
Ht/02

.__._

-- • •--2 .

-- : ..2._-: _2_ -
----2"

------" -T: "

£ _2 22" -"

-TT:_-2__£- -- . :.

"__2--; _

-.__=T _

=_ _2. _

-- =- . _ -2-- -

_c-- _ -_2
== > _.-

&-_ .2: 2:-._ _

2S2

:T

27

<=
222

- :2

7

2

2-

,2

2

2?

?2

:::

7

.2

2 ¸

=

NASA Contractor Report 4411

Accuracy and Speed in Computing

the Chebyshev Collocation Derivative

Wai Sun Don and Alex Solomonoff

Brown University

Division of Applied Mathematics

Providence, Rhode Island

Prepared for

Langley Research Center

under Grant NAG1-1145

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1991

1 Introduction

A problem frequently encountered by scientists and engineers is the solution of partial differential

equations. Since these equations often don't have closed form solutions, they are often forced to

compute approximations to the solution numerically. One category of method for approximating

the solution of PDE's is spectral methods, which are described in many texts, for example (Gott.lieb

and Orszag, 1977). In these schemes, the solution is assumed to be a finite linear combination of

some set of basis functions, and the PDE is expressed in terms of the coefficients. This gives a set

of equations for the coefficients which is solved by other appropriate numerical method relevant to

the problem.

These schemes can be very efficient because the rate of convergence (or the order of accuracy)

depends only on the smoothness of the solution as the number of grid points or modes increases.

This is known in literature as spectral accuracy. If the solution is smooth, (and the basis functions

are too) only a few basis functions are needed to accurately approximate the solution. Ill partic-

ularly, if the solution of tlre PDE is analytic, the error decays exponentially. Ill contrast to fiJlite

difference method, the order of accuracy is fixed by the scheme.

A slightly different class of methods is collocation methods. Instead of working ill tire coefficiel_t

space, the function is discretized in the physical space at some chosen set of collocation points,

for example, Chebyshev or Legendre points. The solution is forced to satisfy the PDE only at the

collocation points. This methods has the advantage of being able to deal with nonlinear terms

and/or general forcing function more easily than the methods describe earlier while retaining

spectral accuracy. Readers interested in this subject are referred to (Canuto, et. al. 1988, Gottlieb

and Orszag, 1977) for detail.

In this paper, we study issues that arise from Chebyshev collocation methods. An importal_t

operation in these methods is to compute the derivative of a function at the collocation points. It is

a surprisingly complex subject. There are three major ways of computing it, and several variations

within each type. All told, there are over a dozen different algorithms possible. They differ

considerably in the amount of roundoff error they produce, the amount of memory they use, and

the amount of CPU time they require. The two algorithms generally used in practice are matrix-

vector multiplication (MV) and transform-recursion (FFT) algorithm. These two algorithms will

be described in detail later.

The roundoff error is an important issue. The Chebyshev derivative is a rather ill-conditiolmd

operator, and inaccuracies in the function can be magnified by as much as O(N4), where N is the

number of collocation points, when computing the derivative using the matrix-vector multiplica-

tion method. As more powerful computers become available, calculations using more and more

interpolation points are attempted for solving complicated physical phenomenon, and if N is as

large as 100 or 1000, rounding errors in tile computation can cause serious losses of accuracy.

Past research has addressed the problem of roundofferror in Chebyshev collocation methods and

various algorithms were proposed in attempted to alleviate problem associated with the roundoff

error (Breuer and Everson, 1989, Rothman E.). The best result managed to reduce the roundoff

error from O(N4e) to O(Nae), where e is machine precision, for the matrix-vector multiplication

algorithm. Hence, only the transform-recursion algorithm, which have roundoff error of O(NZ(),

was recommended for computing Chebyshev spectral derivative regardless of the efficiency of the

algorithm on different computing platforms.

l[owever, our own investigation of the roundoff error leads us to discover a subtle numerical

error associated with in computing the elements of the full differentiating matrix. We show that

this numerical error is the source of the O(N3e) roundoff error. By flipping the upper half of the

matrix to replace the lower half, our numerical results showed that the roundoff error of matrix-

vector multiplication is at least as small as the transform-recursion algorithm. This in turn showed

the roundoff error of the matrix-vector multiplication is only O(N2e).

We also derived an estimate of the minimum possible roundoff error in a statistical sense. Our

new algorithm and transform-recursion algorithm agreed with this estimation quite welt. This

implies these algorithms are doing the best one can ask for. Any further reduction in rounditlg

errors must come not by any modification of the algorithm but the modification of the Chebyshev

collocation method itself.

Speed is also an important issue. Using the naive matrix-vector multiplication algorithm,

computing the Chebyshev derivative takes O(N 2) time. In many situations this would be a major

component of the CPU time used, and so minimizing it would be important. The algorithms that

use cosine transforms take O(N log N) time, but for the values of N that people actually use, they

are not necessarily the fastest algorithms. This is especially true when the computation is do_e ol_ a

vector computer, since the cosine transform does not vectorize as easily as the matrix multiplicalio_.

To obtain a reasonable efficiency in computing solution of partial differential equations, one must

aware of the interplay between accuracy desired and the CPU time usage on a particular compuling

platform.

This paper is organized in the following sections: Section 2 will introduce Chebyshev collocation

method and algorithms in computing the Chebyshev spectral derivative. Section 3 describes the

preconditioning method to reduce the roundoff error. The statistical minimum possible roundoff

error is derived in section 4. In section 5, we will discuss the numerical results of the accur_cy

using different algorithms. We also will describe the numerical error associated with in comlmtil_g

the elements of the differentiation matrix and ways to overcome it. Section 5 will give the filial

co,clusion for the study of the roundofferror. Conclusion about accuracy is given in sectioll 6. The

CPU timing of various algorithms and grid sizes on IBM 9121-320 VF and Cray 2 are discussed in

section7. Section 8 presents the conclusion of CPU timing.

