
LAPACK WORKING NOTE 64 (UT CS-93-203)

DISTRIBUTED SPARSE GAUSSIAN ELIMINATION AND

ORTHOGONAL FACTORIZATION

PADMA RAGHAVAN

Abstract. We consider the solution of a linear system Ax = b on a distributedmemorymachine
when the matrixA has full rank and is large, sparse and nonsymmetric. We use our Cartesian nested
dissection algorithm to compute a �ll-reducingcolumn ordering of the matrix. We develop algorithms
that use the associated separator tree to estimate the structure of the factor and to distribute
and perform numeric computations. When the matrix is nonsymmetric but square, the numeric
computations involve Gaussian elimination with row pivoting; when the matrix is overdetermined,
row-oriented Householder transforms are applied to compute the triangular factor of an orthogonal
factorization. We compare the �ll incurred by our approach to that incurred by well known sequential
methods and report on the performance of our implementation on the Intel iPSC/860.

Key words. parallel algorithms, sparse linear systems, sparse matrix factorization, Gaussian

elimination, orthogonal factorization, nested dissection

AMS(MOS) subject classi�cations. 65F, 65W

1. Introduction. Consider the solution of a system of linear equations Ax =
b, where A is an m � n matrix. When m = n, the matrix can be converted to
upper triangular form U by Gaussian elimination. When m > n, an orthogonal
decomposition A = QR can be computed to obtain the upper triangular factor R.
In either case, the upper triangular matrix is used to obtain a solution to the linear
system.

When the matrix A is sparse, the numeric computations are preceded by a sym-
bolic step to order the columns so that the factor su�ers low �ll, i.e., few of the
zeroes of A become nonzero. The column ordering can be induced by applying a
�ll-reducing heuristic such as Multiple Minimum Degree or Automatic Nested Dis-
section [8] to either the graph of ATA or of (A + AT). Given that our main object
is the parallel solution of the linear system, we compute a column order of A using
Cartesian nested dissection of ATA; this nested dissection can be applied in parallel
[11, 17]. We formulate parallel algorithms to estimate the structure of the factor and
to perform numeric computations using a separator tree that is available after nested
dissection. Our current work thus completes a suite of algorithms for parallel solution

of linear systems using direct methods [11, 12, 17].
Numeric computations for both Gaussian elimination and orthogonal factoriza-

tion are similar when viewed as Ai = MiAi�1 for i = 1; 2; : : : ; n; A0 = A and the
matrices Mi are suitably de�ned so that An = MnMn�1 � � �A is upper triangular.
An corresponds to U in the case of Gaussian elimination and R in the case of or-
thogonal transformations. At �rst glance, preservering sparsity during factorization
and estimating the structure of the factor for the sparse solution of a square inde�nite
system with Gaussian elimination and partial pivoting may seem rather di�erent from
computing the factor R for an orthogonal factorization when the matrix is overdeter-
mined. Fortunately, for a certain class of sparse matrices these issues can be resolved
in much the same manner for both numeric schemes. A graph theoretic interpretation
of the computations clearly reveals the similarities.

We present a graph-theoretic characterization in Section 2. In Section 3 we for-
mulate algorithms for distributed memory machines and we use the graph model to
establish correctness. In Section 4 we compare the �ll incurred by our scheme to that

1

incurred by a traditional sequential method using either Multiple MinimumDegree or
Automatic Nested Dissection. We also report on execution times and rates observed
for our implementation on the Intel iPSC/860. Section 5 contains concluding remarks.

The following assumptions are used. The matrix A has m rows, n columns and
rank n. The matrix also has a zero-free diagonal; this assumption is justi�ed since the
rows of a sparse matrix with full column rank can be reordered to make the diagonal
zero-free. It is also assumed that the matrix A is permuted according to a a column
ordering selected to reduce �ll; typically such a column ordering is obtained by an
ordering for ATA [7, 9]. We use the letter F to denote the factor; F corresponds to
U for Gaussian elimination and to R for orthogonal factorization.

2. Graph Model of Factorization. We assume the reader is familiar with
basic graph theoretic concepts; a good reference is [15]. The graph theoretic model
of nonsymmetric sparse matrix factorization evolved in the process of determining
the exact nonzero structure of the factor. Although several variants are possible, our
presentation is based on a characterization developed in [10] which is best suited for
the development of our algorithms in Section 3.

The bipartite graph of A is denoted byH(A) and hasm row vertices and n column
vertices. The row vertices are labeled 1̂; 2̂; : : : ; m̂ and the column vertices are labeled
1; 2; : : : ; n. The graph has an edge (r̂; c) from row vertex r̂ to column vertex c for each
Ar;c 6= 0.

