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Abstract. Dueto memorylimitations,iterativemethodshavebecomethemethodof choicefor
largescalesemiconductordevicesimulation.However,it iswellknownthat thesemethodsstill suffer
fromreliabilityproblems.Thelinearsystemswhichappearin numericalsimulationofsemiconductor
devicesarenotoriouslyill-conditioned.In orderto producerobustalgorithmsfor practicalproblems,
carefulattentionmustbegivento manyimplementationissues.Thispaperconcentratesonstrategies
for developingrobustpreconditioners.In addition,effectivedatastructuresandconvergencecheck
issuesarealsodiscussed.Thesealgorithmsarecomparedwithastandarddirectsparsematrixsolver
onavarietyofproblems.



1. Introduction. The increasing demands for more accurate semiconductor de-

vice modeling have pushed the development of numerical methods to a new era. One

of these new developments is the study of techniques for the solutions of very large

ill-conditioned sparse linear systems. In the past, software developers favored the use of

sparse direct methods. These solvers could be treated as black box modules, since a reli-

able solution could (almost) always be obtained. However, the memory requirements of

these direct methods makes them impractical for large scale simulations. Consequently,

attention has shifted to the use of iterative methods for device simulation.

During the past decade, there has been considerable interest in Krylov subspace

acceleration coupled with various preconditioning techniques. A great deal of effort [2,

19, 24, 25, 26, 13] has been devoted to developing iterative acceleration methods, while

robust preconditioners have received less attention, mainly because of inherent theo-

retical difficulties. However, a good preconditioner is necessary for a robust iterative

algorithm. Many workers have observed that a superior preconditioner can boost per-

formance by an order of magnitude[27], while a better acceleration technique may only

improve the performance by 10 - 30%. In [4, 24], various new developments in iterative
methods for device simulation have been summarized.

Although iterative methods seem to be the only practical choice for large scale

simulations, direct methods are still used in many situations. This is because many

existing iterative methods may fail to converge when the matrix is very ill-conditioned

and careful attention is not given to many implementation issues.

The objective of this article is to investigate several issues which are important for

the performance of iterative methods in device simulation. In particular, our emphasis

will be on construction of an effective preconditioner. Both level based [ ] and drop

tolerance [ ] preconditioners will be tested. A new two step preconditioner, which treats

the electric potential terms in the Jacobian in a very accurate manner, will also be

developed. Simple block scaling [ ], which has been suggested as a preconditioner for

device simulation problems, will also be compared to the above methods. Some other

issues which will also be addressed include the ordering of the unknowns [ ], choice of

acceleration method, and the convergence check criteria. All these methods were tested

in a commercially available drift diffusion device simulator [ ] which uses full Newton

iteration for solution of the nonlinear algebraic equations.

2. CHORDV and test problems. CHORD System V[ref JRF McMacken, SG

Chamberlain, CHORD: A modular semiconductor device simulation development tool

incorporating external network models, IEEE Trans. CAD, v8, n8, p826-836, 1989] is

a semiconductor device simulator which uses fully coupled Newton iteration to solve a

variety of carrier transport models. In this paper, we are concerned with the traditonal

two- carrier, drift-diffusion equations: Poisson's equation and the electron and hole

current continuity equations.

+ q-(p- n + No - NA) = 0
f.

2



°n_lv.j _ R
Ot q

_Op = iv. jp_
Ot q

Here, ¢ is the electrostatic potential, p, n the hole and electron concentrations, J,_, Jp the

corresponding current densities, No, NA the ionized donor and acceptor concentrations

and R the net recombination. Using the drift-diffusion approximation, we can write the

electron and hole currents as

J,_ = -q#,_nV¢ + qD,_Vn

Jp = -q#ppV_b - qDp_7p

where #n, #p and D,_, Dp are the carrier mobility and diffusion coefficients. These ex-

pressions are combined to yield a system of three equations in three unknowns (_b,n,p).