2 Chebyshev Collocation Methods and Differentiation

In this section, we will present the Chebyshev collocation method. Given a smooth function v(x)

in the domain x E [-1, 1], we shall consider the Chebyshev-Guass-Lobatto collocation points,

xi = cos(N), i = 0,...,N.

They are the extrema of the N order Chebyshev polynomial

TN(X) = cos(N cos -i x).

The function v(x) is interpolated by constructing the N order interpolation polynomial gj(x)

such that gj(xk) = _fjk, i.e.

N

= ujg/x) (1)
j=0

where u(x) is the polynomial of degree N and u/ = v(xi), j = O,...,N. It can be shown lhal

(-1)J+'(1 - x:)T'(x)
gi(x) = cjN2(x - xj) ' j = O,...,N, (2)

where

2 j=O,Ncj= 1 j= 1,...,N- 1

The derivative of u(x) at the collocation points x/'s can be computed in mall), different ways.

tlowever, we will only present three algorithms and describe them in some detail. They are the

Matrix-Vector Multiplication Method (MV), the Even-Odd Decomposition Method (EO) and the

Transform-Recursion Method (FFT). Algorithms other than these have been considered, but don't

appear to offer any advantages over the ones presented here (Breuer and Everson, 1989).

Matrix-Vector Multiplication Method

The most obvious way to compute the derivative is the matrix-vector multiplication. The entries

of the Chebyshev derivative matrix D, Djk's are computed by taking the analytical derivative of

gj(x) and evaluate it at collocation point xk for j,k = 0,...,N, i.e., Djk = g_(xk). Then the

entries of the matrix are

% (-1)J+k j Ck
Ojk -- c_ (x3-xk)

Djj - 2(_ j ¢ O,N

Doo = --DNN = 2N2+16

(3)

and now the derivative of u(xi) becomes

N
t

ui = _-_ Dijuj, i = O,...,N. (,1)
j=O

Even-Odd Decomposition Method

Another algorithm is the even-odd decomposition algorithm, as discussed in (Solomonoff, 1992).

It exploits the following regularity that the Chebyshev derivative matrix has, namely

Dij = --DN-i,N-j •

Actually, this is a property that most derivative matrices have, not just the Chebyshev. The

following description is for an even number of interpolation points, i.e., N is odd. If the number of

points is odd, the algorithm is slightly more complicated, and the reader is referred to (Solomonoff,

1992). The algorithm has three stages. First, the vector u is decomposed into its even and odd

parts:

ei = ui + uN-i N-1
Oi = Ui _ UN-i , i = 0,..., 2

Next, e and o are multiplied by matrices related to the original derivative matrix:

where

(De)ij = l(Dij + Di,N-j) N - 1
, O<i,j<--

(Do)i) = ½(Dij - Di,N-j) - - 2

Finally, u' is constructed from e t and d:

' ' ' N-1u i = o i + e i
, , , , i =O,...,--

UN_ i -'- 0 i -- e i 2
(5)

This algorithm has the advantage of only using half as many operations and half as much memory

as the matrix-vector multiplication algorithm.

Transform-Recursion Method

There is an algorithm involving fast Fourier transforms. The polynomial interpolating the points

is expressed as a sum of Chebyshev polynomials

N

= ukTk(x), (6)
k=O

4

and the coefficients can be computed by

1 _lukTj(xk)fiJ -- cjN
k=O

Since

and we have

Tj(x) = cos(jcos-'z),

7rj k
Tj(xk) = cos(--_-),

1 N 1 ,r:jk,

fiJ - cjN _ c-[Uk c°st--N -)" (7)
k=O k

Except for the ck, this is a cosine transform, which can be evaluated in O(N log N) operations

using fast Fourier transforms.

Next, the coefficients of the derivative of the interpolating polynomial are obtained by a recur-

rence relation:

fi_r = O,

filN-1 = N ftN ,

Finally, u' is obtained by an inverse cosine transform:

k= N-2,...,0

(8)

N

u: = _ _}cos(rdj)7"" (9/
j=0

This algorithm takes O(NlogN) operations, compared with O(N 2) operations for the matrix-

multiply algorithms. How fast it actually is depends mostly on the quality of your FFT software.

All of these algorithms have rather poor performance with respect to roundoff error. Consider-

ing that the spectral radius of D is O(N 2) (Trefethen and Trummer, 1987), or alternatively, that

the largest elements of the matrix are O(N2), one would expect that the roundoff error would grow

approximately like N2e, where e is the machine precision. (The machine precision is the smallest

positive number such that 1 + e > 1 in the arithmetic of the computer.)

(Breuer and Everson, 1989) found that for a few points near the edges of the domain, the error

was 0(N2¢), and for the others in the interior of the domain, the error was more like O(NQ.

This was for the transform-recursion algorithm. The error for the matrix multiply was found to

be approximately O(N4e). In order to reduce the error, they considered several variations on the

transform-recursion algorithm. This included several modified versions of the recursion, and an

algorithm consisting of a cosine transform, O(N) operations on the transformed data, an inverse

sine transform, and then O(N) operations on the inverse transformed data. The speed and accuracy

of all these variants was about the same as the unmodified transform-recursion algorithm.

3 Preconditioning

(Rothman) has considered another approach to reducing the roundoff error. He noticed that since

the entries of the derivative matrix near the upper left and lower right corners are large, modifying

the process to reduce their influence might reduce the roundoff. The following technique is a

modified version of that described in (Rothman).

The function to be differentiated is modified by subtracting off a linear function which inter-

polates u(x) at the endpoints:

h(x) = u(x)- _(u(1)+ u(-1)) - 2(,,(1)- ,,(-1)).

