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MULTIGRID WAVEFORM RELAXATION ON SPATIAL FINITE ELEMENT
MESHES: THE CONTINUOUS-TIME CASE*

JAN JANSSEN AND STEFAN VANDEWALLE

Abstract. The waveform relaxation method and its multigrid acceleration are studied as solution procedures
for the system of ordinary differential equations obtained by finite element discretisation of a linear parabolic initial
boundary value problem. The convergence properties of the continuous-time algorithm are theoretically investigated
on finite-length and infinite-length time-intervals. In addition, quantitative convergence estimates and numerical
results are presented for one-dimensional and two-dimensional model problems.
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1. Introduction. We consider the numerical solution on a spatial finite element mesh of
the following parabolic partial differential equation (PDE):

U
(1.1) tO(x’ t) + Z:u(x, t) f(x, t), x e f2, > O,

with a linear boundary condition and given initial values. In (1.1), Z: denotes a linear second-
order uniformly strongly elliptic operator with time-independent coefficients, and is a
bounded open spatial domain.

The weak formulation of the parabolic initial boundary value problem, supplied with
homogeneous Dirichlet boundary conditions, is given as follows: find u(., t) e Hd() such
that

)-O--’ v + a(u, v) (f, v) for all v Hd (f2),

where a (., .) is the bilinear form corresponding to operator. In the Galerkin approach, u(x, t)
is approximated, for each t, in a finite-dimensional subspace Ha ofthe Sobolev space Hd. This
subspace is spanned by a set of linearly independent basis functions, associated with the points
of a discrete mesh, i.e., Ha span{01 Pd}. The approximation E/d_l ui(t)qgi(X) is
found by solving the following set of equations:

oj --[- a t qgj (f,oj) for j=l d.

In terms of the mass matrix B (i, j)} and the stiffness matrix A {a(i, (/gj)}, we may
rewrite these equations in a more standard form, as a system of ordinary differential equations
(ODEs)

(1.2) B + Au f,

*Received by the editors November 23, 1993; accepted for publication (in revised form) May 11, 1994.
tDepartment of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee,

Belgium (jan.janssen@cs.kuleuven.ac.be). This text presents research results of the Belgian Incentive Programme
"Information Technology", Computer Science ofthe Future (IT/IF/5), initiated by the Belgian State--Prime Minister’s
Service--Federal Office for Scientific, Technical and Cultural Affairs. The scientific responsibility is assumed by its
authors.

tCalifomia Institute of Technology, Applied Mathematics 217-50, Pasadena, CA 91125 (na.vandewalle@
na-net.ornl.gov). This work was supported in part by NSF Cooperative Agreement CCR-9120008.

456



WAVEFORM RELAXATION ON FINITE ELEMENT MESHES 457

with u [ul(t), u2(t) ud(t)] and f [(f, (/91) (f, Q92) (f, (#d)]t. Matrix B is the
Grammian matrix of a set of linearly independent functions and therefore is positive definite
symmetric. An initial condition ofthe form u (0) u0 is obtained by means of interpolation or
projection ofthe given initial condition for the PDE. A conforming finite element discretisation
of (1.1), equipped with more general boundary conditions, also leads to a system of the form
(1.2). For further details, we refer to [3] and [18].

The waveform relaxation method, also called the dynamic iteration method, is an iterative
technique for solving systems of ODEs. Its background is in electrical network simulation
[9, 14]. It differs from most standard iterative techniques in that it is a continuous-time
method, iterating with functions, and thereby well suited for parallel computation. It is based
on a splitting of B and A, i.e., B MB NB and A MA NA, and an iteration of the form

Melt() + MAu(u) Nstj(u-l) + NAU(-1) .+. f
The convergence of this waveform relaxation method has been studied exhaustively for

systems of the form (1.2), where B is the identity matrix. Such systems arise when (1.1) is
discretised using finite differences. In 12] and 13], Miekkala and Nevanlinna formulated the
convergence characteristics of the method in terms of the spectral radius of the corresponding
waveformrelaxation operator, which is oflinear Volterra convolutiontype. Ananalogous study
for the multigrid acceleration of the waveform relaxation method is performed by Lubich and
Ostermann in 10]. A survey and a discussion of a parallel implementation of these methods
can be found in the book by Vandewalle 19] and in [20] and [21]. We also mention the paper
by Miekkala 11], where the convergence properties of the waveform relaxation method are
studied for differential-algebraic systems of the form (1.2), where B is possibly singular.

In this paper, we shall concentrate on systems (1.2) with nonsingular B. The presence
of the matrix B leads to standard and multigrid waveform relaxation operators that are more
general than the corresponding operators in 12] and 10], respectively. In particular, a matrix
multiplication operator is added to the operator of linear Volterra convolution type. Our
analysis generalises the analysis of the above references: by setting B Ms I and
Ns 0, their results are regained. This paper is organised as follows. In 2, we study the
spectral properties of a general operator consisting of a matrix multiplication part and a linear
Volterra convolution part. These results will be used to investigate the convergence of the
standard waveform relaxation method (3) and of its multigrid acceleration (4). In 3 we
allow B and A to be fairly general matrices; we do not restrict the discussion to matrices
derived from parabolic PDEs. In 5, we conclude with some specific theoretical results for
the heat equation, which are subsequently validated by numerical experiments.