We de�ne a sequence of bipartite graphs Hi that will help us model the structure
of the matrices Ai for i = 0; 1; : : : ; n. Recall that a matrixAi results from a sequence of
either elementary or orthogonal transformations of A. We use the term bipartite row-

merge graph to denote any Hi. De�ne H0 = H(A); construct Hi fromHi�1 by adding
edges (r̂; c) for each r̂ 2 RHi

and each c 2 CHi
where RHi

= fr̂ : (r̂; i) 2 Hi�1g
and CHi

=
S
r̂2RHi

fc : c � i ^ (r̂; c) 2 Hi�1g. In other words, edges are added so

that all row vertices adjacent to column vertex i are made adjacent to all columns
that are adjacent to any such row. In the graph Hi, CHi

is the set of column vertices
adjacent to row vertex {̂ for any row in RHi

. For example, CH1 = f1;2;3;4g and
RH1 = f1̂; 3̂g for the following matrix:

0
BBBBBB@

x x

x

x x x

x x

x x

x x

1
CCCCCCA
:

We now show that the graphs Hi do indeed model the structure of U for Gaussian
elimination with row-pivoting and of R for orthogonal factorization. Consider Gaus-
sian elimination with row pivoting; at the i-th step, the matrixMi corresponds to the
product of row permutation matrix (for pivoting) and a suitable elementary matrix.
At this step, the rows that can be selected to become a pivot row, i.e., candidate
pivot rows, are those with a nonzero in column i. Now �ll due to applying a Gauss
transform can occur only in these candidate pivot rows and only in columns that are
nonzero in some pivot row. The process of constructing Hi from Hi�1 correctly mod-
els this fact and from induction, it follows that the structure of U is contained in Hn.
Consider now the row-oriented application of Householder transforms. At the i-th
step, the matrixMi corresponds to the Householder matrix that zeroes the subdiago-
nal elements of column i and replaces all rows containing a nonzero in column i with

2

suitable linear combinations of their old values. With respect to nonzero structure,
this amounts to replacing rows with a nonzero in column i with the union of structures
of all such rows. This is exactly the manner in which graph Hi is constructed from
Hi�1 and so it follows that Hn corresponds to the structure of the factor R. Let fi�
denote the structure of the i-th row of either factor. Observe that fi� � CHi

where
CHi

is as de�ned earlier with respect to Hi. An interesting fact is that the structure
estimated by this process is actually quite tight for matrices with the combinatorial
Hall property [10].

3. Algorithms. We now present our distributed algorithms to compute the
structure of the factor and to perform numeric computations for either scheme, i.e,
Gaussian elimination or orthogonal factorization. A column order of A based on
nested dissection of the graph of ATA is central to the formulation of our algorithms.
The nested dissection ordering results in a separator tree whose nodes represent sep-
arators in the graph of ATA; the separators in turn consist of columns of ATA and
hence columns of A. We present a \generic" bottom-up algorithm for distributed
computation on the separator tree. We then use the graph model of the previous
section to establish correctness with respect computing the structure of the factor
and the actual factor.

We begin with a description of the separator tree. The tree has as many nodes
as the number of separators of G(ATA). A node in this tree is called a representative

vertex since it denotes a set of columns of A that compose a separator in G(ATA).
Let S = fi1; i2 � � � ikg be a separator; now ij+1 = ij + 1 for j = 2; 3; : : :k and
each ij denotes the new number of some column of A. The set of columns in S
form a chain; we call higher numbered columns ancestors of lower numbered ones,
and we use rep(S) to denote the smallest numbered vertex in S. If S dissects some
component G into components G1; G2; : : :Gl, then the �rst separator of each of these
components is made the child of S. In this work we consider separator trees in which
each representative vertex has at most two children, i.e., a separator creates at most
two components.

Our distributed algorithms are based on the following assignment of disjoint pro-
cessor subsets to disjoint separator subtrees. We assume that the total number of
processors, denoted by P , is a power of two and we use the symbols �0; : : : ; �P�1 to
denote processors. Let p processors be assigned to subtree rooted at rep(S). Then
if p > 1, each subtree rooted at a child of rep(S) is assigned p=2 processors. This
partition is applied recursively, starting at the root. At level l = log2P from the root,
each subtree is assigned a single processor. We use L(�i) to denote the columns in
this subtree which we call the local phase subtree for processor �i.

Both symbolic and numeric algorithms consist of each processor's performing the
following distributed algorithm; the actual computation depends on the context, i.e,
it is the merging of column subscripts for structure estimation, and either Gaussian
elimination or Householder transformation for numeric factorization. Each processor
performs computations in its local phase subtree independently and in parallel. Let
the subtree at rep(S) be assigned the set of processors PS ; then all processors in
PS cooperate to perform computations associated with rep(S). In other words, at
representative nodes at levels (log2P � 1) to the root, processors in each processor
subset cooperate to perform computations; the processor subsets are disjoint and their
sizes double at each level, with P=2 subsets of size 2 at level (log2P � 1) to a single
subset of size P at the root.

