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1. Introduction. Multigrid methods have been shown to be very e�cient solversfor elliptic partial di�erential equations (PDE). In this paper we are concerned with theso-called � -extrapolation multigrid method, see Brandt [5] and Hackbusch [6], whichis an extension of conventional multigrid that can improve the accuracy of the numericalresult by implicitly using higher order approximations.In contrast to conventional extrapolation methods for partial di�erential equations, as de-scribed inMarchuk/Shaidurov [13] and Blum/Lin/Rannacher [3], the � -extrapola-tion algorithm is based on an implicit application of Richardson's deferred approach to thelimit. We do not take linear combinations of computed approximations, but extrapolatethe residuals of di�erent levels. This is equivalent to forming a linear combination of thesti�ness matrices. The precise meaning of this will be explained in detail later.We show that one step of multigrid � -extrapolation for piecewise linear C0 �nite ele-ment (FE) methods is equivalent to using quadratic elements. This can be derived asa consequence of asymptotic error expansions for the numerical integration of the FEsti�ness matrices, as shown in R�ude [18]. Here we will follow a di�erent approach andshow that the quadratic sti�ness matrix and the sti�ness matrix which is implicitly con-structed by � -extrapolation for linear elements coincide. Therefore the system solvedby � -extrapolation is equivalent to using quadratic elements. Furthermore, we show theasymptotically optimal convergence of a multigrid solution of the extrapolated system.Our experimental framework is the Finite Element Multi-Grid Package (FEMGP) (seeSteidten and Jung [20]) developed at the Technische Universit�at Chemnitz-Zwickaufor the solution of elliptic and parabolic problems arising in the computation of magneticand thermomechanical �elds. We focus on self-adjoint second order linear elliptic partialdi�erential equations, using the heat conduction equation and the equations of elasticityas typical model problems. The equivalence of � -extrapolation to higher order �niteelements justi�es to use it even for unstructured meshes as produced with FEMGP, seealso the results on � -extrapolation based higher order adaptive methods byMcCormickand R�ude [14].2. Finite element discretizations of the boundary value problem. We con-sider two{dimensional second order elliptic boundary value problems:Find u 2 V0 such that a(u; v) = hF; vi for all v 2 V0;(1)with a symmetric, V0{elliptic, and V0{bounded bilinear form a(:; :); h:; :i : V �0 �V0 ! R1is the duality pairing, V �0 denotes the space which is dual to V0, and F 2 V �0 is a linearand bounded functional on V0. Later we will describe more precisely which bilinear formswe want to investigate.Let us �rst describe some �nite element discretizations of problem (1). The starting pointof the discretization process is a coarse triangular mesh T1. Then we generate a sequenceof nested triangular meshes Tk = f�(r)k ; r 2 Jkg, k = 1; 2; : : : ; l, Jk = f1; 2; : : : ; Rkg,where Rk denotes the number of triangles of the triangulation Tk. We suppose thatwe obtain the triangulation Tl by dividing all triangles �(r)l�1, r 2 Jl�1, into four con-gruent subtriangles �(r)l . The nodes of the triangulations are numbered hierarchically,i.e. P (1); P (2); : : : ; P (N1); P (N1+1); : : : ; P (N2); : : : ; P (Nk�1+1); : : : ; P (Nk); : : : ; P (N l�1+1); : : : ;P (N l), where P (Nk�1+1); : : : ; P (Nk) are the nodes of Tk that do not belong to Tk�1 (but arenaturally also nodes of Tk+1; : : : ;Tl). 2



Corresponding to each triangulation Tk, k = 1; 2; : : : ; l � 1, we de�ne the �nite elementsubspaces Vk � V0 as Vk = spanfp(i)k : i = 1; 2; : : : ; Nkg;(2)where the trial functions p(i)k are piecewise linear functions such that p(i)k is linear inall triangles of Tk, continuous, and satisfy the relations p(i)k (x(j)1 ; x(j)2 ) = 1 for i = j,p(i)k (x(j)1 ; x(j)2 ) = 0 for i 6= j, i; j = 1; 2; : : : ; Nk. Here (x(j)1 ; x(j)2 ) denotes the coordinates ofthe node P (j) and Nk is the number of nodes belonging to 
 [ �N , where �N is the partof the boundary @
 on which natural boundary conditions are given.The �nite element subspace corresponding to the �nest triangulation Tl we de�ne for amoment only formally by Vl = spanf~p(i)l ; i = 1; 2; : : : ; Nl g:(3)For the speci�c choice of the functions ~p(i)l we consider four possibilities. The �rst one isthe usual nodal basis, i.e. we set ~p(i)l = p(i)l , where the functions p(i)l are de�ned in the sameway as the functions p(i)k , k = 1; 2; : : : ; l� 1. Consequently, we obtain the FE subspaceVl = V ll = spanfp(i)l ; i = 1; 2; : : : ; Nl g:(4)As second possibility we use the two{level h{hierarchical basis, i.e.Vl = V̂ ll = spanfp(i)l�1; i = 1; : : : ; Nl�1g [ spanfp(i)l ; i = Nl�1 + 1; : : : ; Nl g:(5)Additionally, to these two approaches we introduce also FE subspaces spanned by piece-wise quadratic functions q(i)l�1. These functions are polynomials of degree 2 in all trianglesof Tl�1, continuous, and satisfy the relations q(i)l�1(x(j)1 ; x(j)2 ) = 1 for i = j, q(i)l�1(x(j)1 ; x(j)2 ) = 0for i 6= j, i; j = 1; 2; : : : ; Nl. Using these functions we can de�ne the usual quadratic nodalbasis Vl = V ql = spanfq(i)l�1; i = 1; 2; : : : ; Nl g:(6)and the two{level p{hierarchical basisVl = V̂ ql = spanfp(i)l�1; i = 1; : : : ; Nl�1g [ spanfq(i)l�1; i = Nl�1 + 1; : : : ; Nl g:(7)The sequence of FE subspaces Vk , k = 1; 2; : : : ; l, where Vl stands for V ll , V̂ ll , V ql , or V̂ ql ,respectively, results in a sequence of �nite element schemes:Find uk 2 Vk such that a(uk; vk) = hF; vki for all vk 2 Vk.(8)The determination of the unknown function uk is equivalent to the solution of the systemKkuk = f k(9)of the algebraic �nite element equations, where for k = 1; 2; : : : ; l � 1uk = [u(i)k ]i=1;2;:::;Nk $ uk = NkXi=1 u(i)k p(i)k ;(10) Kk = [K(ij)k ]i;j=1;2;:::;Nk ; K(ij)k = a(p(j)k ; p(i)k ); and(11) fk = [f (i)k ]i=1;2;:::;Nk ; f (i)k = hF; p(i)k i:(12) 3