2. Spectral properties of a special operator. It will turn out that both the waveform
relaxation iteration and its two-grid acceleration can be written as a successive approximation
scheme

(2.1) u() -/U(v-l) -+- (/9

with 7-/an operator of the form

(2.2) u Hu + 7-tcU

The operator c is a linear Volterra convolution operator with a matrix-valued kernel he,

7-[cU(t) hc * u(t) h(t s)u(s)ds

and H is a d d complex matrix.
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The properties of this operator will be studied in the context of normed linear spaces.
We shall consider in particular the spaces of pth power integrable Lebesgue measurable
functions Lp((O, cx); cd), or Lp(O, o) for short, with the usual mean p-norm, and the space
of continuous functions C([0, T]; ca), or C[0, T], equipped with the maximum-norm

Ilull max Ilu(t)ll,
te[0,T]

where II. II is any usual Cd vector-norm. Recall that convergence of the general successive
approximation scheme (2.1) is guaranteed if and only if the spectral radius of 7-/is smaller
than 1. The spectral radius of a bounded linear operator in a complex normed linear space is
given by

(2.3) p(7-/) lim 1111.
n---> cx

It also equals the smallest value of p for which I.1 > p implies that Z 7-/has a bounded
inverse or, equivalently,

p() sup I.1,

where tr (7-/) denotes the spectrum of 7-/.

2.1. Spectral radius on finite time-intervals.
LEMMA 2.1. Suppose hc C[0, T] and consider TI as an operator in C[0, T]. Then,

is a bounded operator and p (TI) p (H).
The proof given below is based on a stability result from perturbation theory. An elemen-

tary proof can be found in the Appendix.
Proof. Bounding 7-/u gives

_< (IIHII + T Ilhcll)llull

where II. II denotes (for notational simplicity) both the maximum-norm in C[0, T] and the
matrix-norm induced by the Cd vector-norm. Hence, 7-/is a bounded operator with I111 _<
IIHII + T Ilhcll.

Since the linear convolution operator 7-/c is compact, operator 7-/is a compact perturbation
of H. From [7, Chap. IV, Thm. 5.35], it then follows that

fie(H) Cre(’]’/),

where re(H) and ire(7-/) denote the essential spectra of the (closed) operators H and
respectively [7, Chap. IV, 5.6]. We show below that equality also holds for the spectra.

It is easily seen that the spectrum of the matrix multiplication operator H is equal to the
spectrum of the matrix H. For any ) tr (H) both the dimension of the null space and the
codimension of the range of the operator H ) in C[0, T] are infinite. Hence, the essential
spectrum of the matrix multiplication operator H equals the spectrum of H, or

ire(H) ix(H).

It follows that tre(7-l) is a finite set, and any point/x e tr(7-/) \ tre(7-l) must be an isolated
eigenvalue of 7-( [7, Chap. IV, Thm. 5.33]. We will show that there are no such points, i.e.,
a (7-l) ire(H). Suppose we have some u 0, such that

7-[.u Hu + 7"(cU Izu
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Since/z (tre() tr(H), this can be rewritten as

(1i- H)-lT-cu u

which means that (/zI H)- He has I as an eigenvalue. However, (/xI H)-1,c is a linear
Volterra convolution operator with continuous kernel, whose spectrum equals the singleton
{0}; see, e.g., [8, p. 33]. Hence, tr(H) tre(7-(), and thus or(H) a(H), which completes
the proof. D

2.2. Spectral radius on infinite time-intervals. The proofofthe next lemma is based on
a theorem by Paley and Wiener; see, e.g., [4, p. 45] or 15, p. 60]. The theorem deals with the
solution of a linear Volterra integral equation, x + k * x f. Its solution can be expressed in
terms ofa resolvent function r, which is defined by the two equations r +k*r r / r *k k.
In particular, x f r * f. A necessary and sufficient condition for the boundedness of the
resolvent r, and hence, for the boundedness of the solution x, is given in the theorem.

THEOREM 2.2 (Paley-Wiener). Let k L 1(0, o). Then the resolvent r of k satisfies
r L 1(0, cx) if and only if det(I + K(z)) -7/: 0 for Re(z) >_ 0, where K(z) denotes the
Laplace-transform ofk.

Note that the theorem holds both for scalar and for vector-valued functions.
LEMMA 2.3. Suppose hc L 1(0, cx), and consider 7-[ as an operator in Lp(0, o) with

1 <_ p <_ cx. Then, 7-[ is a bounded operator with spectral radius

(2.4) /9(7-/) sup p(li(z))
Re(z)>_0

(2.5) sup p(I-I(i)),

where li(z) H + lie(z), and lie(z) denotes the Laplace-transform ofhc.
Proof The boundedness ofH is an immediate consequence of Young’s inequality on the

convolution operator 16, p. 28].
By definition, the spectral radius of 7-( is the smallest value ofp for which I;1 > p implies

that 7-/has a bounded inverse in Lp(0, o). Suppose ) & 0, and

(2.6) )u 7"[u (9I H) u hc * u f

First, we suppose that k is not an eigenvalue of H, i.e., k ( tr (H). In that case, (2.6) can
be rewritten as

u (,kI H)-1 hc, u (ZI H)- f.

Applying the Paley-Wiener theorem, we find that u is bounded if and only if

det (I (,kI H)-l-l,:(z)) # 0 for Re(z) > 0

or, equivalently,

det(kI (H + lle(z))) - 0 for Re(z) > 0.

The set E of all ), with . ’ tr (H), that leads to an unbounded solution u, is

U cr(H + lie(z)) \ tr(H).
Re(z)>0
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Define/5 as sup{l*l X }. (Note that p(7-/) > fi, with ">" instead of "=" since we did
not yet take all possible . into account.) By the continuity of the eigenvalues of H + lie(z)
as a function of z, it is clear that

5 sup p(H + lie(z)).
Re(z)>0

We still need to consider the ) that are eigenvalues of H. However, because

(2.7) lim (H / lie (z)) H,
z--- oo

these eigenvalues are in magnitude smaller than or equal to/5. Thus, p(7-/) /5, and
thereby (2.4) follows. The second equality (2.5) is obtained by application of the maximum
principle.