A column to processor map can be naturally derived from the partitioning of the

3

separator tree. Columns in a local phase subtree are assigned to the corresponding
processor; columns in a separator S are wrap-mapped to processors in PS when rep(S)
assigned to the set of processors PS . However, the problem of mapping rows to
processors still remains. Rows must be mapped to processors so that distributed
tree-structured computation as described in the preceding paragraph would indeed
be correct. Our mapping scheme is derived from the column to processor map. Let
�(i) denote the processor to which column i is mapped. For any row r let first(r)
denote the lowest numbered column in which row r contains a nonzero; we map row
r to processor �(first(r)). We also refer to this mapping by saying that row r is
associated with the separator subtree rooted at rep(Sfirst(r)).

We next show that the generic distributed tree-structured algorithm is indeed
correct, i.e., computations in disjoint subtrees are data disjoint and hence can be
computed in parallel. The result is established in Lemma3.1 using the bipartite graphs
de�ned earlier. The main source of parallelism is that due to sparsity by which the
structure of Hi depends only on some, instead of all, of the previous bipartite graphs.
This partial dependence is related to the separators of the graph of ATA.

Lemma 3.1. Consider a separator S, with the subtree rooted at rep(S) denoted by

TS . Let R(TS) denote the set of rows associated with columns in TS . For any i 2 S,
let RHi

denote the set of rows in the bipartite graph Hi�1 that contain a nonzero in

column i. Then RHi
� R(TS).

Proof: Recall that the separator tree consists of separators of G(ATA). Observe
that columns of a row of A form a clique in G(ATA). Assume that there exists a row
r such that r 2 RHi

but r 62 R(TS). Then, there must exist some row q of A such
that Aq;k 6= 0 and Aq;i 6= 0 where k < i and first(q) = k. Let S be the separator
containing k; now by the row assignment scheme, q is contained in R(TS). Since

k < i, the trees TS and TS must be disjoint. Let S be the smallest common ancestor

of these two trees. Now S cannot be a separator in G(ATA) since i and k belong to
the same clique in G(ATA). The proof follows from this contradiction.

Computing the row structure of the factor. A sequential algorithm to
compute fi�, the structure of the i-th row of the factor F , follows from the construction
of the bipartite graphs Hi in Section 2. In a distributed algorithm, sets that contain
fi� can be computed by a simple merging scheme on the separator tree. Let struc(k)
denote the set of columns having nonzeroes in row k; likewise, if X is a set, let
struc(X) denote the union of column sets containing nonzeroes over all rows in X.
For a separator S, denote by newrows(S), the set of rows whose �rst nonzero is in
any of the columns in S; these are a set of rows that have not been processed earlier.
Also, let children(S) denote the separators that are immediate descendants of S in
the separator tree.

Lemma 3.2. De�ne struc(S) = struc(children(S)) [struc(newrows (S)) n
fj : j < rep(S)g. For any i 2 S, de�ne struc(i) as struc(S) n fj : j < ig. Then,

fi� � struc(i).
Proof: Follows from Lemma 3.1 and induction. The result obviously holds when

S is a leaf separator, i.e., when children(S) = �. >From this basis and Lemma 3.1,
the result follows for any column.

The struc sets corresponding to each separator are computed in parallel using
the generic distributed tree-structured algorithm; correctness follows from the lemmas
above. Each processor initially computes the structure of the separators in its local
tree independently and in parallel, without any communication. Based on its data,

4

each processor �i also computes the partial structure of separators on the path from its
local phase subtree to the root. The complete structure of thse separators is obtained
by applying the distributed tree structured algorithm with the computation being
that of merging sets. Consider the total size of the struc sets over all separators in a
local phase subtree; let CL denote the largest over all processors. Let CD denote the
maximum size of a struc set in the distributed phase. Observe that the merge at a
separator involving some p processors would require log2 p communication steps. This
results in a computational complexity at a processor of O(CL + CD(log2 P)2), with a
communication overhead of O((log2P)

2) messages for a volume of O(CD(log2 P)2).
Computing the factor. The rows of the factor are computed by processing each

separator; processing a separator S = fi; i +1; : : : ; i + qg completes the formation
of rows i; i + 1; : : : i+ q of the factor.

When S is a leaf separator de�ne RS as the set of rows whose �rst nonzero is in
any of the columns in S, i.e. the set newrows(S). We treat the set of rows in RS as
forming a dense submatrix in columns given by struc(S). The numeric computation
associated with S corresponds to Gaussian elimination (with row pivoting) or row-
oriented Householder transforms [18, 5] to form rows of the factor F for values in S.
At the end of this process, the �rst jSj rows are completely processed. Let ~RS denote
the remaining rows.

When S is not a leaf separator, we de�ne RS as the union of the sets of rows that
remain at children separators along with the set of rows that are new for this separator.

Let the children separators be Sj and Sk, then RS = ~RSj [~RSk [newrows (S). Dense
matrix operations are once again applied as described earlier.