Our carrier mobility models are taken from Nishida and Sah[ref T. Nishida, C-T. Sah,

A physically based mobility model for MOSFET numerical simulation, IEEE Trans ED,

vED-34, n2, p310-320, 1987] and includes components due to lattice vibration, ionized

impurities, surface scattering and velocity saturation. The recombination term includes

Shockley-Read-Hall, Auger and impact ionization. We convert the diffusion coefficients

to effective mobilities using the Einstein relation.

The three equations are discretized across a two-dimensional domain using box

integration[ref CS Rafferty, MR Pinto, RW Dutton, lterative methods in device simula-

tion, IEEE Trans. CAD, vCAD-4, n4, p462-471, 1985] applied to a non-orthogonal grid.

Consider the grid node i and its neighbours j, j+l, j+2, etc. shown in Figure[Figure C.1

from my thesis]. In the box integration method, we begin by constructing perpendicular

bisectors of the grid to develop a control volume. Note that this approach restricts us

to using grid meshes which do not contain obtuse angles.

Next we assume that the electric field and current are constant across each face of

the polygon as well as all physical properties. Using a simple difference form for the

field, Poisson's equation becomes

j=l lj [¢J-

?z

+ q[Pi- ni + NDi-- NA,] E [a_ + a-_] = 0
£

j=l

To discretize the continuity equations we need a difference form for the partial

derivatives over time. We use the simple backward Euler expression

Of fk+l -- fk

Ot _t

Thus, the electron continuity equation becomes

1 n [Rik+, + _9-_"[a+ + a_-] 0q _ [h+ + h-_l JnJk+l - nik+_tnik ] =
"= j=l
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The Scharfetter-Gummelapproximation for current density[ref DL Scharfetter, HK
Gummel, Large signal analysisof a silicon Read diode oscillator, IEEE Trans. ED,
vED-16,nl, p64-77,1969]is given by

CT_n

J.jk+, = -q-Tf-j [nik+l --nJ +,

where B(x) is the Bernoulli function

B(x) -
X

exp x - 1

and CT is the thermal voltage. Thus, the resulting discrete form of the electron conti-

nuity equation is

1 k [h+ q" h_] Cr#n-- q"-T-- [nik+l B(--(_¢3k+I/¢T) -- njk+l B( _¢jk+I/ ¢T )] --q
j=l '.7

[Rik+l "q- nik+l -- r_ik] n [ ]_t Z a+ + a; = 0
j=l

A similar expression may be developed for the hole continuity equation.

In CHORD, the transport model is solved using Newton iteration. Given a set

of equations with residuals rk, k = 1..n, we linearize the system about a point xk and

solve the linear system JkAxk = --r(xk) where Jk is the Jacobian matrix formed by

computing partial derivatives of rk. Our solution estimate is then updated by the

Newton step Ax and the process repeated until the system is converged. In this paper,

we will focus on iterative methods of solving the linear system.

Two typical semiconductor models: Metal-Oxide-Semiconductor Field-Effect Tran-

sistor (MOSFET) and bipolar junction transistor (BJT) are used for testing purposes.

The n-channel MOSFET device is a simplified self-aligned n-channel MOSFET with a

2um drawn channel length and a 25nm thick gate insulator (see Figure 2.1). The source

and drain are 0.25um abrupt junctions in a lightly doped p-type substrate (5.0e+15 cm-

3). There is no channel implant. We assume an ideal structure with no oxide charge or

interface charge. The MOSFET problem has 15587 unknowns.

FIG. 2.1. An n-channel MOSFET

The second device is a bipolar junction transistor (see Figure 3.1) that is an active

three-terminal device which can be used as an amplifier or switch. There are areas of

applications in which the bipolar transistor is superior to MOSFET, such that, in high-

power devices and in high-speed logics for high-performance computers. This device is

a simple vertical npn transistor formed by two ion-implant steps and a thermal anneal,

an n+ buried layer is used to reduce the parasitic collector resistance. The BJT problem

has 13758 unknowns.
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TEST PROBLEM 3???????