In L2(0, cx), an analogous result holds for the norm.
LEMMA 2.4. Suppose hc E L I(O, o), and consider as an operator in L2(0, cx).

Denote by II. 112 the L2-norm and by II. II the standard Euclidean vector-norm. Then,

(2.8) 11112 sup Illt(z)ll
Re(z)>0

(2.9) sup Illt(i)ll,

where li(z) H + lie(z), and lie(z) denotes the Laplace-transform ofhc.
Proof. This result is a consequence of Parseval’s formula; see, e.g., [2, p. 8].
REMARK 2.1. Consider as an operator in C[0, T]. From (2.7), we derive

p(7-[) p(H) p(I-I(oo)),

which means that the spectral radius of 7-( on finite time-intervals is smaller than the spectral
radius of 7-/on infinite time-intervals.

3. The waveform relaxation method.

3.1. The waveform relaxation operator. Consider the following linear initial value
problem:

(3.1) Bfa+Au=f, with u(0)=u0, >0,

where B and A are complex d x d matrices, and u and f are Cd-valued functions in time. In
the present paper B is a nonsingular matrix. The solution to (3.1) is then formally given by

f0(3.2) u(t) e-B-IAtuo -!- e-(-tlB-I f(s)ds

By introducing the splittings B M Ne and A M N, the basic continuous-time
waveform relaxation iteration can be written as

(3.3) Meit( + Mu( Nti(- + Nu(- + f, with u(u(0) u0, > 0.

The iteration is usually started by choosing the zeroth iterate u( (t) u0, > 0. We shall
always assume M to be invertible. Using (3.2), we can rewrite iteration (3.3) as an explicit
successive approximation scheme: u(u K;u(u- + o. The right-hand-side function q) and
the waveform relaxation operator lC are given by

o(t) e-M-MAt(I M-INB)UO + eM-MA(s-t)Ml f(s)ds
(3.4) 1Cu(t) MINBu(t) + 1CcU(t)
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/Ec is a linear Volterra convolution operator with kernel kc:

1Ccu(t) kc * u(t) kc(t s)u(s)ds

(3.5) kc(t) e-MMAtMI(N,4 MAMXNB)
Let e(v) be the error ofthe vth waveform relaxation iterate, i.e., e(u) u (v) u. It satisfies

e() =/Ce(-1). That is, it is the solution to the differential equation

(3.6) MB(v) + Me(v) NB(u-1) + NAe(v-1) with e(V)(O) O, > O.

If we denote by (V)(z) the Laplace-transform of e(’), then we get by Laplace-
transforming (3.6) that

(3.7) Y()(z) K(z).(v-1) (z) (MINB -+- Ke(z))(v-1) (z)

where Ke(z) (zMs + MA)-(NA MAMINB) is the Laplace-transform of the kernel kc,
and

(3.8) K(z) (zMB + MA)-I(zNB + NA)

We shall hereafter refer to K(z) as the waveform relaxation matrix or the dynamic iteration
matrix of operator

REMARK 3.1. Assume matrices B and A to be decomposed as B -LB + DB UB and
A -L + D, UA, where DB and D, are diagonal matrices, Ls and L are strictly lower
triangular matrices, and Us and UA are strictly upper triangular matrices. The splittings

MB=DB, NB=LB+UB, M=DA, N=L+Ua,

MB -LB + DB NB UB Ma -LA + Da N U

define, respectively, the Jacobi and Gauss-Seidel waveform relaxation methods.

3.2. Convergence analysis.

3.2.1. Convergence on finite time-intervals. The spectral radius of the waveform re-
laxation operator as an operator on finite-length time-intervals is known to be equal to zero
when B is the identity matrix [12, p. 46.1]. That is, convergence of the method is ultimately
superlinear. In the current section we shall derive the equivalent formula for the general non-
singular B. It turns out that the convergence is ultimately linear and solely dependent on the
splitting of B.

THEOREM 3.1. The waveform relaxation operator 1C is a bounded operator in C[0, T]
and

(3.9) pOE) p(M-INB).

Proof Since kc C[0, T], the theorem follows immediately from Lemma 2.1. [:]

3.2.2. Convergence on infinite time-intervals. The solution to (3.1), given by (3.2), is
obviously bounded if and only if all eigenvalues of B- A have positive real parts. (We assume
the fight-hand-side function f to be in Lt,.) The following lemma deals with the boundedness
of the waveform relaxation operator.

LEMMA 3.2. If all eigenvalues of B-A have positive real parts, then the following
statements are equivalent:
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(i) /C is a bounded operator on Lp(O, o) with 1 < p < o.
(ii) All eigenvalues ofM-1MA have positive real parts.

Proof The lemma is a direct consequence of 11, Thm. 1]. U
The converse of the lemma is as follows.
LEMMA 3.3. Suppose all eigenvalues ofMIMA have positive real parts. Ifp(1C) < 1,

then all eigenvalues ofB-1A must have positive real parts too.

Proof By inspection of (3.4) and (3.5) we can conclude that, under the assumption of the
lemma,/C is bounded in Lp(O, o) with 1 < p < o and, therefore, p(/C) < cx. If p(/C) < 1,
then the waveform relaxation iteration is a convergent successive approximation scheme in
Lp. Its fixed point satisfies (3.1) and is therefore given by (3.2). Hence, since the fixed point
is in Lp, all eigenvalues of B-1A must have positive real parts. D

THEOREM 3.4. Assume all eigenvalues ofM-1MA have positive real parts, and consider
1C as an operator in Lp(O, o) with 1 < p < cx. Then,

(3.10) p(/C) sup p(K(z))
Re(z)>0

(3.11) sup p(K(i)).