For k = l the sti�ness matrix Kl and the load vector f l are de�ned in the same way, weset only the functions ~p(i)l instead the functions p(i)l . Depending on the concrete choice ofthe functions ~p(i)l , see the possibilities (4) { (7), we get the sti�ness matricesKl = K ll , K̂ ll ,Kql , or K̂ql and the load vectors f ll, f̂ ll, f ql , or f̂ ql , respectively.Next we specify the bilinear form a(:; :). In the following we will consider bilinear formswhich are de�ned by a(u; v) = Z
 (Arxu;rxv) dx(13)where A is a symmetric, positive de�nite (2 � 2){matrix,rx =  @@x1 @@x2!T ;(14)and (:; :) denotes the Euclidian scalar product in the space R2. Such bilinear forms arisefrom the derivation of the weak formulation of heat conduction problems. Let us supposethat the entries of the matrix A are piecewise constant functions, i.e. constant in eachtriangle �(r)l�1, r 2 Jl�1. In this paper we will not discuss the variable coe�cient case.Next we prove an interesting relation between the matrices Kl�1, K̂ ll , and K̂ql , which isuseful for the investigation of the convergence properties of a multigrid algorithm withextrapolation.Lemma 2.1. Let Kl�1 K̂ ll , and K̂ql be de�ned by the bilinear form (13) as described above.Then the relation K̂ql = 43K̂ ll � 13 ~Kl�1(15)holds, where ~Kl�1 =  Kl�1 00 0 !.Proof: Recall the de�nition of the sti�ness matricesKl�1 = [K(ij)l�1 ]i;j=1;2;:::;Nl�1 ; K(ij)l�1 = a(p(j)l�1; p(i)l�1) ;(16) K̂ ll = [K̂ l;(ij)l ]i;j=1;2;:::;Nl ;(17) K̂ l;(ij)l = 8>>>>>>><>>>>>>>: a(p(j)l�1; p(i)l�1) for i; j = 1; 2; : : : ; Nl�1a(p(j)l ; p(i)l�1) for j = Nl�1 + 1; Nl�1 + 2; : : : ; Nl; i = 1; 2; : : : ; Nl�1a(p(j)l�1; p(i)l ) for j = 1; 2; : : : ; Nl�1; i = Nl�1 + 1; Nl�1 + 2; : : : ; Nla(p(j)l ; p(i)l ) for i; j = Nl�1 + 1; Nl�1 + 2; : : : ; Nl ;K̂ql = [K̂q;(ij)l ]i;j=1;2;:::;Nl ;(18) K̂q;(ij)l = 8>>>>>>><>>>>>>>: a(p(j)l�1; p(i)l�1) for i; j = 1; 2; : : : ; Nl�1a(q(j)l�1; p(i)l�1) for j = Nl�1 + 1; Nl�1 + 2; : : : ; Nl; i = 1; 2; : : : ; Nl�1a(p(j)l�1; q(i)l�1) for j = 1; 2; : : : ; Nl�1; i = Nl�1 + 1; Nl�1 + 2; : : : ; Nla(q(j)l�1; q(i)l�1) for i; j = Nl�1 + 1; Nl�1 + 2; : : : ; Nl:4