In the case when a separator is assigned to a set of processors P, the dense
matrix operations are applied in a distributed manner. For a treatment of distributed
dense matrix computations, the reader is referred to [3, 16]. We use schemes that
are row-wrap mapped. For Gaussian elimination, a pivot row is selected as the one
with the largest diagonal element. In the case of computing R for overdetermined
systems, Joseph Liu [14] observed that intermediate arithmetic work can be reduced
by attempting to reduce the number of rows that are propagated up the tree. In other
words, an attempt is made to reduce the size of the set ~RS . Whenever u = jRS j is
larger than v = jstruc(S)j, the last u � v rows can be completely zeroed out at
separator S. This can be done by applying jstruc(S)j Householder transforms instead
of jSj transforms. We adopt this general row merge approach when computing R.

4. Empirical Results. Our experiments were designed to ascertain the feasi-
bility of our approach with respect to two key issues. The �rst is the e�cacy of our
method in preserving sparsity in the factor; low �ll results in low arithmetic costs.
A second issue is that of performance on a parallel machine. As a consequence, we
present two sets of experimental results. In the �rst set, we compare the �ll incurred
by our scheme with that incurred by using well established serial algorithms. In
the second set, we present times and execution rates achieved on the Intel iPSC/860
for symbolic factorization, Gaussian elimination and orthogonal factorization. Our
results indicate that our method performs well with respect to both issues.

Sparsity Of the Factor. The serial methods we use for comparison are those
in Sparspak [1, 6]. In both Sparspak and our approach, a �ll-reducing column order-
ing of a nonsymmetric A is induced by a heuristic applied to the graph of ATA. In
our approach, the �ll reducing ordering is that obtained by implicit Cartesian nested
dissection [17] while for Sparspak we use Multiple Minimum Degree or Automatic
Nested Dissection [1, 6]. Sparspak structures computations based on the elimination

5

Label n jAj Comments

airfoil 2 4,720 32,164 airfoil by Barth and Jesperson

airfoil 3 15,606 107,362 4-element airfoil mesh by Barth

barth 6,691 46,187 1-element airfoil

graded box 7,861 53,725 small elements at bottom right corner

graded L 6,142 42,448 small elements at a middle corner

graded + 6,043 39,775 small elements at a middle corner

hollow square 5,512 37,960 small elements around hollow

parc 1,240 7,950 PARC cut from a rectangle,
small elements around letters

pinched hole 8,848 61,264 pentagon with hole,
small elements around hole

regular grid 10,000 49,600

six hole 9,971 68,451 small elements around each hole

venkat 1 10,089 69,529 concentric layers with elements
of increasing size

venkat 2 460 3,066 same as above

ac 2,851 33,035 mostly tetrahedral,
some beam and plate elments

hscts 2,028 42,710 same as above

kall0 3,000 34,900 same as above

kall1 4,363 57,503 same as above

shuttle 10,429 103,599 mostly 2-D elements,
some 3-D elements

sphere 3 258 1,794 surface triangulation of a sphere

sphere 4 1,026 7,170 same as above

sphere 5 4,098 28,674 same as above

sphere 6 16,386 114,690 same as above

Table 1

Description of Test Problems, Square A.

tree of ATA; the structure of rows of the factor are determined using symbolic fac-
torization on ATA, and rows of A are are transformed by diagonal pivoting against
rows of the factor; the reader is referred to [7] for more details. In our approach, the
structure is estimated using the separator tree; unless the separators are minimal this
could lead to an overestimate of the nonzero structure and arithmetic work. Further-
more, for overdetermined systems, the processing of rows greatly a�ects the amount
of arithmetic work performed. Our approach uses the general row merge method
[14] whereas the Sparspak implementation uses diagonal row pivoting. To allow for
objective comparison, we use the number of nonzeroes in the upper triangular fac-
tor (as opposed to the actual number of
oating point operations) as a measure of
e�cacy of each approach. This measure applies to both Gaussian elimination and
orthogonal factorization since it does not depend on the actual numeric transforms.
It is also independent of row-ordering and re
ects the e�ect of the �ll-reducing and
symbolic factorization algorithms. We report on this measure for our approach and

6

Label n m jAj

geo10 5540 41,640 98,940

geo11 7425 55,704 131,736

geo12 9696 72,624 171,744

Table 2

Description of Geodetic Network Problems, Overdetermined A.

Label Multiple MD Automatic ND Cartesian ND

airfoil 2 252 394 341

airfoil 3 1,075 2,057 1,405

barth 392 701 544

graded box 296 499 511

graded L 412 541 702

graded + 184 269 442

hollow square 396 460 569

parc 22 43 46

pinched hole 673 870 846

regular grid 596 615 824

six hole 765 844 811

venkat 1 755 953 1007

venkat 2 15 18 17

ac 185 256 292

hscts 220 376 366

kall0 765 901 870

kall1 1,506 1,765 1,721

shuttle 1,061 1,271 1,209

sphere 3 10 12 12

sphere 4 70 76 77

sphere 5 421 420 416

sphere 6 2,523 2,288 2,246

geo10 27 50 45

geo11 36 64 63

geo12 47 90 82

Table 3

Number of O�-diagonal Nonzeroes (in thousands) in the Factor.