This theorem is a special case of 11, Thm. 2]. Here, we prefer to deduce the theorem
from Lemma 2.3, i.e., we give a proof based on the Paley-Wiener theorem.

Proof Notice that kc 6 L 1(0, o) since all eigenvalues of M1MA have positive real
parts. The theorem then follows from Lemma 2.3. ]

For a better understanding of the theorem, recall the relation between the Laplace-
transforms of successive errors, (3.7). Asymptotically, any "frequency" component of the
initial error y(0)(i) converges with the corresponding convergence factor p(K(i)). Ac-
cording to (3.11), the spectral radius of the waveform relaxation operator p(/C) equals the
supremum of these factors, taken over all frequencies . That is, the asymptotic convergence
behaviour of operator/C is determined by the slowest converging frequency component of the
initial error.

Setting 7-/=/C in Lemma 2.4 yields an analogous result for the L2-norm.
THEOREM 3.5. Assume all eigenvalues ofM1MA havepositive realparts, andconsider 1C

as an operator in L2(0, oe). Denote by II. 112 the L2-normand by II. II the standard Euclidean
vector-norm. Then,

(3.12) 11/112- sup IIK(z)ll
Re(z)>0

(3.13) sup IIK(i)[I

REMARK 3.2. If not all eigenvalues ofM1MA have positive real parts, we can still derive
a similar result by using an exponential scaling in the norm. Assuming that for all eigenvalues
/Z of M-IMA it holds that Re(/zi) -+- ot > 0, we consider the norm

(3.14) Ilull= Ile-tull,

where the norm in the right-hand side is a standard mean p-norm. With this change of norm,
both Theorems 3.4 and 3.5 apply with the supremum taken over Re(z) > ot or, after application
of the maximum principle, over the line z ct + i.

3.3. Jacobi and Gauss-Seidel waveform relaxation. In the following, 1CJAc and/CGs

denote the Jacobi and Gauss-Seidel waveform relaxation operators, respectively. Their dy-
namic iteration matrices are given by
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KS’C(z) (zDs + DA)-I(z(LB -+- UB) -k- (LA -k- UA))
K;S(z) (z(Ds Ls) + (DA LA))-I(zUB -+" UA)

3.3.1. Results on finite time-intervals.
LEMMA 3.6. Consider 1C6s as an operator in C[0, T], and suppose B is Hermitian with

positive diagonal elements. Then the Gauss-Seidel waveform relaxation method converges,
i.e., p(1C6s) < 1 ifand only ifB is positive definite.

Proof From Theorem 3.1, we derive p(]CGS) p((Ds LB)-IUB). The lemma then
follows from [6, p. 71, Cor. 1].

COROLLARY 3.7. For a system of ODEs (3.1), derived from a parabolic PDE by fi-
nite element discretisation, the Gauss-Seidel waveform relaxation method is convergent in
C[0, T].

Proof If (3.1) is derived from a parabolic PDE by finite element discretisation, matrix B
is positive definite symmetric. Since the diagonal elements of a positive definite matrix are
positive, we can apply Lemma 3.6 to obtain the result.

3.3.2. Results on infinite time-intervals.
LEMMA 3.8. Assume all diagonal elements ofD-1DA have positive realparts. Let A and

B be such that (zB + A) is a consistently ordered matrixfor Re(z) > 0. Then, in Lp(O, cxz)
with 1 < p <

(3.15) p(1c6s) p(]JAC)2.

Proof Observe that, for Re(z) > 0,

det()I KGS(z)) det (z(Ds Ls) + (DA LA))-1

det (Z(z(Ds LB) + (DA LA)) (zU + U))

det ()(z(D L) + (DA LA)) (zUB q- UA))
(3.16)

trace(zD + DA)
Introducing the shorthands D* zD + DA, L* zL + LA, and U* zU + U, the
numerator of (3.16) becomes

( (det (.D* ZL* U*) det ZD* / L* + U*
1

(3.17) (4c-)a det (V/-D* (f-L* + --U*))
Since zB + A, Re(z) > 0, is a consistently ordered matrix, we can use [23, p. 147, Thm. 3.3]
to rewrite (3.17) as

(/-)g det (/D*- (L* / U*)).
Hence, . is an eigenvalue of KGs(z) if and only if 0 or is an eigenvalue of KJ’c (z).
The latter means that

p(KGS(z)) p(KJAC(Z))2

which implies (3.15) by application of Theorem 3.4. [3

REMARK 3.3. The first assumption of Lemma 3.8 can be loosened if (3.1) is derived
by spatial finite element discretisation from a parabolic PDE. The positive definiteness of
B implies that it is sufficient to assume that all diagonal elements of A are positive. The
assumption can be dropped completely if the bilinear form a(., .) is H-elliptic, with H the
Sobolev space used in the finite element discretisation of the PDE [3, p. 24].
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3.4. Finite time-interval analysis versus infinite time-interval analysis. In Remark
2.1 we note that the spectral radius of/C as an operator on finite time-intervals is smaller than
the spectral radius of/C as an operator on the infinite time-interval. Therefore, it is possible that
the waveform relaxation method is convergent on any finite time-interval, but divergent on the
infinite time-interval. In a situation like that, computations on a sufficiently long time-interval
will at first seem to diverge. Eventually, however, the computations must start to converge.
This effect is illustrated in the following example.