Then h(x) is differentiated in the usual way, and the derivative of the linear function is added on.

u'(x) = h'(z) + 2(u(1) - u(-1)).

If h = {h(x0),..., h(xN)) and g is a vector whose elements are all ones, then the discrete version

of this is

,u = Dh+ (u(1)-u(-1))g. (10)

h(±l) = 0 and small near ±l. This means that the large elements of the derivative matrix near

the corners of the matrix are multiplied by small numbers when the matrix-vector multiplication

is carried out. Hopefully this means that the influence of these elements is reduced.

4 Minimum Possible Roundoff Error

It is impossible to judge the accuracy of any of these algorithms unless we know what the best

possible results are. By taking a statistical approach, it is possible to estimate the minimum

possible roundoff error that an algorithm for computing the Chebyshev derivative could have. If

an algorithm achieves it, then we know that there is little hope of modifying it to reduce the error.

Or, to say it in a more constructive way, the only way to reduce the roundoff error would be to

change the Chebyshev derivative itself, rather than just the algorithm for computing it.

Suppose that u is a vector of function values in infinite precision. And suppose that _ is the

same vector of function values, but rounded to finite precision. They differ by a vector e = u - ft.

If fi is used to compute the Chebyshev derivative of u, then there will be an error D(u - _) = De.

The error in an actual computation would be at least as big as this, since in addition to the error

associated with the finite precision of u, there is the error from the finite precision of D and error

in summing the inner products in the matrix-vector multiplication. So how big is De?

We can answer this by thinking of e as a random vector. The elements of e will be assumed to

be uncorrelated, zero-mean random variables with variance equal to e, the machine precision. So

if C is the correlation matrix of e, then C = E(ce T) = e2I, where E(.) is expectation.

If e is a random vector, then so is De. What is its mean and correlation matrix? In general,

if a random vector x has mean # and covariance matrix C, then Ax has mean Atl and covariance

matrix ACA T. So the mean of De is zero, and its covariance matrix is e2DD T.

If C is the correlation matrix of x, then Cii is the expectation of the square of the i-th element

of x. This is a measure of how big xi is, on the average. So a reasonable estimate of the maximunl

norm of the roundoff error of Du is

sup cv/(DDT),, (111
i

and a reasonable estimate of the L2-norm of the roundoff error is

e DDr)ii (12)
"i=0 "

This can be evaluated, at least numerically, and compared to the roundoff error of the different

algorithms.

5 Results About Accuracy

We have computed the Chebyshev spectral derivative for several different values of N using several

algorithms and compared their accuracy. Two test function are used for this purpose. They are

u(x) : sin(2x) + cos(2x), (13)

= exp(-x). (14)

Moreover, these computations are done on two different machines. The first is an IBM 9121-320

VF with a vector facility. This is Brown University's mainframe computer. The other inachine

is a Cray-2. This is Voyager at NASA-Langley Research Center. The computations were done in

double precision on the IBM and single precision on the Cray. The machine precision for double

precision on the IBM is E = 2.1 x 10-16 and single precision on the Cray is • = 3.5 x 10 -1"5.

On the IBM, the three algorithms used were the matrix multiply, the even-odd, and the

transform-recursion where the cosine transform was computed by symmetrically extending the

input data and using a real-to-complex FFT algorithm. The matrix multiplications and the FFTs

werecomputedusingESSL(Version4) subroutines.(ESSLisIBM's optimizedscientificcomputing

subroutinelibrary.)
On the Cray,the samethreealgorithmswereused.In addition,the transform-recursionalgo-

rithm wasalsocomputedusingtheforwardandinversecosinetransform(CFT) subroutinesFCR

and FCRINVfrom LARCLIB. This is a library local to NASALangley.Theyappearto do pre-

and post-processingof the input data,and thencall anFFT subroutine.

All of the algorithmswerecomputedtwice.Oncewith nopreconditioning,andonceusingthe

preconditioningideadescribedin section3. Twonormsfor theerrorwerecomputed,the L_ norm,

and the L2 norm. The L2 norm we used was not exactly the usual one. We used

?r N i
/=0 ck

This is supposed to approximate the Chebyshev-weighted L2 norm

(f(x))2dx"
The minimum error estimate described in section 4 was also computed and displayed on the

same graphs with the other data. The estimated L2 error was computed using the discrete Cheby-

shev L2 norm above, rather than as in section 4. The dotted line represents the estimated minimum

error. The curves with solid symbols represent algorithms with no preconditioning. The curves

with hollow symbols represent algorithms with the preconditioning described in section 3.

Figures 1 and 2 present roundoff error as a function of N for all of the above cases. Lo_ error is

computed for u(x) = sin(2x)+cos(2x) on the IBM 9121-320 VF (figure 1) and u(x) = exp(-x _) on

the Cray 2 (figure 2). We computed error for several other combinations of error norm, machine,

and function, but they all looked basically the same, so we are only presenting these two.

The worst accuracy is from the matrix multiply (MV) and even-odd (EO) algorithms with no

preconditioning. Much better is the accuracy of the cosine transform-recursion (CFT) algorithm,

with or without preconditioning. Best is the accuracy of the FFT algorithm, with or without

preconditioning, and the two matrix algorithms (MV & EO) with preconditioning. The last four

have about the same accuracy. The accuracy of the best algorithms is about the same or slightly

worse than the estimated minimum error.

Use of Trigonometric Identities

Why is the error of the unpreconditioned matrix algorithms so bad? (Breuer and Everson, 1989)

investigated this and concluded that the reason was that there were large errors involved in com-

puting the elements of the matrix D. Computing the matrix elements involves computing

1

Xi -- Xj

8

This is hard to computeaccurately.Sincethe smallestdistancebetweenpointsis O(N-2), this

involves taking a difference between two very similar numbers, and then taking the reciprocal

amplifies the error by a large factor:

1

xi - xj

1

O(N -2) +

O(N 2)

1 + 0(N2¢)

= O(N2)(1- O(y2e))

= O(U 2) + O(N4¢)

So the error in the matrix elements is O(N4e). This is rather large. Fortunately there is a way to

compute the matrix elements more accurately.