Each test problem for a givendevicemodel consistsof a sequence of subrproblems

for a gradually increasing value of source-drain voltage. Each of these subproblems

requires many Newton steps, which in turn requires many Newton solves. Consequently,

each test problem exercises the matrix solution algorithm over many different Newton

iterations and values if the source-drain voltage. Consequently, the total time for the

entire test problem is a good indication of the robustness and reliability of the matrix

solver over a wide range of situations.

The Newton iteration convergence criteria was ?????????.

3. Inner Iteration Convergence Criteria. The complete solution process in

a device simulation consists of an inner and outer iteration. The outer iteration is

the nonlinear Newton method. At each Newton step, an ill-conditioned linear system

is solved. If the Jacobian is solved using an iterative method, then the convergence

tolerance must be specified. For the first few Newton steps, the nonlinear residual

in (4.2) is quite large. Therefore, a large residual reduction in the linear iteration is

needed for an accurate Ax. After the Newton iterations reaches a certain accuracy,

the nonlinear residual becomes smaller. The update Ax only affects the last few digits

of the final solution. As a result, the relative error requirement for the solution of the
Jacobian can be lowered.

Here a dynamic switch of the linear convergence criteria is implemented in the linear

solver. Initially, the convergence requirement is that the intial 12 residual be reduced

by 10 -6 . After the nonlinear residual is reduced below 10 -3 (compared to the initial

nonlinear residual, the linear residual reduction switchs to 10 -3. This dynamic switch

can generally save 10-15% of the CPU time.

FIG. 3.1. A bipolar junction transistor

4. Block data structure and scaling. In Newton's method, a system of linear

equations with the Jacobian is solved every iteration. Since device simulation involves

a system of coupled partial differential equations, it is natural to exploit the block

structure of the Jacobian in order to obtain a good preconditioner. Two methods

which use this concept are the Alternate Block Factorization (ABF) [3] and the Modified

Singular Perturbation (MSP)[28].

For the purposes of illustration, assume that the device model in question is a drift

diffusion model having three coupled partial differential equations. If the Jacobian equa-

tions are ordered so that all the electric potential equations are grouped first, followed

by the electron conservation equations, and then the hole conservation equations, and

the unknowns are ordered so that all the electric potentials are first, then the electron

concentrations, and finally the hole concentrations, then the Jacobian matrix can be
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partitioned as

(4.1) J =
J Pl

where Jij , i,j = ¢,n,p denotes the block of derivatives of the equation for electric

potential, electron conservation, or hole conservation, with respect to the electric po-

tential, electron concentration or hole concentration. Then the ABF preconditioner
is

D¢_ Dr,, Dcp ]-1
D-l= D,,t D,_ D,,p

Dp¢ Dpn Dpp

where D 0 is the diagonal matrix of J_j. More recently, the Approximate Block Elimi-

nation (ABE) has been proposed which uses an incomplete 3 × 3 block factorization of

the original block structured Jacobian.

In this paper, another kind of block structure of the Jacobian matrix is used. The

unknown variables at each physical grid node are grouped together to form an n x n

block matrix, where n is the number of grid nodes. In general, the diagonal block

elements of this block Jacobian may have different sizes since the number of unknowns

for each node varies. This is due to the fact that different models are used in different

device materials and at the device contacts. The motivation for explicity considering

the block structure are the following:

All the nonzero blocks are regarded as dense. Consequently, we need only to specify

the sparsity pattern for the nonzero blocks. As a result, the integer space needed

for specifying the structure of the block sparse matrix is an order of magnitude less

compared to the original scalar sparse matrix (assuming that the average number of

unknowns per node is at least three). This block structure will be more attractive when

the semiconductor model becomes more sophisticated, since typically, more detailed

physics requires more equations per node. Our study [7] indicates that one of the basic

operations in iterative methods, namely matrix vector multiplication, takes less time if

a block data structure is used compared to the scalar case. It is clear that the cache

hit ratio will be higher in the block case.