Consider the linear initial value problem

1 U’I
--1 11 )( Ul)U2 (COS(t))0

with the initial conditions ul(0) 1 and u2(0) 0. The solutions are Ul(t) cos(t)
and u2(t) sin(t). We solve this problem by using the Gauss-Seidel waveform relaxation
method, i.e., we apply the following splittings:

1 0 0 -g M 7 0 0 -1
M= 1 1 N= 0 0 -1 1 N= 0 0

The dynamic iteration matrix is given by

KGS(z)= z+ 0 0 --z--1
z--1 z/l 0 0

We have plotted in Fig. 3.1 the spectral radius of the dynamic iteration matrix evaluated along
the imaginary axis, i.e., for z i, in function of the frequency .

On finite time-intervals, we can apply the result of Theorem 3.1, which yields

1
(3.18) p(1Es) p(KGS(oo)) .
This result ensures linear convergence on any time-interval of finite length. The spectral radius
on infinite time-intervals can be calculated with the aid of (3.11),

(3.19) p(tCs) sup p(KS(i)) 2.

By that, waveform relaxation is divergent on the interval (0, c).
To clarify these results, we have plotted in Fig. 3.2 the error of the second component

iterate ev) uv)
u2 after 0, 4, 8, and 12 iterations. Roughly speaking, one observes two

subintervals with different convergence characteristics, corresponding to the results (3.18)
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FIG. 3.2. Error ev) (t) for v O, 4, 8, and 12.

and (3.19), respectively. The finite-length interval with small errors extends as more iterations
are applied. Consequently, the region of divergent behaviour recedes backward after a large
number of iterations. Hence, asymptotically, the convergence behaviour will be dictated by
the finite time-interval analysis.

4. The multigrid waveform relaxation method.

4.1. The two-grid waveform relaxation operator. Multigrid is known to be a very
efficient solver for elliptic partial differential equations; see, e.g., [5] and [22]. The multigrid
principle can be easily extended to time-dependent problems by choosing all the operations
in the multigrid cycle as operations on functions [10]. A two-grid cycle for the initial value
problem (3.1), derived by finite element discretisation from a parabolic PDE (1.1), is stated
below. It is defined on two nested grids f2/_/and f2h, with f2/-/ C f2h, and determines a
new iterate u <v) from the former waveform u<v-1) in three steps: pre-smoothing, coarse grid
correction, and post-smoothing. In the following, the subscripts h and H are used to denote
fine and coarse grid quantities, respectively.

(i) Pre-smoothing. Set x) u-1), and perform Vl waveform relaxation steps. For
v 1, 2 Vl, solve

(4.1) MBh 20’) + MAhxO’) NBh f(’(v-1) "-[- NAb x(v-1) -It- A
with x<)(O) u0, > O.

(ii) Coarse grid correction. Compute the defect

Bhf(vl) -Jr" ,4hx(vx) fh
NBh (2(u1-1) (Pl)) + NAh (x(vl-1) X(V))

Solve the coarse grid equivalent of the defect equation,

(4.2) Bi4i:i4 + Ai4vi4 rdh, with v/-/(0) 0, > 0,
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with r f2h --+ f2/-/the restriction operator. Then interpolate the correction v/to f2h and
correct the current approximation

Y X (I)1) pVH

with p "H -+ h the prolongation operator.
(iii) Post-smoothing. Perform 1)2 iterations of type (4.1), starting with x() Y, and set

U (v) X(V2).
Since (4.2) is formally equal to (3.1), this two-grid cycle can be applied in a recursive

way to obtain a multigrid cycle.
The two-grid cycle can be written as an explicit successive approximation scheme: u(v)

.Mu(v-l) + tp. The two-grid waveform relaxation operator A4 is given by

(4.3) A4u(t) 1Cv2 C !)1 u(t)

with/C the standard waveform relaxation operator (3.4), and C the two-grid correction wave-
form operator

Cu(t) (I- pBlrBh)U(t) + CcU(t)

The operator Cc is also of linear Volterra convolution type. Its matrix-valued kernel equals
Cc(t) pe-B;’4ttBl(AHBllrBh rAh). By rearranging terms in (4.3), we may rewrite
A/[ in the general form (2.2):

.Mu(t) (MhlNBh V2 I PBtlrBh)(MhXNBh v u(t) -k- .h4cU(t)

Operator .Mc is a linear combination of products of linear Volterra convolution operators
and Cc. Therefore, it is itself of linear Volterra convolution type. We shall denote its kernel by
mc(t) and the Laplace-transform of m(t) by Me(z). The precise expressions for m(t) and
Me(z) are rather complicated and, since they are not required further on, omitted.

Let e( be the error of the 1)th two-grid waveform iterate, i.e., e(v u( u. It satisfies
e() .Me(-1. Laplace-transforming this relation yields

(’(Z) ((M-hlNBh)V2(I PBIlrBh)(MhlNBh)’ --b Me(z)) ’(v-l’(z)

M(z),O’-l)(z)

By Laplace-transforming the equations of the two-grid cycle, we find the following equivalent
expression for the two-grid dynamic iteration matrix M(z):

(4.4) M(z) KV2(z)(I- p(zBn q- An)-lr(zBh -t- Ah))KV(z)
(4.5) K(z) (zMsh + MAh)-(zNsh +NAh).

REMARK 4.1. In the case of a Gauss-Seidel (or Jacobi) splitting of Ah and Bh, K(z) and
M(z) are, respectively, the Gauss-Seidel (or Jacobi) iteration matrix and the two-grid iteration
matrix for the linear system constructed by finite element discretisation of the elliptic problem
zu + u f.

4.2. Convergence analysis.

4.2.1. Convergence on finite time-intervals. The spectral radius of the two-grid wave-
form relaxation operator in the case of a finite difference discretisation is known to be zero
on finite time-intervals [19, Thm. 3.4.1]. In the following theorem, which is the multigrid
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waveform analogue of Theorem 3.1, we will state the equivalent formula for general non-
singular B.