Since the interpolation points are computed by a cosine function,

7ri

xi = cos(T),

it is possible to use trigonometric identities to eliminate the subtraction of similar numbers (Canuto,

et. al., 1988, pages 504,511,512, Rothman) :

71" . 71" .

xi - xj = 2sin-_-_(_ + j)sin-_(-_ + j)

2 7F

1 -x_ = sin (_k). (15)

Instead of (3), we have

Djk = !_ (_l)J+k j # k
2 ck sin "_N(J+k) sin _-_(-j+k)

1 £a_._ , (16)
Djj - 2 sin2(_j) j # 0, N

Doo = --DNN = 2N2+1
6

This formula should result in more accurate entries of the matrix. In (Breuer and Everson, 1989),

the matrix elements were not computed with trigonometric identities.

Figures 3 and 4 are the same as the first two except that the matrix multiply and even-odd

algorithms use matrices that have been calculated using this trigonometric identity form. The

transform-recursion algorithms have been computed exactly as before. The accuracy of the two

matrix algorithms (MV & EO) with preconditioning remains as good as the FFT algorithm. The

accuracy of the matrix multiply algorithm (MV) without preconditioning improves considerably,

but it is still the least accurate of all the algorithms. By contrast, the even-odd algorithm (EO)

without preconditioning improves dramatically, becoming as good as the FFT algorithms and the

preconditioned algorithms. This is true even though the matrices used in the even-odd algorithm

were calculated from the matrix used in the matrix multiply algorithm. Why is there a difference?

Flipping of the Differentiation Matrix

A clue to the answer came from looking at the roundoff error at each point for the matrix multiply

algorithm. We found that the error near x = -1 was larger than the error near x = +1, even if

the function being differentiated was symmetric. Even with the trigonometric identity form of tim

derivative matrix, some elements of the matrix were still not being calculated accurately.

The problem lay in the fact that if x is a small number, then sin(x) and sin(rr - z) are both

(the same) small number. But, while sin(x) can be calculated with relative error comparable to

machine precision ¢, sin(_r - x) can only be calculated with absolute error comparable to _. Its

relative error is O(c/x).

In figure 5, the relative error in computing sin-2(x) and sin-2(r - x) is graphed as a function

of z. The error for sin-2(x) is roughly machine precision and doesn't depend on x. On the other

hand, the error of sin-2(rr -x) grows as x gets smaller and the slope of the graph indicates that the

error is roughly proportional to x -1. Since this is the relative error, and sin-2(_ " - x) = O(x-2),

the absolute error is proportional to x -3.

If/and j are small, then calculating Dij involves calculating (sin(_l)sin(_2)) -1 , where _1 and

_2 are small numbers. This can be done accurately. But if i and j are both near N, then D_j

requires calculating something like (sin(rr - (_1)sin(Tr - _2)) -1. This cannot be done accurately.

This results in a roundoff error of O(N3_) for the matrix elements in the lower right corner of D:

1 O(N _)

(sin(O(N-l)) + O(¢)) 2 (1 + O(N_)) 2

= O(N2)(1 - 20(N¢))

= O(N 2) + O(N3).

The reason the even-odd algorithm (EO) had such good accuracy compared to the matrix

multiply algorithm (MV) was that the matrices used in the even-odd algorithm were calculated

using only the top half of the derivative matrix in (16), and didn't use the inaccurate lower half.

A simple remedy for this problem is not to calculate the bottom half of the matrix at all. Just

calculate the top half, flip it over, and use it in place of the bottom half. That is, use the property

N

Dij = --DN-i,N-j, i = -_ + 1,..., N

to replace the bottom half with the top.

Figures 6-9 show roundoff error for the different algorithms when the derivative matrices were

calculated using both the trigonometric identity form and this flipping technique. We consider

this case more important than the previous ones, so we have included more combinations of norm,

machine and function.

Now the accuracy of the matrix multiply algorithm (MV) without preconditioning is better

than that of the cosine transform algorithm (CFT), and as good as all the other algorithms. The

10

preconditionedalgorithmsoffernosignificantimprovementin accuracyoverthe unpreconditioned
ones.The accuracyof all of the algorithms,exceptfor the cosinetransformalgorithm(CFT) is

almostasgoodastheestimatedlowerlimit.

Althoughthe exactnumbersareslightlydifferent,all of the resultsin this sectionare true for

both the IBM andthe Cray computer.

6 Conclusions About Accuracy

The preconditioning technique is able to restore good accuracy when applied to matrix algorithms

using inaccurate matrices. However it has no effect when applied to an algorithm that already gives

good accuracy. Since it is easy to accurately construct the derivative matrix for the matrix algo-

rithm, the preconditioning has no value in computing the Chebyshev spectral derivative. However,

in a situation where it was more difficult to accurately construct the matrix, it might be very useful.

An example of this might be polynomial interpolation at the roots of a Legendre polynomial, or

polynomial interpolation at some set of points which don't have any special structure.

The cosine transform-recursion algorithm (CFT) was less accurate than the FFT-recursion al-

gorithm. Since the recursion part of these algorithms is the same, it is clear that the blame for

this difference belongs to the cosine transform subroutine FCR. By looking at the figures 3 and 4

where the matrices use the trigonometric identity form but no flipping, we can see that the slope

of the curve for the cosine transform algorithm is about the same as that for the matrix multiply

algorithm. Since the cosine transform certainly involves calculating trigonometric functions, a rea-

sonable hypothesis for the increased error is that those functions were being calculated inaccurately

for the sin(Tr - x) reason discussed in the last section.