More importantly, the new block structure can allow us to reduce the strong cou-

pling between unknowns associated with a single grid node before the iterative process

and other preconditioning steps begin. If we order the unknowns and equations so that

all equations and unknowns associateds with a node are ordered consecutively, then

J

Jll J12 ...
J21 J22 ...

"°.

Jnl gn2 "'" Jnn
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TABLE 4.1

Block scaling

Test Methods Total linear Total linear

(N) applied iterations CPU time

ABF 1723 1772.08MOSFET

(15583) Two step 73 465.04

BJT ABF Not converge

(13758) Two step 117 523.54

where Jii are typically 1 x 1, 2 x 2,.-., 7 x 7 block matrices. For drift-diffusion models,

the maximum size of J, is usually four (some of the nodes may have the electric current

as an additional unknown). At each Newton step we need to solve the equation

(4.2) JAx = -r

where J is the Jacobian, zXx is the vector of updates, and r is the residual vector•

First, a block scaling is applied to equation(4.2). The scaling matrix

S

Jll 1 0 ... 0

0 ,]_1 ... 0

o o ...J:2

is multiplied on both sides of equation (4.2). The preconditioned Krylov space method

is then applied to the scaled matrix equation

SJAx = St.

Note that this scaling step is equivalent to applying the ABF preconditioner if a per-

mutation is applied. The difference here is that a further preconditioning process will

be applied to the scaled system. The improvement in using a block scaling followed by

further preconditioning is significant compared to using block scaling alone•

Table 4.1 shows the difference in performance if a further preconditioning step is

taken. Two Jacobian matrices were generated at intermediate Newton iterations from a

typical simulation. The two step preconditioner uses a block scaling followed by the best

preconditioned BI-CGSTAB method which will be described in more detail in following

sections• Table 4.1 shows the total number of solver iterations for all Newton iterations,

as well as the total number of unknowns N. Clearly, block scaling (ABF) alone is not

sufficient for a robust technique.

5. Preconditioning Issues . Preconditioned Krylov subspace methods are the

standard iterative methods for device simulation• Much of the past research has con-

centrated on the behavior of different acceleration methods [1, 4, 5, 15, 18, 21, 22, 24].
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Many authors have observed that GMRES, CGS and Bi-CGSTAB are the relatively

robust choices among the many. Our experience agrees with previous work. In partic-

ular, we found that Bi-CGSTAB is generally the most robust method. For example,

Figure 5.1 shows the total CPU times for problem the MOSFET problem for various

values of the Drain-Source voltage. Clearly, Bi-CGSTAB is the most efficient accel-

eration method. Tests for other problems showed a similar trend. Consequently, all

computations will be carried out using Bi-CGSTAB for the remainder of this paper.

CPU seconds

2500

2000

1500

1000:

500

I I I I

"GMRES(30)"
"CGS" _-

-_ "Bi-CGSTAB" -o-

0 I I I I

0 2 4 6 8 10

Drain-Source Voltage (V)
FIG. 5.1. Comparison of various acceleration methods(5.1)

For completeness, we give the preconditioned Bi-CGSTAB algorithm below.

(LU represents the incomplete factorization of matrix A and _ is a vector.)

r 0

O.'0 =

Aqo =

For

b- Ax 0

_ -- o:0 -- 1

qo = 0

i= 1,2,...