All these sti�ness matrices have the structureKl =  Kl;vv Kl;vmKl;mv Kl;mm !(19)where Kl;vv corresponds to the nodes of the triangulation Tl�1, Kl;mm corresponds to thenew nodes in the triangulation Tl, and Kl;mv, Kl;vm are the coupling blocks.From the de�nitions (16) { (18) of the matrix elements we see that43K̂ ll � 13 ~Kl�1 = 0@ Kl�1 43K̂ ll;vm43K̂ ll;mv 43K̂ ll;mm 1A(20)and K̂ql =  Kl�1 K̂ql;vmK̂ql;mv K̂ql;mm ! :(21)Taking into account that these matrices are symmetric, we have to prove that43K̂ ll;vm = K̂ql;vm and 43K̂ ll;mm = K̂ql;mm:To do this we introduce some notations.The transformation x = x(�)0@ x1x2 1A = 0@ x(r;2)1 � x(r;1)1 x(r;3)1 � x(r;1)1x(r;2)2 � x(r;1)2 x(r;3)2 � x(r;1)2 1A0@ �1�2 1A+ 0@ x(r;1)1x(r;1)2 1A= J (r)l�10@ �1�2 1A+ 0@ x(r;1)1x(r;1)2 1A(22)realizes the mapping of the reference element � = f(�1; �2) : 0 � �1 � 1; 0 � �2 � 1;�1 + �2�1g onto an element �(r)l�1 of the triangulation Tl�1.arbitrary triangle �(r)l�1 2 Tl�1 reference element �6x2 -x1HHHHHH��������"""""""" HHH���� """"sP (r;1) s P (r;2)sP (r;3)sP (r;6) sP (r;5)sP (r;4) -� = �(x)�x = x(�)P (r;1) = P (r;1)(x(r;1)1 ; x(r;1)2 ),P (r;2) = P (r;2)(x(r;2)1 ; x(r;2)2 ),P (r;3) = P (r;3)(x(r;3)1 ; x(r;3)2 )
6�2 -�1@@@@@@@@ @@@@�(1) �(2)�(3)�(4)sP (1) sP (2)sP (3) sP (6) sP (4)sP (5)P (1) = P (1)(0; 0),P (2) = P (2)(1; 0),P (3) = P (3)(0; 1)Fig. 1. The mapping between the reference element � and an arbitrary element �(r)l�15



On the reference element � we de�ne six shape functions ~'�, � = 1; 2; : : : ; 6. In the caseof the h-hierarchical basis we have~'1(�1; �2) = '1(�1; �2) = 1� �1 � �2~'2(�1; �2) = '2(�1; �2) = �1~'3(�1; �2) = '3(�1; �2) = �2~'4(�1; �2) = '4(�1; �2) = 8>>>><>>>>: 2�1 in �(1)2 � 2�1 � 2�2 in �(2)0 in �(3)1 � 2�2 in �(4)~'5(�1; �2) = '5(�1; �2) = 8>>>><>>>>: 0 in �(1)2�2 in �(2)2�1 in �(3)2�1 + 2�2 � 1 in �(4)~'6(�1; �2) = '6(�1; �2) = 8>>>><>>>>: 2�2 in �(1)0 in �(2)2 � 2�1 � 2�2 in �(3)1 � 2�1 in �(4)(23)
and in the case of the p{hierarchical basis~'1(�1; �2) = '1(�1; �2); ~'2(�1; �2) = '2(�1; �2); ~'3(�1; �2) = '3(�1; �2)~'4(�1; �2) =  4(�1; �2) = 4�1(1� �1 � �2)~'5(�1; �2) =  5(�1; �2) = 4�1�2~'6(�1; �2) =  6(�1; �2) = 4�2(1� �1 � �2) :(24)In order to calculate the elements of the sti�ness matrices we need the derivatives of theshape functions. For the h{hierarchical functions we get the partial derivatives given inTable 1. Table 1The partial derivatives of the piecewise linear shape functions@'1@�1 @'1@�2 @'2@�1 @'2@�2 @'3@�1 @'3@�2 @'4@�1 @'4@�2 @'5@�1 @'5@�2 @'6@�1 @'6@�2�(1) -1 -1 1 0 0 1 2 0 0 0 0 2�(2) -1 -1 1 0 0 1 -2 -2 0 2 0 0�(3) -1 -1 1 0 0 1 0 0 2 0 -2 -2�(4) -1 -1 1 0 0 1 0 -2 2 2 -2 0For the computation of the matrix elements in the case of the p-hierarchical basis we usethe following quadrature ruleZ�  (�1; �2) d� � 3Xk=1 16  (�(k)) = 16 ( (0:5; 0) +  (0; 0:5) +  (0:5; 0:5)) ;(25) 6



which is exact for quadratic polynomials on �. Therefore we present in the Table 2 thevalues of the partial derivatives of the functions  4,  5, and  6 in the quadrature points(0:5; 0), (0; 0:5), and (0:5; 0:5). Table 2The partial derivatives of the quadratic shape functions@ 4@�1 @ 4@�2 @ 5@�1 @ 5@�2 @ 6@�1 @ 6@�2(0:5; 0) 0 -2 0 2 0 2(0; 0:5) 2 0 2 0 -2 0(0:5; 0:5) -2 -2 2 2 -2 -2First we now prove 43K̂ ll;mm = K̂ql;mm. We havea(~p(j)l ; ~p(i)l ) = Z
 �Arx~p(j)l ;rx~p(i)l )� dx(26) = Xr2!(ij) Z�(r)l�1 �Arx~p(j)l ;rx~p(i)l )� dx;where !(ij) = nr 2 Jl�1 : ~p(i)l 6� 0 and ~p(j)l 6� 0 on �(r)l�1o :Obviously, the index sets !(ij) are the same for both the h-hierarchical functions ~p(i)l = p(i)land the p{hierarchical functions ~p(i)l = q(i)l�1, i = Nl�1 + 1; : : : ; Nl . Using the mapping tothe reference element it followsa(~p(j)l ; ~p(i)l )= Xr2!(ij) Z� �A(J (r)l�1)�Tr�~p(j)l (x(�)); (J (r)l�1)�Tr�~p(i)l (x(�))� jdet J (r)l�1j d�= Xr2!(ij) Z� �Br�~p(j)l (x(�));r�~p(i)l (x(�))� d�;with B = (J (r)l�1)�1A(J (r)l�1)�T jdetJ (r)l�1j. Note that the entries of A, J (r)l�1, and jdet J (r)l�1j areconstants.For j = i and ~p(i)l = p(i)l , that is for the h-hierarchical basis, we havea(p(i)l ; p(i)l ) = Xr2!(ii) Xk2I(�(r)) Z�(k) (Br�'�(r);r�'�(r)) d�(27) = Xr2!(ii) Xk2I(�(r)) 18 �Br�'�(r) j�(k) ;r�'�(r) j�(k)� ;where �(r) is the local number of node P (i)(x(i)1 ; x(i)2 ) in the triangle �(r)l�1, i.e.a(r) = 4; 5; or 6; and I(�(r)) = nk 2 f1; 2; 3; 4g : '�(r) 6� 0 on �(k)o :7