7

for Sparspak (with two di�erent ordering schemes) for a set of twenty �ve problems.
Most of the problems in our test suite arise from highly graded �nite-element dis-

cretizations. We generated some of the problems associated with 2 dimensionalmeshes
using Patran, a commercially available �nite-element package. Several others in both
two and three dimensions were obtained from practical applications such as structural
analysis of airfoils. The problems range in size from 460 to 16; 286 equations; these
sizes are not suitable for observing speed-ups on current parallel architectures. How-
ever, they do quite well for the task at hand, namely, comparing the performance of
our approach with that of well known serial algorithms and implementations. These
problems were used to to construct square systems with symmetric nonzero struc-
ture that are numerically nonsymmetric. For orthogonal factorization, we needed
overdetermined systems whose unknowns are associated with coordinates in space.
We generated problems associated with geodetic networks as described in [4]; these
are labeled geo10, geo11 and geo12 in Table 2. A problem labeled \geox" corresponds
to the geodetic problem with \x" junction boxes and chain-lengths. There are two
variables per vertex and two observations each for any set of four variables joined by
an edge and any set of six vertices joined in a triangle. A description of the test suite
is given in Tables 1 and 2.

In Table 3, we report on the number of o�-diagonal nonzeroes in the factor. The
worst (largest) value of the measure over all methods is typeset in boldface for each
problem in the test suite. The column labeled \Cartesian ND" contains the best result
(smallest number of o�-diagonal nonzeroes in the factor) for our approach when our
Cartesian nested dissection ordering is applied to an implicit representation of the
graph of ATA with a balance factor � in the range :3 to :4. The balance factor � <

(1=2) is a value used in Cartesian dissection to compute small separators subject to the
constraint that a subgraph be split into pieces that contain at least � times the number
of vertices. The ordering is followed by symbolic factorization on the separator tree.
The column labeled \Multiple MD" (\Automatic ND") contains the best result when
the Multiple Minimum Degree (Automatic Nested Dissection) heuristic of Sparspak
is applied to the graph of ATA over six di�erent initial numberings of the columns
of A; the six initial numberings correspond to �ve random numberings and a natural
numbering, i.e., the numbering in which the problem was given to us. The symbolic
factorization is exact, i.e., is based on the structure and elimination tree of ATA.

The numbers in Table 3 demonstrate that our parallel method compares well with
the best sequential methods. Not surprisingly, the Multiple MinimumDegree ordering
leads to the lowest �ll in all cases except two. The Automatic Nested Dissection
ordering results in the largest �ll for fourteen of the problems while our method
leads to largest �ll for ten of the problems. Interestingly enough, four of these ten
problems are those we constructed with Patran as di�cult test cases for our Cartesian
nested dissection algorithm. These problems have very highly graded elements and
dense subregions located such that our heuristic would �nd it hard to construct small
separators for a balance constraint in the range :3 to :4. A �fth problem for that our
method has the largest �ll is the regular grid; however, our method computes wide
separators which are known to be asymptotically optimal.

Performance of an iPSC/860 Implementation. Our algorithms were imple-
mented on the Intel iPSC/860 in C with message passing extensions. The rows in the
dense matrix in question were wrap mapped onto the relevant set of processors before
invoking a distributed dense kernel. The computation was done in single precision
with assembler coded \saxpy" routines. We report on symbolic and numeric factor

8

Label n Serial Cost Load Ratio
(in millions)

g200 40,000 888 1.2, 1.4
g300 90,000 3,179 1.2, 1.4
g400 160,000 7,767 1.3, 1.3
g500 250,000 15,486 1.3, 1.3
g600 360,000 27,164 1.3, 1,3
g700 490,000 43,624 1.3, 1.3

gph0 15,680 277 1.5, 2.7
gph1 35,112 978 1.4, 3.5
gph2 62,272 2,466 2.0, 3.9

g6h0 15,475 152 1.3, 1.6
g6h1 30,095 440 1.3, 1.6
g6h2 61,055 1,376 1.3, 1.6

ghs0 14,976 287 1.2, 1.6
ghs1 39,312 1,055 1.2, 1.4
ghs2 74,464 2,319 1.1, 1.6

geo20 46,080 26 1.7, 2.0
(m = 342; 480)

geo25 90,725 62 1.6, 2.0
(m = 672; 600)

Table 4

Description of Large Test Problems.