D = (r0, r,_,); w, = (j117)(__,1_,_1)

n=D

qi = ri-1 + wi(qi-1 -- ai-lAqi_l)

(ti = (LU)-lqi



End

Aq_ = A(t_

&, = _/(ro, Aq,)

S : ri-1 -- &iAq,

g = (LU)-ls

t=Ag

oq = (i-it, i-is)/(i-it, i-lt)

x_ = xi-1 + &_ + a_g

if x_ accurate enough, then quit

ri = 8 -- oqt

Although a suitable acceleration scheme may improve the performance by 10-30%

on average, a good preconditioner may speed up convergence by an order of magnitude

[4, 27]. In this paper, we will concentrate on the issues related to incomplete LU

preconditioners, since these are regarded as among the most robust for semiconductor

simulations [4, 22].

Before we pursue the different issues in constructing a good preconditioner, a block

graph representation of the Jacobian is useful. If we view the grid node vi as the node

of a graph representing the block sparse matrix and map the nonzero block element Jij

to an edge connecting the two nodes vi, vj, the block sparse Jacobian

(5.1) J =
Jll J12 "'' Jln

J21 J22 ''' J2n

J,,a Jn2 "'" J,,,_

can be represented by a graph form. During the factorization process, new nonzero

block elements will be introduced. A notion of "fill level" can be introduced to each

position of the block matrix. We define initially

(5.2) leve_O) = { O, if J_j _ O,_, otherwise.

The nonzero block elements then have a fill level 0. As the elimination proceeds, fill

will be introduced. At the k th step of the elimination, the fill levels are given by

level_ ) :--min (level_-')+ level(_-')+ 1,1evelyn-l)) .

In other words, the fill level of a fill is the length of the shortest path between node vi

and vj through the nodes eliminated before vi and vj [20]. The fill level is commonly

used to decide the sparsity pattern of an ILU factorization.

9



5.1. Ordering. The matrix ordering affects the computational efficiency of a ma-

trix solver in many ways. For direct methods, a good ordering technique is essential in

order to minimize the amount of fill. In parallel (or vector) processing, ordering again

plays a crucial rule. A number of studies have examined the effect of matrix ordering

on the quality of preconditioners for iterative methods based on an incomplete factor-

ization [6, 10, 11, 16, 17, 23, 14]. In [10, 11, 12] evidence was presented to demonstrate

that matrix ordering can have a profound effect on the quality of preconditioners. A

heuristic method was developed that was shown to produce good matrix ordering. Un-

fortunately, some of the techniques for an effective ordering developed in [10, 11, 12]

can only be applied to scalar sparse matrices. The ordering generated by these new

algorithms may destroy the block pattern we employed here. However, the graph based

orderings (where we view each block of the Jacobian as a node in the graph) can handle

the block matrix (5.1) naturally.

The algorithm for generating a scalar ILU preconditioner can be directly extended

to the block case. The block incomplete LU factorization can then be interpreted

as a graph elimination process[20]. CHORDV uses a box integration method for the

discretization of the partial differential equations. The graph representation of (5.1)

is in fact the graph of the grid used to discretize the device. Note that most of the

grid generation algorithms in semiconductor simulation involve some kind of refinement

process. Consequently, the ordering of the grid nodes can be very scattered. It is well

known that a scattered or random ordering is very effective for ILU methods [ ]. In

addition, after the refinement the resulting grid is usually unstructured. Consequently,

there is no obvious natural way to order the grid nodes. The Reverse Cuthill-McKee

(RCM) ordering [20] originally was proposed as a good technique for reducing the profile

of a sparse matrix. The basic idea of the ordering algorithm is to construct the level

set from a starting node of the graph representing the sparse matrix. The reverse order

of the level set will produce a small profile. We can also view the RCM ordering as

a generalized natural ordering of an unstructured grid. For a rectangular grid, RCM

ordering is the diagonal ordering of the mesh, if a corner node is chosen as the starting

node. This ordering algorithm can be naturally generalized to the block Jacobian case.

