ;Ci)w| = max min ||(Co+ > a;Ci)wll. (10)

A1k ||w||=1 =1 [lw]|=1 @150k bt

Proof: Suppose é, ..., & minimize ||Co+ 3%, a;C;||. We can assume without
loss of generality that this minimal norm is 1. We will consider two cases:

1. First, suppose all singular values of U = Co + Y%, 4;C; are equal. Then
U is a real orthogonal matrix and it commutes with each matrix C;. The
same holds for the inverse matrix UT. We can write

k k
Jmin [|Co+ 3 eiCill = min [[UT(Co+ 3 (d:+ 8)C)

1=1 =1

k
= min |[I+>_ BUTC{| =1.
B1y.-,Bx =1

Because the matrices C; are normal and commute with each other and with
U and U7, each pair (UTC; +CTU) and (UTC; +C'JTU) commute. Therefore
from Theorem 2 we have

k
i UTc. =
s i, 10+ 2 ARl =1,

and from this the desired result follows.



2. Now suppose some singular values are less than 1. We can write the real
Schur decomposition of each matrix C; in the form

Ci=QD:Q", QRQT=Q"Q=1

where each D; is a block diagonal matrix with 1 by 1 or 2 by 2 blocks on the
main diagonal. It suffices to consider the block diagonal matrices D;. Define
D = Do+ Y°F_, &;D;, and order the elements so that D is of the form

s_ (U 0
D:(o K)

where U is, say, a ¢ by t matrix whose eigenvalues are all equal to 1 in
magnitude and K is an n — ¢t by n — ¢ matrix whose eigenvalues are all less
than 1 in magnitude. Note that each matrix D; has this same block structure

[ Di O
Dl‘(o Di2)’

since any off-diagonal block X in D; would have to satisfy the homogeneous
Sylvester equation: UX — X K = 0, in order that D; and D commute. Since
the spectrum of U does not intersect the spectrum of K, this equation has
only the trivial solution X = 0. We can write

k k
min ”Do + Za,-D,-H = min ”DO + Z(&’ + ﬂ,)Dzu
Y ey O By Bk i=1

=1

. U 0 o Da 0
i (o p )z o)
Since ||U|| > || K|, the same coefficients f, ..., B that minimize the norm of

the matrix in (11) (namely, 8; = 0, 1 = 1,..., k) also minimize the norm of
the upper left ¢ by ¢ block, and we have

k
min “U - Zﬂ,‘D““ =1.
B1 4,8k i1

Since the singular values of the minimal norm matrix of this form are all
equal to one and since the matrices D;; are normal and commute with each
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other, it now follows from part 1 that there is a ¢-vector & with ||| = 1
such that

k k
in |U—=Y BDy|l= min (U~ BiDy)b|.
s | Eﬁ all = jmin |( ;ﬂ 1)

Defining @ to be the n-vector whose first ¢ elements are equal to those of w
and whose remaining elements are zero, we find

k k
28, 100 + 3 ailill = min, (Do + 3 D)

from which the desired result follows. O

Note that the assumption of commutativity in Theorem 1, and hence
in Theorems 2 and 3, is necessary. Consider, for example, the symmetric

matrices
1 0 1 1

For any vector w, we have

(Ayw,w) = w? — w3, (Ayw,w) = w} + 2w w; — w3,

and if the first inner product is zero and w; and w, are not both zero, then
the second inner product cannot be zero. Yet there is no linear combination
of A; and A, that is positive definite. We have

grlliaré HI + 0’1A1 + O’2A2H = ].,
but for any vector w,

min ||(1 + a1 Ay + agAz)w|| = 0.

1,02

In the next lemma we consider general real m by n matrices Cy, C4, ..., Ck.
Suppose &y, ..., &, minimize



k
I1Co + Y aiCil.

=1

Define C = C, + Zle &;C; and write the singular value decomposition of C
as

¢ =UzvT,

where U is an m by m real orthogonal matrix, V' is an n by n real orthogonal
matrix, and ¥ is an m by n matrix of the form

S
’ o 0 .0
Y= o or L=
0 0 om 0.0
o

according as m > n or m < n. Assume that the singular values o, 1 =
1,...,min{m,n} satisfy

01 = ..=01> 0Ot41 > ..,

and let V, be the n by ¢ matrix consisting of the first ¢ columns of V, while
Vig1m is the n by n — ¢ matrix consisting of columns ¢ + 1 through n of V.

The following lemma is used to prove Theorem 4, but it is also of signifi-
cant interest in itself.