Obviously, I(4) = f1; 2; 4g, I(5) = f2; 3; 4g, and I(6) = f1; 3; 4g. Therefore, in all thecases, we have exactly three terms.If we use quadrature rule (25), we obtain for the case of the p-hierarchical basisa(q(i)l�1; q(i)l�1) = Xr2!(ii) Z� (Br� �(r);r� �(r)) d�(28) = Xr2!(ii) 3Xk=1 16 �Br� �(r)(�(k));r� �(r)(�(k))� ;where �(k) are the quadrature nodes of formula (25).Now we compare the summands in the sums over k in (27) and (28). If we examine thevalues of the partial derivatives @'�(r)=@�1, @'�(r)=@�2 in the triangles �(k) and the valuesof the derivatives @ �(r)=@�1, @ �(r)=@�2 in the quadrature nodes (see Tables 1 and 2)then we can see that these summands di�er only by the factor 43. Therefore, we have43a(p(i)l ; p(i)l ) = a(q(i)l�1; q(i)l�1) for i = Nl�1 + 1; : : : ; Nl :For i 6= j, i; j = Nl�1 + 1; : : : ; Nl , we obtaina(q(j)l�1; q(i)l�1) = Xr2!(ij) Z� �Br�'�(r);r�'�(r)� d�;(29)where �(r) and �(r) are the local numbers of the nodes P (j) and P (i) in the triangle �(r)l�1,respectively. Using again the quadrature formula (25) and the results from Table 2 wehave a(q(j)l�1; q(i)l�1) = 8>>>>>>>>>>>><>>>>>>>>>>>>: Xr2!(ij)�13  B  02 ! ; 22 !! for �(r) = 4; �(r) = 5�(r) = 5; �(r) = 4Xr2!(ij) 13  B  02 ! ; 20 !! for �(r) = 4; �(r) = 6�(r) = 6; �(r) = 4Xr2!(ij)�13  B  22 ! ; 20 !! for �(r) = 5; �(r) = 6�(r) = 6; �(r) = 5(30)For the h-hierarchical basis we get with I(�(r); �(r)) = I(�(r)) \ I(�(r))a(p(j)l ; p(i)l ) = Xr2!(ij) Xk2I(�(r);�(r)) Z�(k) �Br�'�(r);r�'�(r)� d�= Xr2!(ij) Xk2I(�(r);�(r)) 18 �Br�'�(r) j�(k) ;r�'�(r) j�(k)�(31) = 8>>>>>>>>>>>><>>>>>>>>>>>>: Xr2!(ij)�14  B  02 ! ; 22 !! for �(r) = 4; �(r) = 5�(r) = 5; �(r) = 4Xr2!(ij) 14  B  02 ! ; 20 !! for �(r) = 4; �(r) = 6�(r) = 6; �(r) = 4Xr2!(ij)�14  B  22 ! ; 20 !! for �(r) = 5; �(r) = 6�(r) = 6; �(r) = 5 :8



Comparing (30) and (31) we see that 43a(p(j)l ; p(i)l ) = a(q(j)l�1; q(i)l�1). Consequently, we haveshown 43K̂ ll;mm = K̂ql;mm :(32)It remains to prove 43K̂ ll;vm = K̂ql;vm. For j = Nl�1 + 1; Nl�1 + 2 : : : ; Nl , i = 1; 2; : : : ; Nl�1we have a(p(j)l ; p(i)l�1) = Xr2!(ij) Z� (Br�'�(r);r�'�(r)) d�(33) = Xr2!(ij) Xk2I(�(r)) 18 �Br�'�(r) j�(k) ;r�'�(r) j�(k)�and a(q(j)l�1; p(i)l�1) = Xr2!(ij) Z� (Br� �(r);r�'�(r)) d�(34) = Xr2!(ij) 3Xk=1 16 �Br� �(r)(�(k));r�'�(r)(�(k))� :From the Tables 1 and 2 we see again that the summands in the sums over k di�er onlyby the factor 43 . Hence, 43a(p(j)l ; p(i)l�1) = a(q(j)l�1; p(i)l�1), i.e.43K̂ ll;vm = K̂ql;vm(35)and in an analogous way 43K̂ ll;mv = K̂ql;mv:(36)Combining the relations (20),(21),(32),(35), and (36) we obtain the statement of theLemma.In Lemma 2.2 we formulate the corresponding property for the right{hand side.Lemma 2.2. Let hF; vi = Z
 fv dx+ Z�N g2v ds ;where f is a piecewise constant function, i.e. constant over all triangles �(r)l�1, and g2 apiecewise constant function, i.e. constant over @�(r)l�1 \ @
. Then the following relationholds f̂ ql = 43 f̂ ll � 13 ~f l�1 ; ~f l�1 =  f l�10 ! :(37) 9