Label P = 8 P = 16 P = 32 P = 64 P = 128
Time Cost Time Cost Time Cost Time Cost Time Cost

g200 0.65 133 0.30 74 0.15 38 0.12 19 0.10 10
g300 0.90 474 0.60 262 0.26 133 0.16 67 0.15 34
g400 0.56 321 0.24 161 0.20 81
g500 0.59 639 0.34 321 0.28 162
g600 0.44 558 0.34 282
g700 0.58 900 0.44 452

gph0 0.35 55 0.19 32 0.12 19 0.08 11 0.07 6
gph1 1.07 179 0.53 118 0.27 76 0.16 45 0.11 27
gph2 0.40 322 0.53 213 0.29 132 0.16 77

g6h0 0.25 25 0.13 13 0.09 7 0.06 3.8 0.06 1.9
g6h1 0.55 73 0.28 38 0.16 21 0.10 11 0.08 5.7
g6h2 0.59 111 0.29 61 0.15 33.7 0.11 17.3

ghs0 0.35 44 0.20 23 0.14 13 0.10 7.1 0.08 3.7
ghs1 1.06 158 0.54 83 0.30 45 0.17 23 0.11 11.6
ghs2 1.20 166 0.60 91 0.31 53 0.18 29

geo20 3.32 2.8 2.13 1.6 0.92 .82 0.48 .42
geo25 2.90 3.1 1.48 1.8 1.10 1.0

Table 5

Time (in seconds) for Symbolic Factorization and Critical Cost (in millions).

9

times for a set of large problems. We do not report on triangular solution times since
they are similar to those in [12] for a symmetric, positive de�nite A.

Label P = 8 P = 16 P = 32 P = 64 P = 128
Time Rate Time Rate Time Rate Time Rate Time Rate

g200 25.8 34 16.3 54 12.5 71 13.1 68 15.2 58
g300 78.6 40 44.8 71 29.8 106 28.1 113 31.4 102
g400 57.6 135 50.3 154 54.4 143
g500 98.5 157 81.0 191 83.6 184
g600 121.1 223 120.0 226

g700 169.2 257 163.7 264

gph0 12.7 22 8.1 35 6.5 43 6.1 45 6.7 41
gph1 39.1 25 26.7 37 18.9 52 14.5 67 12.6 77

gph2 64.6 38 45.1 55 31.9 77 25.1 99

g6h0 6.8 22 4.2 37 3.4 45 3.6 42 4.3 35
g6h1 17.2 26 9.6 46 7.1 62 6.7 65 7.4 59
g6h2 23.1 60 15.1 92) 12.6 100 12.3 112

ghs0 10.3 28 6.6 44 5.9 48 6.4 45 7.2 38
ghs1 31.5 34 17.8 59 13.5 78 12.5 84 12.6 74
ghs2 30.2 77 24.5 95 22.8 102 22.1 106

Table 6

Execution Time (in seconds) and Rate (in M
ops) for Distributed Gaussian Elimination.

Our test suite was limited by the fact that we required large problems associated
with an embedding (for Cartesian Nesed dissection). The set of square problems
correspond to the regular grid in six sizes (gxxx) and the graded pinched hole (gphx),
the graded six-hole (g6hx) and the graded hollow square (ghsx), in three sizes each.
The graded problems were generated using Patran and are highly irregular; they are
larger versions of those used in the test suite for comparison with serial codes. We also
generated overdetermined systems associated with geodetic networks; again these are
bigger versions of those used in the earlier test set. Finally we have a set of simulated
least squares problems on k � l grids, typical of those arising in the natural factor
formulation of �nite element methods [4]. Each grid consists of (k � 1) � (l � 1)
small squares and associated with each small square are four observations in the four
variables at the corners. Cartesian nested dissection produces ideal separators for
problems associated with the regular grid; for all other problems we used a balance
constraint of :4.

The problems are described in Table 4 where the column labeled \Serial Cost"
contains the total number of
oating point operations required for Gaussian elimi-
nation; this value is half the number required for computing R using Householder
transforms. Table 5 contains the time in seconds for symbolic factorization using
the separator tree. It also contains the largest number of
oating point operations
performed at any one processor (once again, twice this number is required for House-
holder transforms) for 8 through 128 processors. The symbolic factor times are very
small owing to our formulation in terms of the separator tree and even these small
time requirements are decreased with a larger number of processors. For P proces-
sors, we compute the ratio of the actual load to the \ideal" load where we de�ne the

10

Label P = 8 P = 16 P = 32 P = 64 P = 128
Time Rate Time Rate Time Rate Time Rate Time Rate

g200 39.8 45 23.3 78 16.1 114 16.0 117 18.4 106
g300 126.4 51 67.3 96 39.2 165 33.8 193 36.8 183
g400 77.3 204 60.8 261 62.7 258
g500 136.4 230 98.8 320 97.3 329

g600 148.2 372 138.8 400

g700 192 400 165.7 464

gph0 19.2 30 11.9 48 9.4 61 8.7 67 9.3 65
gph1 61.2 33 41.0 49 29.0 69 21.4 94 18.2 114

gph2 102.2 50 70.6 71 48.5 104 36.1 143

g6h0 10.2 31 6.1 51 4.8 66 5.3 61 6.1 55
g6h1 26.4 34 14.3 63 10.0 90 9.4 98 10.0 94
g6h2 35.2 80 21.9 128 17.2 163 16.3 175

ghs0 15.3 38 9.2 64 7.8 76 8.3 73 9.6 67
ghs1 48.5 44 25.8 83 18.1 119 16.1 136 17.6 128
ghs2 44.2 106 33.6 140 29.4 162 28.4 172

geo20 2.9 17 2.3 23 1.6 32

geo25 4.8 24 4.1 28 2.8 44

Table 7

Execution Time (in seconds) and Rate (in M
ops) for Distributed Orthogonal Factorization.