When the matrices used in the matrix algorithms were computed accurately, all of the al-

gorithms except the cosine transform were able to achieve accuracy as good as the estimated

minimum. This has two important consequences. One, when doing a computation that involves

computing the Chebyshev derivative, considerations of accuracy should not influence tile choice

of algorithm. That choice should be made depending on other considerations, for example speed.

Two, future research into reducing the error of the Chebyshev derivative should concentrate on

changing the Chebyshev derivative operator itself, not on better algorithms for computing it. Bet-

ter algorithms can't help.

7 CPU Timing for Various Algorithms

Now we will consider the other major consideration in choosing an algorithm for computing the

Chebyshev derivative, CPU time. If the roundoff error of the matrix algorithms was O(jV4¢), we

would avoid using them even if they were faster than the transform-recursion algorithm. We would

11

choose the transform-recursion algorithm regardless of its speed. But since we have shown that the

roundoff error of the matrix algorithms can be at least as small as that of the transform-recursion

algorithm, we need to know which algorithm is fastest. Unfortunately, there is no easy way to know

which algorithm is fastest except to try them all out. Simply counting the number of operations

is not a very reliable guide, especially on a vector or parallel computer.

So in this section we try them all out. We have tried to simulate the computations in a large

spectral solution of a PDE as realistically as we could. We chose to use large vector computers on

which to run tests, because those tend to be the ones on which large computations are run. We

chose two-dimensional problems, i.e., simultaneously computing the derivative of many vectors,

because the largest computations tend to be multidimensional. This has important implications

for speed. A single FFT is quite hard to vectorize, and so the transform-recursion algorithm is at

a disadvantage on a one-dimensional problem on a vector machine. The matrix algorithms tend to

vectorize better, tIowever a multiple FFT offers much more opportunities for vectorization, and

conclusions drawn from one-dimensional tests might be inappropriate when applied to a two- or

three-dimensional problem.

We computed the Chebyshev derivative on two different machines, using several different ver-

sions of the three algorithms, and compared the execution time. The first machine is the IBM

9121-320 VF. It has a 15 nanosecond cycle time, eight 256-element vector registers, and a 11-

MFLOP scalar unit. Its vector unit can reach 133 MFLOPs on multiply-add operations and 66

MFLOPs for other operations. The second machine is a Cray 2. It is about 4 or 5 times faster

than the IBM. Its cycle time is 4.1 nanoseconds. It has eight 64-element vector registers. It has 4

processors, but all of our computations were run on a single processor.

The two machines are not very different in their general architecture. Major differences are that

the IBM has a 256-element vector registers, while the Cray has a 64-element vector registers. The

Cray has gather-scatter hardware, while the IBM does not. The FORTRAN compiler on the Cray

is probably slightly smarter than the one on the IBM. This should not play a big role since most of

the computation was done with library subroutines. The Cray compiler was CFT77 version 4. The

FORTRAN compiler on the IBM was VS FORTRAN Version 2. The libraries used on the Cray

were SCILIB, and the cosine transform subroutine FCR was from LARCLIB. The library on the

IBM was ESSL (Engineering and Scientific Software Library) version 4. The matrix multiplication

subroutine used there was DGEMUL, and the multiple FFT was DCRFT. On the Cray ttle matrix

multiplication subroutines MXM and MXMA were used and the multiple FFT was RFFTMLT.

We did our tests on two different machines to see how different the results would be. The

results were quite large, compared to the differences between the architecture of the machines.

Apparently, small differences in the machines make a big difference in which algorithm is fastest.

This is why we have described the hardware and software of the machines in such detail. If a reader

12

wanted to verify our results, but did not use a setup that was almost exactly the same as ours, he

might get timing results quite different from this paper. Unfortunately this also means that our

results have little meaning to people who are not using exactly the same machine as ours.

7.1 Techniques in computing Chebyshev derivative

Each of the matrix algorithms can be computed in several ways. The matrix multiplications can

be performed either by explicitly coded DO loops or by a library subroutine. A library subroutine

would generally be faster. If explicit loops are used, what code results will depend on the compiler.

On the Cray, apparently explicit loops that do a matrix multiplication are recognized and replaced

by library subroutines, so there is no point in writing explicit loops. On the IBM, it is possible

to use compiler directives to specify along which loop index to vectorize. Let N be the number of

grid points, and M be the number of vectors being differentiated. If N > M, then it will probably

be more efficient to vectorize in the N-direction, and if N < M, then it would probably be more

efficient to vectorize in the M-direction. We tested both possibilities.

When using a library subroutine, something analogous is possible. In ESSL, the matrix multipli-

cation subroutine has options for transposing either of the two operand matrices before multiplying.

0n the Cray, MXMA has these options and MXM does not. We are computing DA, where D is

the derivative matrix, and A is the matrix whose columns are the vectors to be differentiated. By

reversing the order of the operands, and specifying the transpose of both matrices, this equivalent

to compute the transpose of DA. This would correspond to vectorizing in a different direction than

the original subroutine call. If N is much different than M, this might be substantially faster.

7.2 Timing results on the IBM 9121-320 VF

On the IBM, the derivative was computed 9 different ways, for a variety of different values of N

and M. They are the transform-recursion algorithm and 8 different ways using matrix algorithms:

matrix multiply or even-odd algorithm, explicit loops or library subroutine, vectorization in the

N-direction or the M-direction. Each computation was timed.

Figure 10 shows which algorithm was fastest for each value of N and M. With a few exceptions,

the values where each algorithm is fastest fall into fairly distinct regions. If M is bigger than about

16, and N is bigger than about 300, the transform-recursion algorithm is the fastest. If M is 16 or

less, then the even-odd algorithm is fastest for N less than about 450. If N was smaller than about

300 then the even-odd algorithm, using ESSL subroutines for the matrix multiplies was fastest for

any value of M. If N > M then vectorization in the N-direction was faster, otherwise vectorization

in the M-direction was faster. The matrix multiply algorithm was never fastest, for any N or M.