RCM ordering is known as an effective ordering [16, 17] for ILU preconditioning

in many applications. The standard RCM ordering can produce a poor ordering (for

an iterative solver) if the problem is anisotropic. A revised version for a weighted

graph can alleviate this problem [8]. A comparison of an ILU method which uses the

original ordering and the RCM ordering was carried out for Test Problem 3. WHERE

IS THIS PROBLEM DESCRIBED???? Figure 5.2 give the total CPU time required

to obtain the steady state solution for various values of the Drain-Source Voltage for

Test Problem 3, using the original ordering (ORG), RCM ordering (RCM), and, for

comparison, the time for a direct solver (SPARSPAK) [] is also shown. Her,e an

ILU(0) preconditioner is used with Bi-CGSTAB acceleration. The three curves On

average, RCM ordering reduces the total CPU time by about 30-40% compared to the

original ordering. Consequently, in the following, RCM ordering will be used unless

otherwise noted.
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CPU seconds

45001 , I , ,
I

[ _ "Sparspak" _
4000 _ / _ "Matb.ORI"

3500

3000

2500

2000

1500

1000
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0 I I I I

0 2 4 6 8 10

Drain-Source Voltage (V)

FIG. 5.2. Comparison of direct solver (Sparspak) and iterative solver (Matb), RCM ordering
(Matb.RCM) and ORI ordering (Math. OR O. IL U(O) preconditioner and Bi-CGSTAB acceleration used
in the iterative solver.

5.2. Sparsity pattern. The key step during the incomplete LUfactorization pro-

cess is to determine the sparsity pattern of the L and U. To find the optimal sparsity

pattern for the ILU factorization is a much more difficult task than the solution of the

Jacobian itself. Typically, some simple heuristics are used for determine if a fill element

will be discarded. The common strategies are:

1. By a drop tolerance, ILU(e).

Let Ji(_ ) be the submatrix which remains after (k- 1) steps of (incomplete)

elimination [????]. The drop tolerance method discards fill if

(5.3) aJ: )l<
There are many possible drop criteria which can be used [ ]. We will use

the criteria (5.3) since it is similar to that used in []. Note that since the

Jacobian matrix is not symmetric positive definite, we do not use the diagonal

modification suggested in [ ]. Even for symmetric positive definite problems,

the diagonal modification usually results in a slow method [].

It is probably not a good idea to extend the drop tolerance approach to the

block case. First, the computation of the norm of the block element Jij is not

an inexpensive operation. As well, the coefficients in each block of the Jacobian

11



TABLE 5.1

Drop Tolerance Compared to Two Step

Test Methods Total linear Total linear Double

(N) applied iterations CPU time workspace

MOSFET Two step 73 465.04 1,087,806

(15583) _ = 0.5 741 2426.10 660,080

e = 0.01 660 2370.84 729,729

= 0.001 416 2508.34 1,141,275

= 0.0001 363 4071.69 1,784,119

BJT Two step 117 523.54 987,151

(13758) c = 0.5 1439 3700.06 534,994

= 0.01 1226 3320.64 572,442

-- 0.001 1029 3505.31 772,080

= 0.0001 579 2980.67 1,108,358

in device simulation often vary by many orders of magnitude (101° - 1016). One

large entry in a block element may result in keeping the entire fill block, which

may not be desirable. Consequently, the drop tolerance method will be applied

to each individual element in the Jacobian matrix in the following. A similar

approach was used in [].

In general, we have found that a drop tolerance incomplete factorization is not

an effective technique for semiconductor device simulations. The characteris-

tics of the Jacobian in this particular application cause problems for a drop

tolerance approach. It is well known that the Jacobian in device simulation is

extremely ill conditioned. In other words, a small perturbation in the factor-

ization may cause a large change in preconditioner. The basic idea of the drop

tolerance heuristic becomes questionable in this case. Many experiments have

supported this observation [9]. It often happens that a smaller tolerance may

result a "worse" preconditioner.