Label P Time Time Rate Speedup
(Predicted) (Observed)

64� 32 1 1.96 1.1
64� 64 2 2.9 2.20 1.2 2.64
128� 64 4 3.9 2.54 5.9 6.14
128� 128 8 5.8 3.41 19.5 13.6
256� 128 16 7.8 5.23 46.3 23.8
256� 256 32 11.6 9.07 108.2 40.8
512� 256 64 15.6 17.11 179.6 58.3
512� 512 128 23.1 34.73 308.8 85.1

Table 8

Distributed Orthogonal Factorization: Model Problem

11

ideal load as the serial cost divided by the value of P ; we present the range of this
ratio over di�erent values of P in the column labeled \Load Ratio" in Table 4. This
range of ratios indicates that our ordering with a balance constraint of 0:4, results
in at worst a load that is 3.9 times the ideal; in most cases it is within a factor of
two of the ideal load. Furthermore, from Table 5, the largest load at any processor is
approximately halved upon doubling the number of processors. These results suggest
that for the test problems our approach succeeds in balancing loads within a small
constant of the ideal value for varying numbers of processors.

Our algorithms exploit task parallelism by allowing computations on disjoint sub-
trees to occur on disjoint sets of processors. However, given the tree structure,
such functional or task parallelism decreases towards the root while the tasks be-
come of larger size making data-parallelism within each task more viable. This data-
parallelism is to be utilized by means of dense distributed kernels. For the architecture
at hand, the communication to computation ratio is very high and this makes the dis-
tributed dense factorization kernels achieve rather low execution rates for dense matri-
ces of the size that occur during sparse computations. Over all our test problems, the
largest dense matrices vary in size from 100 to about 1400. Furthermore, we use full
row-pivoting for Gaussian-elimination with the matrix wrapped by rows and of the
possible dense distributed Gaussian elimination kernels, this tends to perform worse
than those with full row-pivoting and column wrap-mapping [3]. A similar statement
is true of distributed Householder transforms [13]. However, row-oriented schemes �t
naturally with sparse factorization and are also suitable for exploiting parallelism in
the triangular solution to follow. In spite of these limitations, we do observe speed-
ups on increasing the problem size while increasing the number of processors. We
also see higher execution rates on moving to larger problems for the same number of
processors.

Tables 6 and 7 contain times in seconds for the two numeric schemes. The times
include all overheads such as allocating new dense matrices, freeing up old matri-
ces and copying rows. The numbers in each column correspond to execution times
for a �xed number of processors over all problems; the numbers in parentheses in
each column represent the corresponding execution rate in millions of operations per
second. This execution rate is arrived at by allowing a count of one per `useful'

oating point multiply-add pair; symbolic operations are not counted and neither
are overhead operations such as those used to initialize a vector to contain zeroes.
The problems are listed in increasing order of size and are grouped by problem type.
Numbers in boldface represent the best execution time (rate) for a given problem.
Comparing the two tables, it can be seen that higher execution rates are achieved for
orthogonal factorization than for Gaussian elimination for the same problem. This
occurs because although both schemes have the same communication costs, these
costs are amortized over twice the number of
oating point operations in orthogonal
factorization. For each problem type, execution rates increase down a column for
either method indicating that processor utilization increases as the problem size is in-
creased. For a given problem type, the best execution rates migrate to columns with
higher processors upon increasing the problem size. The execution rate for Gaussian
elimination reaches 264 M
ops with 128 processors while that for orthogonal factor-
ization reaches 464 M
ops. In terms of the recent practice of counting a
oating point
multiply-add pair as two operations, these results amount to an execution rate of over
one-half G
ops for sparse Gaussian elimination and about one G
ops for orthogonal
factorization. These results indicate that that our approach is indeed feasible. Our

12

implementation uses simple row-wrap mapped distributed dense matrix kernels that
tend to perform poorly for both Gaussian elimination with row pivoting and orthogo-
nal factorization with Householder transforms. We are hopeful that performance can
be further enhanced by incorporating more recent distributed dense kernels [2] which
map blocks of a matrix to a processor (as opposed to rows) to reduce communication
requirements.