The explicit loops were never fastest.

Figure 11 show the worst algorithm for each choice of N and M. We see that for N less than

13

about 140, the transform-recursion algorithm is the slowest, even slower than the matrix multiply

with explicit loops. For N bigger than 140, the matrix multiply with explicit loops was always

slowest.

Figures 12 and 13 show CPU time (in microseconds) vs. M for the case N = 64. The data have

been normalized by M, so any deviation from a fiat straight line reflects differences in the degree

of vectorization. The graph is rather hard to interpret, but some observations are possible. When

comparing vectorization in the N direction with vectorization in the M direction, the CPU time

of the explicit loops varied much more than did the ESSL subroutines. In the even-odd algorithm,

using the ESSL subroutines, there was almost no difference in CPU time between vectorizing the

N and M directions, but with the matrix multiply algorithm and the ESSL subroutines, there were

differences in CPU time of up to 10 or 20 percent between vectorizing in N and M.

Figure 14 shows CPU time vs. N for the case N = M. The CPU time has been normalized by

N 3, so that the curves for the matrix multiply algorithms would be fiat lines if the computations

were all computed at the same speed. It is even harder to interpret than the previous results, but

we will try. _Ve would expect no difference between vectorizing ill the N and M directions. When

ESSL subroutines are used, there is little difference. But when explicit loops are used there are

substantial differences. Another observation is that if only the ESSL subroutines are considered,

the even-odd algorithm is faster than the matrix multiply by a factor of about 1.6 - 1.8, and this

is true for all values of N except possibly for the smallest ones.

7.3 Timing results on the Cray-2

The preceding results were all for the IBM. There were some differences in the computations we

did on the Cray. We did not use explicit DO loops. We computed the matrix algorithms with

vectorization in the N direction and with vectorization in the M-direction. This was accomplished

with the computing-the-transpose trick described earlier. On the Cray, there is a cosine transform

(CFT) subroutine available from LARCLIB. On the IBM, there is a cosine transform subroutine

in ESSL, but only in single precision, which does not meet our specification.

Figure 15 shows the fastest algorithm on the Cray for different values of N and M. It is quite

different from the same graph for the IBM. Unlike the IBM, there is a region where the matrix

multiply algorithm is fastest. If N is less than about 20, the matrix multiply is fastest for all

5I. If N is less than about 50 and M is less than about 175, it is also fastest. The region where

the even-odd algorithm is fastest is smaller than it was on the IBM. For large M, the even-odd

algorithm is fastest if N is between about 20 and about 100. For smaller M, it is fastest for

somewhat larger values of N, and for M less than about 20, it is fastest for N as large as 400.

Except for a few points where the FFT-recursion algorithm is fastest, all the other points belong

to the CFT-recursion. Figure 16 shows the slowest algorithm on the Cray.

14

While the cosine transform is very fast, it has considerably more roundoff error than the other

algorithms, especially for large N. For this reason we have duplicated timing results in figure 15

without including the timing of the CFT-recursion (figure 17). The region belonging to the matrix

multiply is unchanged. Most of the region that belonged to the CFT-recursion was claimed by the

FFT-recursion. The most interesting difference is that now the even-odd algorithm is fastest for

all N less than about 200 (except for the matrix multiply region).

Figure 18 shows CPU time in microseconds, normalized by M for the case N = 64. In this

case, there are differences on the order of 25 - 50% in CPU time between vectorizing in N and M.

Figure 19 shows CPU time in microseconds, normalized by N 3 for the case N = M. We note

that except for one case, N = M = 150, there is little difference between vectorizing in N or M.

8 Conclusions about CPU timing

On the IBM, the even-odd algorithm is almost always the fastest algorithm. It would be rare that a

calculation would take so many collocation points that the FFT-recursion would be faster, ttowever

the situation is different on the Cray-2. The even-odd algorithm is not as successful, due partly to

the existence of the fast cosine transform subroutines in two-dimensional problems. Though fast,

highly-optimized cosine transform subroutines are harder to obtain than highly-optimized FFT

subroutines. This is one reason to look at the relative speed of the algorithms without considering

the cosine transform. Another is the fact that the cosine transform used in this study have much

larger roundoff error than other algorithms.

For small values of hi, such as would be encountered in a one-dimensional calculation, the

even-odd algorithm is very successful on both the IBM and the Cray.

There are two important conclusions to be drawn. The first is that which algorithm is fastest

depends on small details of the hardware and software. Probably experiments on another machine

than these two would give completely different results than we have reported here. Probably the

only reliable way to determine which algorithm to use is to test them all out on your machine.

The other conclusion is that two- or three-dimensions are different than one-dimension, because

of the difference in ease of vectorization.

Acknowledgments

Both authors would like to thank Dr. Ernest Rothman for many helpful discussion and Mr.

George Loriot for technical information about computer software and hardware. This research was

supported by

15

References

Canuto, C., Quarteroni, A., tlussaini, M.Y., and Zang, T. (1988). Spectral Methods in Fluid

Mechanics, Springer-Verlag, New York.

Breuer, K., and Everson, R. (1989). On the Errors Incurred Calculating Derivatives Using

Chebyshev Polynomials, submitted to J. Comput. Phys.. Report # 89-190, Center for Fluid

Mechanics, Turbulence, and Computation, Brown University.

Gottlieb, D., and Orszag, S. (1977). Numerical Analysis of Spectral Methods: Theory and

Applications, SIAM, Philadelphia.