THEOREM 4.1. The two-grid waveform relaxation operator A4 is a bounded operator in
C[0, T] and

(4.6)

Proof. Since both kc and Cc are continuous on [0, T], we have mc C[0, T]. Conse-
quently, the theorem follows from Lemma 2.1.

REMARK 4.2. The spectral radius of.A/[ equals the spectral radius of the standard two-grid
operator for the trivial elliptic problem/2u f, where/2 is the identity operator, discretised
on a finite element mesh.

4.2.2. Convergence on infinite time-intervals. In 10, pp. 219-220], Lubich and Oster-
mann examined the multigrid waveform relaxation method for the finite difference case, i.e.,
for systems of ODEs (3.1) with B I. We shall extend their results to initial value problems
(3.1), derived from (1.1) by finite element discretisation.

We assume that

(4.7) all eigenvalues of BIIA14 and MB--h MAh have positive real parts.

REMARK 4.3. Notice that condition (4.7) is satisfied if we assume the boundedness of the
analytical solution of (3.1) on f2/_/and the boundedness of the standard waveform relaxation
operator

THEOREM 4.2. Assume (4.7), and consider A4 as an operator in Lp(O, cxz) with 1 < p <
o. Then, Jl is a bounded operator with spectral radius

(4.8) p(A4) sup p(M(z))
Re(z)>0

(4.9) sup p(M(i)).

Proof It is easily verified that

Mc(z) M(z) lim M(z).
z--- (x)

From (4.7), the entries of Mc(z) are rational functions of z vanishing at infinity, all of whose
poles have negative real part. This implies that me 6 L 1(0, o) by an inverse Laplace-
transformation argument. The theorem then follows from Lemma 2.3.

Applying Lemma 2.4 yields the following result for the L2-norm of .A//.
THEOREM 4.3. Assume (4.7), and consider .All as an operator in L2(0, c). Denote by

II. 112 the L2-norm and by II. II the standard Euclidean vector-norm. Then,

(4.10) II.A/tlI2-- sup IIM(z)ll
Re(z)>0

(4.11) sup IIM(i)II

REMARK 4.4. Suppose that (4.7) is not satisfied, but Re(//,/) + Ot > 0 and Re(vj) + ct > 0
for all eigenvalues/zi and vj of MB--h MA and B1.4H, respectively. Using the exponentially
scaled norm (3.14), Theorems 4.2 and 4.3 hold when the supremum is taken over Re(z) > ct

or over the line z ct + i.
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5. Model problem analysis and numerical results. In this section, we conclude with
some experimental results for two model problems.

First, we consider the one-dimensional heat equation

(5.1)
0u

0t
A lU ---0, 37 E [0, 1], E [0, 1],

with homogeneous Dirichlet boundary conditions and an initial condition chosen such that
the analytical solution is given by u(x, t) sin(zrx) exp(-r2t). The equation is discretised
using linear, quadratic, or cubic basis functions on a discrete grid with mesh size h, i.e.,
g2h ={xi=ih 10<i < l/h}.

Next, the convergence of the (multigrid) waveform relaxation method is investigated for
the two-dimensional heat equation

)u
(5.2) A2u 0, (x, y) [0, 1] x [0, 1], [0, 1],

Ot

completed with Dirichlet boundary conditions and an initial condition. The analytical solution
is given by u(x, y, t) 1 + sin(zrx/2) sin(zry/2) exp(-zr2t/2). The equation is discretised
using linear basis functions (triangular finite elements) and bilinear basis functions (rectangular
finite elements) on a discrete meshwith equalmeshsize h in the x-direction andthe y-direction:

"h {(Xi ih, yj jh) 10 < i, j < 1/h}.

The finite element discretisation of both (5.1) and (5.2) leads to a system of ODEs of the
form (1.2). For all subsequent choices of the basis functions, all the eigenvalues of B-1A and

M-IMA (for Jacobi and Gauss-Seidel splittings) have positive real parts, i.e., the conditions
for applicability of Theorems 3.4 and 4.2 are satisfied.

5.1. A one-dimensional model problem.

5.1.1. Theoretical results. To determine the spectral radius of/CJAc and/C6s on infinite
time-intervals, the spectral radii of KsAc (z) and KGs(z) are to be calculated for every value
of z along the imaginary axis. This is generally a very difficult task. However, for our model
problem (5.1), discretised using linear basis functions, we have the following result.

LEMMA 5.1. TheJacobiandGauss-Seidelwaveform relaxation operators 1CJAc and1CGs,
respectively, for the one-dimensional heat equation, studied in Lp(O, cx) with 1 <_ p < cx,
discretised using linear basisfunctions, satisfy thefollowingformulae, validfor small h,

(5.3) p(]C_,JAC) 1 7r2h2/2 and p(EGS) 1 7r2h2

Proof Discretising (5.1) with linear basis functions yields

p(KJAC (z))
-2zh2 + 12

4zh2 + 12
cos(rh).

As a consequence of Theorem 3.4 and equation (3.11), we find that

-2ih2 + 12p(](,JAC) sup
4ih2 + 12

1 zrh2/2.

cos(rrh) cos(rrh)

Since the assumptions of Lemma 3.8 are satisfied, the second formula of (5.3) follows imme-
diately from the first one by application of (3.15).
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Next, we consider the multigrid waveform relaxation method. We assume that the coarse
grid f2n is derived from the fine grid f2h by standard coarsening (H 2h). For the prolonga-
tion operator p f2n --+ f2h, we use the piecewise linear interpolation operator; see, e.g., [5,
p. 22]. The restriction operator r 2h --+ f2n is defined by the transpose of the prolongation
operator: r pt [22, pp. 70-71].