Proof: We have de�nedf l�1 = [f (i)l�1]i=1;2;:::;Nl�1 ; f (i)l�1 = hF; p(i)l�1if̂ ll = [f̂ l;(i)l ]i=1;2;:::;Nl ; f̂ l;(i)l = ( hF; p(i)l�1i for i = 1; : : : ; Nl�1hF; p(i)l i for i = Nl�1 + 1; : : : ; Nlf̂ ql = [f̂ q;(i)l ]i=1;2;:::;Nl ; f̂ q;(i)l = ( hF; p(i)l�1i for i = 1; 2; : : : ; Nl�1hF; q(i)l�1i for i = Nl�1 + 1; : : : ; NlConsequently, 43 f̂ ll � 13 ~f l�1 = 0@ f l�143 f̂ ll;m 1A and f̂ ql = 0@ f l�1f̂ ql;m 1A(38)First we prove 43 Z
 fp(i)l dx = Z
 fq(i)l�1 dx(39)for i = Nl�1 + 1; : : : ; Nl. Using the notation from the proof of Lemma 2.1 we haveZ
 fp(i)l dx = Xr2!(i) Z�(r)l�1 fp(i)l dx = Xr2!(i) Z� fp(i)l (x(�))jdetJ (r)l�1j d�= Xr2!(i) Xk2I(�(r)) Z�(k) f'�(r)(�)jdetJ (r)l�1j d� ;where!(i) = fr 2 Jl�1 : p(i)l 6� 0 on �(r)l�1g; I(�(r)) = fk 2 1; 2; 3; 4 : '�(r) 6� 0 on �(k)g;and �(r) is the local number of the node P (i) in the triangle �(r)l�1. Computing the integralsover �(k) we obtainZ
 fp(i)l dx = Xr2!(i) Xk2I(�(r)) 124f jdetJ (r)l�1j = Xr2!(i) 18f jdetJ (r)l�1j ;(40)and using the quadrature formula (25) it followsZ
 fq(i)l�1 dx = Xr2!(i) 3Xk=1 16f �(r)(�(k))jdetJ (r)l�1j = Xr2!(i) 16f jdetJ (r)l�1j ;(41)i.e. the integrals in (40) and (41) di�er by the factor 43. Next we show43 Z�N g2p(i)l ds = Z�N g2q(i)l�1 ds ;(42)for i = Nl�1 + 1; : : : ; Nl. We haveZ�N g2p(i)l ds = Xe2El�1 Z�(e)N;l�1 g2p(i)l ds ;10



where �(e)N;l�1 is an edge of a triangle �(r)l�1, r 2 Jl�1, which is a part of the boundary�N . The last integral we transform into an integral over the reference interval [0; 1]. Thistransformation is described by0@ x1x2 1A = 0@ x(e;2)1 � x(e;1)1x(e;2)2 � x(e;1)2 1A �1 + 0@ x(e;1)1x(e;1)2 1A :edge of a triangle �(r)l�1 reference interval [0; 1]6x2 -x1HHHHHH��������"""""""" HHH���� """" s (x(e;1)1 ; x(e;1)2 )s (x(e;2)1 ; x(e;2)2 )s (x(e;3)1 ; x(e;3)2 ) - 6�2 -�1s0P (1) s1P (2)s0:5P (3)Fig. 2. The mapping between an edge of a triangle and the reference interval [0; 1]On the reference interval the piecewise linear shape function '3(�1) is de�ned as follows'3(�1) = 8<: 2�1 in [0; 12)2� 2�1 in [12; 1]and for the quadratic shape function  3(�1) we have  3(�1) = �4�21 + 4�1 .With � = [(x(e;2)1 � x(e;1)1 )2 + (x(e;2)2 � x(e;1)2 )2]0.5 we obtainZ�N g2p(i)l ds = Xe2El�1 Z�(e)N;l�1 g2p(i)l ds= Xe2El�18<: 0:5Z0 g22�1� d�1 + 1Z0:5 g2(2 � 2�1)� d�19=;(43) = Xe2El�1 g2� �14 + 14� = Xe2El�1 12g2�and Z�N g2q(i)l�1 ds = Xe2El�1 Z�(e)N;l�1 g2q(i)l�1 ds(44) = Xe2El�1 1Z0 g2(�4�21 + 4�1)� ds = Xe2El�1 23g2� :11