The drop tolerance method (applied with criteria (5.3) to each element of the

Jacobian) was compared with use of a two stage method (to be described in the

following Section). Table 5.1 shows the total CPU time required for the matrix

solve, the number or iterations, and the storage required (for a single value of

the source-drain voltage), for various values of the drop tolerance ¢. For the

drop tolerance method, the total CPU times do not decrease monotonically

as the drop tolerance is decreased, which is somehwat disturbing. The drop

tolerance preconditioner is between six and ten times slower than the Two step

preconditioner. It is clear that, for the same amount of storage, the Two step

method is far superior to the drop tolerance approach.

2. By fill level, ILU(e).

12



The fill block J}/) at k th step of the factorization will be discarded, if

level_) > t.

It is clear that the larger the g the better the preconditioner. When g = n,

a complete factorization is obtained. However, large values of g will be too

expensive in terms of storage for 3-D problems. Our experiments indicate that

the performance (in terms of total CPU time) stops improving after g = 2 even

for 2-D problems.

For the level approach, only one symbolic factorization is needed for the entire

simulation as long as the grid does not change. The sparsity patterns of the

incomplete factorization are the same for different Newton steps or time steps.

As a result, the numerical and symbolic factorization can be separated to make

the factorization process more efficient. This contrasts with the drop tolerance

incomplete factorization, since a different sparsity pattern will result when

the Jacobian changes. Therefore, the incomplete factorization process is more

expensive for a drop tolerance preconditioner. The level approach is not only

easy to implement, it is even more efficient for the block Jacobian case. Indeed,

the symbolic factorization phase in this case costs only a very small fraction

of symbolic factorization cost if the Jacobian was not considered as a block

matrix.

Table 5.2 shows the total CPU times for Test Problem ???? for various levels

of fill of the ILU. The improvement from level zero to level one is significant.

However, the improvement in going to levels higher than one is marginal. We

also list a detailed record of a typical simulation in Table 5.2 (for a single

value of the source-drain voltage). We can see that the number of iterations

is monotone decreasing as the level increase. However, the amount of fill for

the preconditioner becomes larger as the level of fill increases. Therefore, the

higher cost for each iteration will eventually outweigh the reduction in number
of iterations.

TABLE 5.2

Comparison of Levels O, I, 2, 3 and 4.

Method Newton Linear Total CPU Total CPU Double

iter # iter # linear time time workspace

Level(0) 13 178 701.33 898.18 830998

Level(l) 12 lll 510.02 681.79 923823

Level(2 12 85 485.42 670.90 1087806

Level(3) 12 83 558.10 729.52 1264461

Level(4) 12 70 580.68 768.87 1437259

Direct Method 12 1870.62 2529297
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Fro. 5.3. Comparison of Level O, 1, 2 and 3 using one-step preconditioner in Bi-CGSTAB accel-

eration and RCM ordering.

3. By the combination of both, ILU(g,e).

A fill entry is dropped if

level_ff ) > g or Id;sl <

This is an useful heuristic for many applications [11]. However, since the drop

tolerance approach by itself does not appear to be very useful in this applica-

tion, we will not pursue this method further.

5.3. Two step preconditioner. As we can see from the experiments of the pre-

vious sections, when the accuracy of the factorization (by using a higher level fill or

a smaller drop tolerance) improves, the number of iterations required for convergence

decreases. However, the improvement in the number of iterations will not compensate

for the higher cost of each iteration after a certain point. The best combination of the

strategies thus far is to use RCM ordering plus ILU(1) or ILU(2). For 3-D problem, the

ILU(2) approach may require too much storage. In the following, we will use an ILU(1)

factorization unless otherwise noted.

Let Ls and Ua be the incomplete factorization of the Jacobian matrix J. The

techniques used in the previous sections are attempt to reduce the difference

IIJ- LjUJII.
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The basic assumption of this method is that if this difference is small, then the solution

y of the preconditioning step

(5.4) LjUjy = p

will be close to the solution of

Jx=p.

Alternatively, we can use the following criteria for producing an effective precondi-

tioner. Denote Mj a preconditioner of J and y the solution of

Mjy = p.