In Table 8 we present results for the model overdetermined problem based on a k�l
grid. We can estimate theoretically the higher order cost of solving a 2k� k problem
as 54k3 and that of solving a k � k problem as 19:7k3. We estimate speed-ups using
these costs and the actual times observed on one processor for the 64� 32 problem.
The computed speed-ups are pessimistic since they use the best one processor time
and higher order costs. Despite this, we achieve a speed-up of about 85 with 128
processors. It can also be seen that increasing the number of processors and the
problem size does indeed increase the execution rates substantially.

5. Conclusions. We have developed a scheme for solving nonsymmetric sparse
systems on parallel machines by using our Cartesian nested dissection ordering of the
graph of ATA and the resulting separator tree for both task and data assignment.
The data assignment based on the separator tree allows tasks in disjoint subtrees to
be computed on disjoint processor subsets. With respect to �ll incurred, our approach
compares favorably with traditional sequential methods that use either Multiple Min-
imum Degree or Automatic Nested Dissection as ordering heuristics. The parallel
performance observed on the Intel iPSC/860 is encouraging; despite the large com-
munication to computation ratio of the machine, we were able to obtain an execution
rate of more than 2 M
ops per processor with 128 processors for Gaussian elimination
with row pivoting. Twice that execution rate was observed for orthogonal factoriza-
tion. This work completes the development of a suite of parallel algorithms for sparse
systems reported in [11, 12, 17].

As a next step, we plan to study the e�ect of using more recent blocked distributed
dense kernels. We also plan to investigate the impact of ordering and data assignment
strategies on the performance of the overall distributed sparse factorization process.

REFERENCES

[1] E. Chu, A. George, J. Liu, and E. Ng, Sparspak: Waterloo sparse matrix package user's

guide for Sparspak-A, Tech. Rep. CS-84-36, Department of Computer Science, Univ. of

Waterloo, Waterloo, Ontario, Canada, 1984.
[2] J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker, Lapack for distributed memory

architectures: The next generation, in Sixth Siam Conference on Parallel Processing for
Scienti�c Computing, R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A.

Reed, eds., Philadephia, PA, 1993, SIAM Publications.
[3] G. Geist and C. Romine, LU factorization algorithms on distributed-memory multiprocessor

architectures, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 639{649.
[4] A. George, M. T. Heath, and E. Ng, A comparison of some methods for solving sparse

linear least squares pro blems, SIAM J. Sci. Stat. Comput., 4 (1983).

[5] A. George and J. W. H. Liu, Householder re
ections versus Givens rotations in sparse

orthogonal decomposition, Linear Algebra Appl., 88/89 (1989), pp. 223{238.

[6] A. George and E. Ng, Sparspak: Waterloo sparse matrix package user's guide for Sparspak-

B, Tech. Rep. CS-84-37, Department of Computer Science, Univ. of Waterloo, Waterloo,
Ontario , Canada, 1984.

[7] J. A. George and M. T. Heath, Solution of sparse linear least squares problems using Givens

rotations, Linear Alg. Appl., 88 (1980), pp. 223{238.
[8] J. A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive De�nite Systems,

Prentice-Hall Inc., Englewood Cli�s, NJ, 1981.

13

[9] J. A. George and E. G.-Y. Ng, Symbolic factorization for sparse gaussian elimination with

partial pivoting, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 877{898.
[10] J. R. Gilbert and E. Ng, Predicting structure in nonsymmetric sparse matrix factoriza-

tions, Tech. Rep. ORNL/TM-12204, Oak Ridge National Laboratory, Oak Ridge, Ten-
nessee 37831-8083, 1992.

[11] M. T. Heath and P. Raghavan, A Cartesian nested dissection algorithm, Tech. Rep.
UIUCDCS-R-92-1772, Department of Computer Science, University of Illinois, Urbana,
IL 61801, October 1992.

[12] , Distributed solution of sparse linear systems, Tech. Rep. UIUCDCS-R-93-1793, Depart-
ment of Computer Science, University of Illinois, Urbana, IL 61801, February 1993.

[13] B. Hendrickson and D. Womble, The torus-wrap mapping for dense matrix calculations

on massively parallel computers, Tech. Rep. SAND92-0792, Sandia National Laboratories,
Albuquerque, NM 87185, 1992.

[14] J. W.-H. Liu, On general row mergng schemes for sparse Givens transformations, SIAM J.
Sci. Stat. Comput., 7 (1986), pp. 1190{1211.

[15] K. Mehlhorn, Graph Algorithms and NP-Completeness, Springer-Verlag, Berlin Heidelberg,
1984.

[16] P. Raghavan, Distributed sparse matrix factorization: QR and Cholesky decompositions, PhD
thesis, Department of Computer Science, Pennsylvania State University, University Park,
PA, 1991.

[17] , Line and plane separators, Tech. Rep. UIUCDCS-R-93-1794, Department of Computer
Science, University of Illinois, Urbana, IL 61801, February 1993.

[18] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.

14