Rothman E. Reducing Round-off Error in Chebyshev Pseudospectral Computations. In Durand,

M., E1 Dabaghi, F. (eds.), paper presented at The 2nd Symposium on High-Performance

Computing, Montpellier, France, 7-9 October 1991.

Solomonoff A. (1992). A Fast Algorithm For Spectral Differentiation, J. Comput. Phys., to be

published.

Trefethen, L.N., and Trummer, M.R. (1987). An Instability Phenomenon in Spectral Methods,

SIAM J. Numer. Anal., 24, 1008-1023.

16

y=sin(2 x)+cos(2 x)

o
%.-

LU

o
"10
f-

o
CC

s
_J

o

o
_J

IBM 9121-320 VF

No Trig & No Rip

-12.5

Figure 1: Loo roundoff error of u(x) = sin(2x)+cos(2x) without using both trigonometric identities

and flipping on IBM 9121-320 VF.

17

o
Iii

0
"ID
t-

O
rr-

!
...J
v

o

g,
...3

-5.0

-7.5

-10.0

-12.5

Cray 2

No Trig & No Rip

/

I I I I I I

y=exp(-x 2)

i I ' I i ' ' ' ' i I
N

10 2 10 3

Figure 2: Loo roundoff error of u(z) = exl,(-z 2) without using both trigonometric identities and
flippi,g on Cray-2.

18

y=sin(2 x)+cos(2 x)

IBM 9121-320 VF

Trig & No Flip

-12.5

Figure 3: Loo roundoff error of u(=) = sin(2z) + cos(2z) with trigonometric identities but no

flipping on IBM 9121-320 VF.

19

r

-S,o

f _ ;'_OX_(.X_)

_ -7.

g
"1

"pig u12.Sr_

C'ray.2. _oo rotlndol_, error _ -

o[u(z) ._. eXP("e'% . 103 IV

" _(h trigO_on_etrl c ide_tJtles bttt no flipping on

_o

tU

I0 s

10 -e

0 "10

1 0 "11

1 0 "14

1 0 "15

1 0 "111

IRe'.Erro,o,s'o_C,-x_l

I Rel. Error of sln2(x)

10 "s 10 .4 10 .3 10 .2 10 1
X

Figure 5: Relative error of sin-2(z) and sin-2(r - z)

21

y=sin(2 x)+cos(2x)

IBM 9121-320 VF

Trig & Flip

-7.5 Regular- Precondition-
"C" ---II--- MV ----£}---
o --4k-- Eo ---O--

L_ + F_ --0--

---- E.t,m.,.d

-lo.o
0

-12.5

N
102 10_

Figure 6: L_ roundoff error of u(x) = sin(2x) + cos(2x) using both trigonometric identities and

flipping on IBM 9121-320 VF.

99

y=sin(2 x)+cos(2 x)

Cray 2

Trig & Flip

I , , , . , , I I . , t . . t . L N
1 02 10 3

l,'igure 7: L_o roundoll error of u(z) = sin(2x) + cos(2x) using both trigonometric identities anti

flipping on Cray-2.

23

-10.0

y=exp(-x 2)

Cray 2

Trig & Rip

Regular- Precondition-
MV_

EO ---0--

N

Fig.re 8: Loo roundoff error of u(z) = exl,(-z 2) usi.g both trigonometric identities and flipping
on Cray-2.

24

-7.5

0

iii

o

0
rr

-10.0
.J

0

8'
_J

-12.5

Crsy 2

Trig &FItp

y=exp(-x _)

/ I
/ I I I I I I I I N

102 10 _

Fig.re 9:L2 roundoff error of u(z) = exp(-x 2) using both trigonometric i(lentities and flipping on

Cray-2.

-12.0
y=exp(-x 2)

-12.5
t..

-14.0

Figure 10: Loo roundoff error of tile forward and backward transform of u(x) = exp(-x 2) using
tile cosine transform and fourier transform algorithms.

500

250

M

m
lllllU •

Fastest Algorithm

IBM 9121-320 VF

r-J EO ESSL / Vector N

• EO ESSL / Vector M

• FFT- Recurslon- FFT

nnmnnn • o o

o o

• • o

• • • • • • • [] o • • • •

• • •

• @ •

n •, . . . u
500

• o

• [] 0

mmmmmo [] o [] •

• []

mmmooo o o o •

n m o o n _ l o _ o o []l I n m I n • m . I m n m m I0 n m

0 1 00 200 300 400

N

Figure 11: Fastest algorithms on IBM 9121-320 VF

27

500

250

M

000¢¢¢

.000¢¢¢

0

000000

0 0

0
000000

0 0
00000¢

o,op?
0 100

Slowest Algorithm

IBM 9121-320 VF

MV Expl / Vector N

• MV Expl / Veclor M
O FFT

¢ ¢ ¢ •

¢ • ¢

¢ •

• • ¢ ¢ ¢ ¢

¢ 0 • • ¢ ¢

¢ ¢ ¢ • ¢ •

,* ,*. , , ,t , , t ?, , ,*, ,| • • |

200 300 400 500
N

Figure 12: Slowest algorithms on IBM 9121-320 VF

28

Tin]elM
CPU time

N=64

250

20O

15o

IBM 9121-320 VF

+ MV Expl / Vector N

MV Expl / Vector M

MV ESSL / Vector N

MV ESSL / Vector M

FF'[- Recursion- FFT

Figure 13: CPU timing of Matrix multiply and FFT-Recursion algorithms vs. M, the number of

vector being differentiated, for fixed N = 64 on IBM 9121-320 VF

29

Timq

250

200

150

1O0

50

,/M CPU time

=64

--_-- EO Expl / Vector N

EO Expl / Vector M

'_,&-- EO ESSL / Veclor N

EO ESSL / Veclor M

.__. _ FFT- Recurslon-F_

' _ - _I, -- J # j.