Again both integrals di�er only by the factor 43. Combining the relations (38),(39), and(42) we get the statement of the Lemma.Theorem 2.3. The FE systems of algebraic equations�43K̂ ll � 13 ~Kl�1� ûl = �43 f̂ ll � 13 ~f l�1� and K̂ql ûl = f̂ qlhave the same solution.Proof: The proof follows immediately from Lemma 2.1 and Lemma 2.2.An analogous result can be proved for the FE systems in the nodal basis. Before we showthis property, we state a lemma.Lemma 2.4. Between the p-hierarchical and the quadratic nodal shape functions on thereference element it holds �̂� = ��S� ;(45)where S� = [S(��)� ]�;�=1;:::;6 ; S(��)� = 8>>>>>><>>>>>>: 1 for � = �12 for (�; �) = (4; 1); (4; 2)(�; �) = (5; 2); (5; 3)(�; �) = (6; 3); (6; 1)0 otherwise :�̂� = ('1(�1; �2); '2(�1; �2); '3(�1; �2);  4(�1; �2);  5(�1; �2);  6(�1; �2))�� = ( 1(�1; �2);  2(�1; �2);  3(�1; �2);  4(�1; �2);  5(�1; �2);  6(�1; �2))with '1(�1; �2) = 1 � �1 � �2 ; '2(�1; �2) = �1 ; '3(�1; �2) = �2 ; 1(�1; �2) = 2�21 + 2�22 � 3�1 � 3�2 + 4�1�2 + 1 ; 2(�1; �2) = 2�21 � �1 ;  3(�1; �2) = 2�22 � �2 ; 4(�1; �2) = 4�1(1� �1 � �2) ;  5(�1; �2) = 4�1�2 ; 6(�1; �2) = 4�2(1� �1 � �2) :(46)Proof: A simple calculation leads to'1(�1; �2) =  1(�1; �2) + 0:5 ( 4(�1; �2) +  6(�1; �2))'2(�1; �2) =  2(�1; �2) + 0:5 ( 4(�1; �2) +  5(�1; �2))'3(�1; �2) =  3(�1; �2) + 0:5 ( 5(�1; �2) +  6(�1; �2))and therefore (45) holds. 12



Lemma 2.5. For the p{hierarchical and the quadratic nodal basis the relation�̂ = �Sl(47)holds, wherê� = (p(1)l�1; p(2)l�1; : : : ; p(Nl�1)l�1 ; q(Nl�1+1)l�1 ; : : : ; q(Nl)l�1 )(48) � = (q(1)l�1; q(2)l�1; : : : ; q(Nl)l�1 )(49) Sl = [S(ij)l ]i;j=1;2;:::;Nl(50) S(ij)l = 8>>>>>>>><>>>>>>>>: 1 for i = j; i; j = 1; 2; : : : ; Nl12 for j = i1 and j = i2; Nl�1 < i � Nl; where P (i) is themidpoint of that edge which is given by the verticesP (i1) and P (i2) of a triangle of Tl�10 otherwise:(51)Proof: The FE functions are de�ned element by element, i.e.~p(i)l (x) = 8<: ~p(r)� (x) = ~'�(r)(�(x)) x 2 �(r)l�1; r 2 Bi0 otherwise,where ~p(i)l stands for one function from (48) or (49), ~'�(r) stands for the correspondingshape function on the reference element �, i.e. for the corresponding function of (46), andBi = fr 2 Jl�1 : P (i) 2 ��(r)l�1g. Thus the statement of the Lemma follows from Lemma 2.4immediately.Theorem 2.6. The FE systems of algebraic equations�43K ll � 13 ~Kl�1�ul = �43f ll � 13 ~f l�1� and Kql ul = f qlhave the same solution.Proof: Using Lemma 2.5 we get for arbitrary vectors ul; vl 2 RNl(K̂ql ul ; vl ) = a(�̂ul ; �̂vl ) = a(�Sl ul ;�Sl vl ) = (STl Kql Sl ul ; vl )and (f̂ ql ; vl ) = hF; �̂vl i = hF;�Sl vl i = (STl f ql ; vl ):Therefore we have K̂ql = STl Kql Sl ; Kql = S�Tl K̂ql S�1l(52) f̂ ql = STl f ql ; f ql = S�Tl f̂ ql :(53)Furthermore, from Yserentant [22] we know thatK̂ ll = STl K llSl and f̂ ll = STl f ll :(54) 13



From (52), (54), Lemma 2.1, and Lemma 2.2 it follows thatKql = S�Tl K̂ql S�1l = S�Tl �43K̂ ll � 13 ~Kl�1�S�1l= 43S�Tl (STl K llSl )S�1l � 13S�Tl ~Kl�1S�1l = 43K ll � 13 ~Kl�1(55)and f ql = S�Tl f̂ ql = S�Tl �43 f̂ ll � 13 ~f l�1�= 43S�Tl (STl f ll)� 13S�Tl ~f l�1 = 43f ll � 13 ~f l�1 :(56)3. Multilevel algorithmswith extrapolation. In this Section we analyse a multi-grid algorithm using FE discretizations with piecewise linear functions and an implicitextrapolation step. This algorithm converges to a FE solution which has the same dis-cretization error as a FE solution obtained by a discretization with piecewise quadraticfunctions. Additionally, we will use this algorithm as a preconditioner in the precondi-tioned conjugate gradient (PCCG) method.First we introduce some notations.� Smoothing procedurepre{smoothing GVl (u(j)l ;K ll ; f ll) :Let the initial guess u(j)l = (u(j)l;v ; u(j)l;m)T be given.Set u(j+1)l;v = u(j)l;v and compute an approximate solution ~zl;m of the systemK ll;mmzl;m = f ll;m �K ll;mvu(j+1)l;v �K ll;mmu(j)l;m(57)by means of an iterative method, starting with the zero{vector. We suppose that theerror transmission operator of the method is of the typeMl;m = (Il;m�B�1l;mmK ll;mm).Set u(j+1)l = (u(j+1)l;v ; u(j)l;m + ~zl;m)T .post{smoothing GNl (u(j)l ;K ll ; f ll) :We want to use the same algorithm, however we suppose that the error transmissionoperator of the iterative method for solving the system (57) is of the type Ml;m =(Il;m �B�Tl;mmK ll;mm) so that the overall multigrid operator becomes symmetric.� Interpolation I ll�1 : RNl�1 ! RNl ; I ll�1 =  Il;vSl;mv ! ;(58)where (I ll�1)(ij) = 8>>>>>>>><>>>>>>>>: 1 for i = j; i; j = 1; 2; : : : ; Nl�112 for j = i1 and j = i2; Nl�1 < i � Nl; where P (i) is themidpoint of that edge which is given by the verticesP (i1) and P (i2) of a triangle from Tl�10 otherwise:(59) 14