A better preconditioner Mj means a smaller residual of

(5.5) r = Jy - p.

When r = 0, a perfect preconditioner is obtained. Therefore a refined preconditioner

or a two step preconditioner can be developed as follows.

For the purposes of illustration, assume that the variables are ordered as in (4.1).

After we solve the equation (5.4), the residual r in (5.5) is calculated. Let J¢¢ be the

diagonal block element for the potential variable in (4.1) and re be the part of residual

in (5.5) corresponding to the electric potential equations. The equation

(5.6) Jc,¢Ay¢ = re.

is solved. This problem is much smaller and better conditioned. Let Ay = [Aye, 0, 0] T,

i.e. only the potential variables become updated. Then, the refined solution _ = y - Ay

is used as the solution for the new two step preconditioner Ms such that

Mt_) = p.

It is easy to see that the new residual

_= J_l-p

will have

?¢=0.

In another words, the two step preconditioner has more accurate electric potential solu-

tion. Consider a case where the drift flow of holes and electrons dominates the diffusion

flux. In this case, as the mesh size is reduced, the electric potential derivatives in the

Jacobian will dominate the hole and electron concentration derivatives. Essentially, this

is because in this situation, the electric potential is a elliptic type variable, while the

hole and electron concentrations are hyperbolic type variables.
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Forthe rangeof two dimensionalproblemswehavetestedsofar, wehavefound that
us of a direct solveof equation (5.6) is quite efficient. In other words, Joe is factored

once, and equation (5.6) is solved by a forward and back solve each iteration. We use

minimum degree ordering [ ] for the initial complete factorization of J¢¢ (this system is

much smaller than the original Jacobian). Of course, for larger 3-D problems, it may

be more efficient to use an iterative method to solve equation 5.6.

Note that the two step method is similar to the Combinative technique used in [

]. Tables 5.3, and 5.4 present some detailed comparisons between the one-step and two

step preconditioners for Test Problem ?????. We can see that the total number of linear

iterations is reduced significantly with the two step preconditioner. Fig. 5.4 lists the

CPU time comparison for a complete test run. Of course, the new preconditioner is

more expensive than the single step preconditioner. However, the larger reduction in

the number of iterations compensates the extra cost in each iteration.

In Table 5.4, we present a detailed performance comparison between many different

techniques (Note that the CPU clock is only accurate to within 5%). It is clear that a

careful implementation of the preconditioned Krylov space method is very important for

performance. Although some extra memory is needed for the small system (5.6) (see the

comparison in Table 5.3), the total memory requirement for the two step preconditioner

is still competitive with a direct method.
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FIG. 5.4. Comparison of one-step and two-step preconditioners.
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TABLE 5.3

Comparison of one-step and two-step preconditioner in Bi-CGSTAB

Test Bi-CGSTAB Newton Linear Total CPU Total CPU

problem (level:step) iter # iter # linear time time

Bi-CGSTAB(I:I) 20 459 1051.62 1360.65

problem 1 Bi-CGSTAB(I:2) 20 260 1091.46 1407.89

SPARS 20 3039.95

Bi-CGSTAB(I:I) 31 1468 3014.96 3494.40

problem 2 Bi-CGSTAB(I:2) 31 729 2600.20 3077.40

SPARS 31 4701.80

Bi-CGSTAB(I:I) 48 2663 5489.89 6222.92

problem 3 Bi-CGSTAB(I:2) 48 1219 4585.40 5369.92

SPARS 48 7348.77

Bi-CGSTAB(I:I) 50 2833 5704.77 6461.42

problem 4 Bi-CGSTAB(I:2) 50 1194 4222.25 4985.08

SPARS 50 7883.16

Bi-CGSTAB(I:I) 57 3203 6397.02 7279.58

problem 5 Bi-CGSTAB(I:2) 57 1427 5050.29 5899.39

SPARS 57 8809.89

6. Conclusion.
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