LEMMA 5.2. The two-grid operator .Mfor the one-dimensional heat equation, studied in
Lp(O, o) with 1 < p < oo, discretised using linear basisfunctions, with red/black Gauss-
Seidel smoothing and with theprolongation and restriction operator defined as above, satisfies

(5.4) p(A4) _< v/V/rio(2v- 1), with rio(v)=
1)P

(v + 1)TM

for v 1)1 -47 1)2 >__ 1.

Proofi The proof is a generalisation of the model problem analysis in [5, p. 25] and the
proof of 10, Prop. 5]. Writing

M(z) K(V2)(z)C(z)K(V’)(z) with C(z) I p(zBn + AH)-lr(zBh + Ah)

we have to study

p(M(z)) p (C(z)K(V)(z)) v vl + 1)2.

Let em (m 1, 2 N 1), with N 1/h, denote the eigenvectors of Bh and Ah,

em(X) sin(mzrx), x kh 1 < k < N- 1.

Both C(z) and K() (z) leave the subspace spanned by (era, eN-m invariant. Their restrictions
with respect to this basis have the matrix representations

2 2

e,()= Sm C
2 2Sm Cm

2 2 2Cm)3zh2 CmSm(1
4 2+ zh2(1 + 2(C2m s2m)2) + 12C2mS2m -Sm(1 2Cm)

2 )2v-1 ( 1 zh2/6" 2v

Km() (z) (C2,n sm 1 +zJ

4 (1 2Sm) /mCtn
2 2 2s2)CmSm(1

2 2 +
-sm -sm 2(1 zh2/6) -1 -1

with Cm cos(mhr/2), Sm sin(mhzr/2), and rn 1 N/2 1. (We may omit the
degenerate case rn N/2.) We then have, for v > 1 and Z zh2,

2)2-1(l-Z/6)2u-1Z((s2m-C2m)[11 11]Mm(Z) Cm(Z)Km(V)(Z)=(c Sm (1 + Z/3)2v -3Z(1 4cs) c c
2 2+ Z(1 + 2(c2 s2)2) + 12C2mS2m --Sm mSm

The spectral radius of Mm(Z) equals

2)2u (1 Z/6)u- Z
2

3Z(1 4CSm)
(N,.(z (c s ( + z/ --g z( + (c s + cs
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TABLE 5.1
Values ofthe upper boundfor p(A4) as afunction ofv Vl -+- v2.

v 2 3 4

/V/00(2v 1) 0.866 0.563 0.448 0.384

TABLE 5.2
Numerical values ofp(JVl), v 2.

h 1/8 1/16 1/32 1/64
pnum(A4) 0.217 0.263 0.276 0.280

Thus,

(5.5) p(A//) sup p(M(Z)) sup max p(Mm(Z))
Re(Z)>0 Re(Z)>_0

3 (6- i)2v-li
_< sup - (3 d- i)2v

.,./v/r/o(2v- 1),

where the latter supremum is attained for 4-3,///3v 2. D
The lemma states that the spectral radius of the two-grid operator .AA can be bounded by

a constant, independent of h. Some values of the bound are given in Table 5.1.
Since the bound in Lemma 5.2 is not optimal, we numerically computed the spectral

radius of the two-grid operator by evaluation of (5.5), for v 2 and for several values of h.
These results are reported in Table 5.2.

5.1.2. Numerical results. We discretised problem (5.1) using linear basis functions on a
spatial finite element mesh with mesh size h 1/8, 1/16, 1/32, and 1/64. The resulting system
was solved using Gauss-Seidel waveform relaxation and multigrid waveform relaxation. In
the latter method we applied standard V- and W-cycles, with one pre-smoothing and one
post-smoothing step ofred/black Gauss-Seidel waveform relaxation type, standard coarsening
down to a coarse grid with mesh size h 1/2, linear interpolation, and the corresponding
restriction. The effect of time-discretisation on the convergence properties will be a subject
of further studies. Here, the Crank-Nicolson method is used for time-discretisation of the
iteration schemes. To approximate the continuous-time convergence results, we take a small
time-step, e.g., 1/1000.

The vth iteration convergence factor is determined by calculating the/2-norm of the dis-
crete defect of the approximation and by dividing the result for successive iterates. After a
sufficiently large number of iterations, this factor takes a more or less constant value. The
averaged convergencefactor is then defined as the geometric average of these iteration con-
vergence factors over the region of nearly constant behaviour.

In Table 5.3, we have reported the observed averaged convergence factors for the one-
dimensional heat equation, spatially discretised with linear elements. Even though the time-
interval in this experiment is finite, the measured waveform relaxation convergence factors
closely match the ones that can be obtained by evaluation of the infinite interval theoretical
formula (5.3). For a discussion of this phenomenon, we refer to [19, 3.2.4, 3.5]. The
multigrid convergence factors are clearly bounded above by a constant less than 1, independent
of h. We have pictured successive iterates, u Cv), evaluated at x 1/2, in Fig. 5.1. For a
mesh size h 1/32, the Gauss-Seidel method is very slowly converging. One iteration of
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TABLE 5.3
Averaged convergencefactorsfor the one-dimensional heat equation, linear basisfunctions.

h 1/8 1/16 1/32 1/64
Gauss-Seidel 0.841 0.959 0.990 0.997

l-cycle 0.229 0.300 0.326 0.331
W-cycle 0.210 0.254 0.265 0.267

v=0

Gauss-Seidel Multigdd

v=l

FIG. 5.1. Successive iterates u(v) (1/2, t), obtained with (multigrid) waveform relaxation.