� Restrictions I l�1l : RNl ! RNl�1 ; I l�1l = (I ll�1)T = (Il;v STl;mv)(60) I l�1;injl : RNl ! RNl�1 ; I l�1;injl = (Il;v 0)(61)Now we formulate the multigrid algorithm.Algorithm 1Let an initial guess u(k;0)l be given.1. pre{smoothing u(k;1)l = GVl (u(k;0)l ;K ll ; f ll)(62)2. coarse{grid correction(a) Computation of the defectd(k)l�1 = 43I l�1l (f ll �K llu(k;1)l ) � 13(f l�1 �Kl�1I l�1;injl u(k;1)l )(63)(b) Solution of the system Kl�1w(k)l�1 = d(k)l�1(64)by means of � iterations steps of an usual multigrid ((l�1){grid) algorithm (see,e.g. [6]) which starts with the zero{vector and returns an approximate solution~w(k)l�1.(c) Computation of the correctionu(k;2)l = u(k;1)l + I ll�1 ~w(k)l�1(65)3. post{smoothing u(k;3)l = GNl (u(k;2)l ;K ll ; f ll)(66)Set u(k+1;0)l = u(k;3)l .Before we present an alternative formulation of this algorithm, we analyse the smoothingstep and the computation of the defect.� The essential operation in the smoothing step is the approximate solution of sys-tem (57). Obviously, we can replace equation (57) by43K ll;mmzl;m = 43f ll;m � 43K ll;mvu(j+1)l;v � 43K ll;mmu(j)l;m :(67)Using the relations (55) and (56) in the proof of the Theorem 2.6 we get the equiv-alence of relation (67) toKql;mmzl;m = f ql;m �Kql;mvu(j+1)l;v �Kql;mmu(j)l;m :(68) 15



� Step 2(a) in Algorithm 1 can be formulated in terms of the quadratic nodal basis.We have 43I l�1l (f ll �K llu(k;1)l )� 13(f l�1 �Kl�1I l�1;injl u(k;1)l )= 43 �Il;v STl;mv�0@0@ f ll;vf ll;m 1A �  K ll;vv K ll;vmK ll;mv K ll;mm !0@ u(k;1)l;vu(k;1)l;m 1A1A�13   f l�10 !�  Kl�1 00 0 ! (Il;v 0)u(k;1)l0 !!(69) = (Il;v STl;mv)240@43 0@ f ll;vf ll;m 1A � 13  f l�10 !1A�0@43 0@ K ll;vv K ll;vmK ll;mv K ll;mm 1A� 13 0@ Kl�1 00 0 1A1A0@ u(k;1)l;vu(k;1)l;m 1A35= (Il;v STl;mv)(f ql �Kql u(k;1)l ) = I l�1l (f ql �Kql u(k;1)l ):Because of the equivalence of the relations (57) and (68) we can replace in Algorithm 1the smoothing steps (62) and (66) by the equivalent stepsu(k;1)l = GVl (u(k;0)l ;Kql ; f ql ) and u(k;3)l = GNl (u(k;2)l ;Kql ; f ql ):Furthermore, we can see from equation (69) that the computation of the defect (63) isequivalent to d(k)l�1 = I l�1l (f ql �Kql u(k;1)l ):Therefore Algorithm 1 can be interpreted as an usual multigrid algorithm for solving thesystem Kql ul = f ql of algebraic �nite element equations resulting from a discretizationwith piecewise quadratic functions. According to this interpretation we can formulateAlgorithm 1 in a more abstract form. If we use a decomposition of the FE space V ql , i.e.V ql = V̂ ql = Vl�1 + Tl ; Tl = spanfq(i)l�1 ; i = Nl�1 + 1; : : : ; Nl g(70)we get the following equivalent algorithmAlgorithm 10Let an initial guess u(k;0)l 2 Vl be given.1. pre{smoothingDetermine u(k;1)l 2 u(k;0)l + Tl : ku(k;1)l � u(k;1)l;� k � �1ku(k;0)l � u(k;1)l;� k(71) where u(k;1)l;� 2 u(k;0)l + Tl : a(u(k;1)l;� ; v) = hF; vi for all v 2 Tl2. coarse{grid correctionDetermine u(k;2)l 2 u(k;1)l + Vl�1 : ku(k;2)l � u(k;2)l;� k � �2ku(k;1)l � u(k;2)l;� k(72) where u(k;2)l;� 2 u(k;1)l + Vl�1 : a(u(k;2)l;� ; v) = hF; vi for all v 2 Vl�116