• I • m i m • • | I I I an m i m . I
M

10 2 10 3

Figure 14: CI'U timing of Even-Odd and FF'F-Recursion algorithms vs. M, the nunlber of vector
being differentiated, for fixed N = 64 on HIM 9121-320 VF

30

Time/N 3

0.1

0.09

0.08

0.07

0.06

0.05

CPU Time

N=M

IBM 9121-320 VF

--II-- MV Expl / Vector N

--E}--- MV Expl / Vector M

---A-- MV ESSL / Vector N

--A-- MV ESSL / Vector M

--0-- EO Expl / Vector N

_-- EO Expl / Vector M

--0-- EO ESSL / Vector N

EO ESSL / Vector M

--T--- FFT- Recurslon- FFT

0.04

0.03

0.02

50 100 150 200

©

250
N=M

Figure 15: CPU timing of all dill'erentiation a,lgorithnls vs. N = M on Ii|M 9121-320 VI"

31

500

250

M
WAAA • o o

Cray 2

13 MV MXM / Vector N

• MV MXM / Vector M

• EO MXM / Vector N

EO MXM / Vector M

• FF"r- Recurslon- FF'T

0 CFT-Recursion-CFT

Fastest Algorithm
o o o

o

=_A_ • 0 0 0 0 0

0

• D ^ 0 0

0

0

0

mooA • A& 0 0 0

A • 0

mOOA • A• • 0 0

[] • •

mooA • A A • • •

_, °,°,• "l ,• • t,, t , ,, ,, :,, , , ,| | I | |

100 200 300 400

O

O

O

O

500
N

Figure 16: Fastest algorithms on Cray 2

32

M

5OO

25O

0000 S o

Cray 2

[] MV MXM / Vector N

• MV MXM / Vector M

A EO MXM / Veclor M

Q FFT- Recursion- FF'I"

O CFT- Recurslon-CFT

Slowest Algorithm
• D 0

0 • • • • o _ • • •

• • • o •

A

00 • • • • _ • •

0 • • • • • A • • •

O l •

0000 0 0 A • • •

0 0 0 0 01 ,O A _ =, ,=
0 I I I i . , . , , , I • , , I . , ' '

0 100 200 300 400

I

500

N

Figure 17: Slowest algorithms on Cray 2

33

M

500 -

250

0

0

IAAA • _A

Cray 2

E] MV MXM / Vector N

• MV MXM / Vectch, M

• EO MXM / V_tor N

A EO MXM / Vector M

• FF-T'-Recursion- FFT

• [] _, _, •

mDoA • A • • •

A A •

moD& • A& • •
o • •

mop& • _& & •
OOOA • &A • •

. , . . I . I a m | I I I I

100 200

Fastest Algorithm

No CFT Transform

I m m m , I , , , , IO

300 400 500
N

Figure 18: Fastest algorithms (excluding the CFl-recurslon algorithm) on Cray 2

34

Time/M
7O

60

50

4O

30

2O

CPU Time

N=64

10 " . , . , , ,,I ' '' ' ' ' ' ''' M
1 O= 1 03

Figure 19: CPU timing (tls) of all differentiation algorithms vs. M, tile number of vector being

differentiated, for fixed N = 64 on Cray 2

35

Time/N 3
10 1

CPU Time

N=M

Cray 2

--II--- MV MXM / Vector N

MV MXM / Vector M

EO MXM / Veclor N

EO MXM / Voclor M

FF-T-Recursion- FFT

CFT- Recurslon-CFT

10 .2

10 .3

1 0 _
N=M

Figure 20: CPU timing (ITS) of all differentiation algorithms vs. N = M on Cray 2

36

1. Report No.

NASA CR-4411

4. Title and Subtitle

Report Documentation Page

2. Government Accession No. 3. Recipient'sCatalog No.

5. Report Date

Accuracy and Speed in Computing the Chebyshev

Collocation Derivative

7. Author(sl

Wai Sun Don

Alex Solomonoff

9. PerformingOrganization Name and Addre_

Brown University

Division of Applied Mathematics

Providence, RI 02912

12. SponsoringAgency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

December 1991

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-62-40-07

11. Contract or Grant No.

NAG i- 1145

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementa_ Notes

Wai Sun Don: Division of Applied Mathematics, Brown University

Alex Solomonoff: Division of Applied Mathematics, Brown University

Langley Technical Monitor: Michele G. Macaraeg

16. Abstract

We study several algorithms for computing the Chebyshev spectral derivative

and compare their roundoff error. For a large number of collocation points,

the elements of the Chebyshev differentiation matrix, if constructed in the

usual way, are not computed accurately. A subtle cause is found to account for

the poor accuracy when computing the derivative by the matrix-vector multipli-

cation method. Methods for accurately computing the elements of the matrix are

presented, and we find that if the entries of the matrix are computed accurately,

the roundoff error of the matrix-vector multiplication is as small as that of

the transform-recursion algorithm.

Furthermore, results of the CPU time usage are shown for several different

algorithms for computing the derivative by the Chebyshev collocation method for

a wide variety of two-dimensional grid sizes on both an IBM and a Cray 2 computer.

We find that which algorithm is fastest on a particular machine depends not

only on the grid size, but also on small details of the computer hardware, as

well. For most practical grid sizes used in computation, the even-odd decom-

position algorithm is found to be faster than transform-recursion method.

17. Key Words (Suggested by Authorls))

Chebyshev collocation
Roundoff error

CPU timing

Matrix-Vector multiply

Fast Fourier Transform

19. SecuriW Cla_if. (of this report)

Unclassified

18. Distribution Statement

Unclassified-Unlimited

Subject Category: 02

_. SecuriW Cla_if. (of this page)

Unclassified

21. No. of pages

36

22. Price

A03

NASA-Langley, 1991

NASA FORM 1626 OCT 86
For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