TABLE 5.4
Averaged convergencefactorsfor the one-dimensional heat equation, quadratic basisfunctions.

h 1/8 1/16 1/32 1/64
Gauss-Seidel 0.967 0.992 0.998 0.999

I-cycle 0.202 0.285 0.316 0.325
W-cycle 0.201 0.276 0.301 0.309

TABLE 5.5
Averaged convergencefactorsfor the one-dimensional heat equation, cubic basisfunctions.

h 1/8 1/16 1/32 1/64
Gauss-Seidel 0.862 0.965 0.991 0.998

//’-cycle 0.191 0.234 0.236 0.237
W-cycle 0.184 0.218 0.213 0.210

1.0

the multigrid method suffices, to get an approximation that can no longer be distinguished
graphically from subsequent iterates.

In Tables 5.4 and 5.5, we report the averaged convergence factors for the one-dimensional
heat equation, discretised using quadratic and cubic basis functions, respectively. We consider
both Gauss-Seidel waveform relaxation and multigrid waveform relaxation. In the quadratic
case, we use three-colour Gauss-Seidel waveform relaxation as a smoother: two colours are
needed to decouple the unknowns corresponding to integer nodes, while the third colour is
used to update the unknowns at half-integer nodes. In the cubic case, the even unknowns (and
their derivatives) are decoupled from the odd unknowns (and their derivatives) using red/black
Gauss-Seidel waveform relaxation smoothing. The other multigrid assumptions are identical
to those of the linear case. Notice that the Gauss-Seidel waveform relaxation convergence
factors seem to satisfy a relation of the form p(1Cs) , 1 O(h2), although no explicit
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TABLE 5.6
Averaged convergencefactorsfor the two-dimensional heat equation, linear basisfunctions.

h 1/4 1/8 1/16 1/32
Gauss-Seidel 0.478 0.845 0.9i0 0.990

V-cycle 0.135 0.335 0.437 0.470
W-cycle 0.135 0.304 0.357 0.371

TABLE 5.7
Averaged convergencefactorsfor the two-dimensional heat equation, bilinear basisfunctions.

h 1/4 1/8 1/16 1/32
Gauss-Seidel 0.35i 0.780 0.941 0.985

V-cycle 0.137 0.299 0.353 0.365
W-cycle 0.137 0.294 0.344 0.355

theoretical formulae were found. The multigrid waveform relaxation convergence factors are
obviously bounded by a constant, independent of h.

5.2. A two-dimensional problem. Tables 5.6 and 5.7 contain the observed averaged
convergence factors, both for Gauss-Seidel waveform relaxation and multigrid waveform
relaxation, for the two-dimensional heat equation (5.2). In the latter method the smoother
is of four-colour Gauss-Seidel waveform relaxation type. The prolongation operators are,
respectively, seven-point prolongation (linear basis functions) and nine-point prolongation
(bilinear basis functions) [5, p. 60]. The Gauss-Seidel convergence factors satisfy a relation
of the form 1 O(h2), while the multigrid convergence factors are bounded by a small,
h-independent constant.

Appendix. An elementary proof of Lemma 2.1.
Proof. From the proof of Lemma 2.1, we know that is a bounded operator, with

117(11 <_ IIHII + T Ilhcll.
If H 0, we can use a general functional analysis result, which states that the spectrum

of a linear Volterra convolution operator with continuous kernel equals the singleton {0}; see,
e.g., [8, p. 33]. Hence, p(7-/) p(H) O.

Further on, we assume H - 0. The n-fold application of 7-/to u then includes 2n

terms. Each term consists of a combination of matrix multiplication and Volterra convolution
operators applied to u. The norm ofa term with n matrix multiplications and convolutions
can be bounded by

(f0 f0 lIIHIIn-illhcll dsi ...ds3ds2dsx Ilull < IIHIl"-illhcll
Ti

0 -. Ilull

Note that for each/there are (7) terms satisfying the above bound. We get

I,’J’null < ilglln(( n ) ci). Ilull,
i=0

with c (llhll T)/ItHII. Using property (2.3) of the spectral radius, we obtain
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To calculate the limit, we observe that 1, Eq. 22.3.9]

(n) ci
.I Ln)(-c)

i=o

where L)(x) denotes the nth Laguerre polynomial. Using Perron’s asymptotic formula for
Laguerre polynomials 17, Thm. 8.22.3], we obtain

/L(n) (-c) -7r-1/2e-C/2c-1/4n-1/4e2V’-h-d Q/1 -I- O(n-1/2)

Taking the limit n --+ cx, both factors tend to 1, and, by consequence, p(7-() < II HI I.
To prove that p(7-() is independent from the choice of the Ca vector-norm, we use two

different Cd vector-norms I!. II1 and II. 112, and their associated maximum-norms II. II T1 and
II. lit2. Since all Cd vector-norms are equivalent [6, p. 7, Thm. 2], there exist m, M > 0 such
that rn IlulIT1 _< IlulIT2 _< M IlulIT. Hence, ) 7-( has a bounded inverse with regard to the
maximum-norm II. lIT1 if and only if () 7-() -1 is bounded with regard to II. lIT2, and the
independency follows by definition of p (7-/). Consequently, p() < II HI for every induced
matrix-norm, or

(A.1) p(7-/) < inf IIHII-- p(H),
{11.11}

where the infimum is taken over all matrix-norms induced by a Ca vector-norm. The equality
of (A.1) follows from a well-known characterisation of the spectral radius of a matrix [6,
p. 14].

Finally, suppose . 0, and

,ku 7-/u f.

Evaluating the above equation for 0 gives

(A.2) (ZI H)u(O) f(O)

If det(.I H) 0, then (A.2) has either no solutions or an infinite number of solutions. The
eigenvalues of H are therefore not regular values of 7-( and, consequently, p(7-/) > p(H),
which completes the proof. [3
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