Lemma. Using the above notation, the coefficients &, ..., & that minimize

k
Co + > eiCill (13)
1=1
also minimize
k
1(Co+ D aiCi)Vell. (14)
=1

9



Proof: Suppose @y, ..., & do not minimize (14). Then there are coefficients
a1, ..., @ such that

k
1(Co+Y_&CVill < I(Co + Y- a:iCi)Vil.

=1 =1

k

We will show that for sufficiently small values of € the coefficients (1 —¢€)&; +
ed; satisfy

k k
1Co + 2 (1 = )é + eai)Cil < [|Co + Y- &Gl
which contradicts the assumption that é&j, ..., &; minimize (13).

For any € in (0,1) we have

k k
1(Co+ D_((1 — )& + €a:)Ci)Vil| < (L= e)[[(Co+ D aCi)Vi|

=1 1=1

k
+ €ll(Co+ > a&CiVi|l < o1 —O(e). (15)

1=1

For sufficiently small € we also have

k k
1(Co+ D _((1 — )i + ) Ci)Vigam| < (1= €)|[(Co+ D &C:)Vigrl|

=1 1=1

LA 1
+ €]|(Co + Zaici)vt+1:n“ < 0Oyq1 t+ 5(01 — Ou41)- (16)
i=1

Define the matrix K = (K, K;) by

K, =UT

/N

k
Co + E((l - 6)&,‘ + 6&5)0{) V.=
i=1

k
(1—¢)oy ( é ) + eUT(CO + Z&iC,-)Vt

1=1

k
K,=U"T (Co + > ((1—€)és + 65{)@') Vit =

=1

10



Ot41

0 £
(1 — 6) ( EH_I. ) + CUT(C() + E aiCi)‘/H.]m, Et-{—l:n =
in 1=1 On

We would like to show that ||K|| < oy, or, equivalently, that the matrix

_KTK, oI - KIK, (17)

is positive definite. From (15) and (16) it follows that the diagonal blocks
are positive definite, so it suffices to show

(02 — KTKy) — KT Kqo(o?1 — KT K)) 7' KT Ky > 0.
It is easy to check that
|KTKy(o?l — KIKy)'KI K| = O(é?),

while the eigenvalues of 0?] — KT K, are of order €. For sufficiently small e,
then, the matrix (17) is positive definite, and this gives the desired contra-
diction. O

Using this lemma and Theorem 2 we can now prove equality (3) for general
matrices, when k = 1.

Theorem 4. Let Cy and C; be arbitrary real m by n matrices. Then

min max I(Co + aCh)w|| = max min [|(Co + aCy)w]. (18)

Proof: We will use induction on the number of columns n. If n = 1, the
result is clearly true. Assume it is true for matrices with n — 1 columns, and
now consider matrices with n columns. Suppose & minimizes ||Cy + aC}||.
Define C' = Cy 4+ 4C, and write the singular value decomposition of C as

C=UxvT,

where U, V, and ¥ are as defined earlier. Assume that the singular values
oiy 1= 1,...,min{m,n} satisfy

11



o1 = ... =0y > Ot41 Z veey

and let V; be the n by ¢t matrix consisting of the first ¢ columns of V', while
Vit1:n is the n by n — ¢t matrix consisting of columns ¢ + 1 through n of V.

We will consider two cases. In the first case, assume that t < n. According
to the lemma, & minimizes

1(Co + aCr) V4|,

and so, by the induction hypothesis,
[(Co + &C)Vi|| = max min [|(Co + aCy)Viw||.

If w is the t-vector for which this maximum is attained and if we define the
n-vector w to be V;w, then we have the desired result

ICo + &C1 | = min [|(Co + aCh Y.

Now suppose t = n. We can assume without loss of generality that oy =1,
and then we have

min [|Co + aCi | = min [U7(Co+ (8 + &)C)V |

. I T,V B
- mﬁln” ( 0 > +ﬂ( Uw{+1:mCIV ) Il - 17

where U,, consists of the first n columns of U and U, 1., consists of columns
n + 1 through m of U. The same coefficient § that minimizes the norm of
the entire matrix also minimizes the norm of the top n by n block of this
matrix and so we have

mﬁin Il +BUTC,V| =1.
From Theorem 2 it now follows that

max mﬁin (I 4+ BUTC,V)w| =1

llwll=1

and hence that (18) holds. O

12



3 Further Discussion

Extensive numerical testing of the inequalities in (1) and (2) for a variety
of matrices suggests that they are, indeed, equalities. Theorem 4 proves
this is so for k£ = 1, but we have been unable to prove (or disprove) this
result for £ > 1. The example (12) shows that the proof must rely on
special properties of polynomials, since the result is not true for arbitrary
non-commuting matrices, even if they are normal.
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