3. post{smoothingDetermine u(k;3)l 2 u(k;2)l + Tl : ku(k;3)l � u(k;3)l;� k � �3ku(k;2)l � u(k;3)l;� k(73) where u(k;3)l;� 2 u(k;2)l + Tl : a(u(k;3)l;� ; v) = hF; vi for all v 2 TlSet u(k+1;0)l = u(k;3)l .In [19] Schieweck has proved the following convergence result for this type of multigridalgorithm ku(k+1;0)l � ulk � � ku(k;0)l � ulk ;(74)where � = �2 + (1� �2)[�1 + (1 � �1)
][�3 + (1 � �3)
] ;(75)k:k2 = a(:; :), and ul is the solution of the problem:Find ul 2 Vl : a(ul; vl) = hF; vli for all vl 2 Vl ;and 
 is the constant in the strengthened Cauchy inequalityja(vl; wl�1)j � 
kvlk kwl�1k for all vl 2 Tl; for all wl�1 2 Vl�1 :(76)Using this result we can prove the following convergence theorem for Algorithm 1.Theorem 3.1. Let the smoothing procedures, the restriction, and the interpolation oper-ators be de�ned as at the beginning of this Section. Then(i) Algorithm 1 converges to an approximate solution of problem (1) which has the samediscretization error as a piecewise quadratic FE solution.(ii) The convergence estimateku(k+1;0)l � ulk� � �ku(k;0)l � ulk�(77)holds, where k:k2� = ((43K ll � 13 ~Kl�1) : ; : ) and ul is the solution of the system ofalgebraic FE equations�43K ll � 13 ~Kl�1�ul = �43f ll � 13 ~f l�1� :The convergence rate � depends on the number of iteration steps for solving thesystems (57), on the convergence rate of the (l�1){grid algorithm used in step 2(b),and on the constant in the strengthened Cauchy inequality (76).Proof:(i) This follows from the interpretation of Algorithm 1 as an usual multigrid algorithmfor solving the FE system Kql ul = f ql , immediately.(ii) The convergence estimate (77) follows from estimate (75), because Algorithm 1 isequivalent to Algorithm 10.From [1] we know that the matricesK ll;mm and Kql;mm have a condition number whichis independent of the discretization parameter. Therefore �1 and �3 in (71) and(73), respectively, do not depend on the discretization parameter. If additionallythe convergence rate of the (l � 1){grid algorithm for solving the system (64) isindependent of the discretization parameter hl�1, then we get a hl{independentconvergence rate � of the Algorithm 1.17



Remark 3.1. The strengthened Cauchy inequality (76) for various bilinear forms a(:; :)was analysed by many authors [1, 2, 4, 8, 11, 12, 19, 21]. Maitre and Musy [12]calculated the constant 
 for bilinear forms corresponding to scalar partial di�erentialequations of second order. Jung [8] and Jung/Langer/Semmler [11] studied thedependence of 
 on the Poisson ratio for linear elasticity problems in two- and threedimension.Remark 3.2. For di�erent bilinear forms the dependence of �1 and �3 on problem speci�cparameters is studied in [8, 11, 19].Remark 3.3. The statements of Theorem 3.1 can also be proved for Algorithm 1 appliedto FE equations resulting from the discretization of plane linear elasticity problems. To getthese results we must prove the statements of Lemma 2.1 and Lemma 2.2 for the relatedmatrices K̂ ll , Kl�1, and K̂ql . These proofs are similar to the proofs given in Section 2. InSection 5 we will show some numerical experiments for plane linear elasticity problems.Remark 3.4. We can also use Algorithm 1 as preconditioner. The starting point is thePCCG method for solving the system of algebraic equations�43K ll � 13 ~Kl�1�ul = �43f ll � 13 ~f l�1� :(78)Since the matrix of the system of equations (78) is only used for matrix by vectormultiplications within the PCCG method it is not necessary to assemble the matrix�43K ll � 13 ~Kl�1�. Also the right{hand side is needed for the computation of the defect inthe initial step of the PCCG method only. Therefore, we can perform all operations ofthe PCCG method using the matrices K ll , Kl�1 and the right{hand sides f ll and f l�1. Apriori we choose the matrix ~Cl = �43K ll � 13 ~Kl�1� as preconditioner and solve the precon-ditioning systems ~Clwl = rl within the PCCG algorithm by means of the Algorithm 1.This approach we can interpret as a preconditioning with the matrixCl = �43K ll � 13 ~Kl�1� (Il �Mml )�1 ;(79)where Mml is the error transmission operator of the Algorithm 1. We have to checkwhether the matrix Cl is symmetric and positive de�nite. In [10] some conditions for thesmoothing procedures, the restriction, and the interpolation operators are given, whichguarantee these properties. If the conditions~Cl GVl = (GNl )T ~Cl ;(80)where GVl and GNl are the error transmission operators of the smoothing procedures,I ll�1 = (I l�1l )T ; and(81) Kl�1Ml�1 = (Ml�1)TKl�1 ;(82)where Ml�1 is the error transmission operator of the (l � 1){grid algorithm for solvingsystem (64), are ful�lled then the matrix Cl is a symmetric, positive de�nite one.18



The pre{smoothing procedure introduced at the begin of this Section can be written inthe following matrix form0@ u(j+1)l;vu(j+1)l;m 1A = 0@ Il;v 0�(Il;m �Ml;m)K�1l;mmKl;mv Il;m � (Il;m �Ml;m)K�1l;mmKl;mm 1A0@ u(j)l;vu(j)l;m 1A+0@ 0 00 (Il;m �Ml;m)K�1l;mm 1A0@ f l;vf l;m 1A= 8<:240@ Il;v 00 Il;m 1A� 0@ 0 0�B�1l;mmKl;mv �B�1l;mmKl;mm 1A350@ u(j)l;vu(j)l;v 1A(83) +0@ 0 00 B�1l;mm 1A0@ f l;vf l;m 1A9=;= (Il �B�1l Kl )u(j)l + B�1l f l = GVl u(j)l +B�1l f l ;where B�1l =  0 00 B�1l;mm !In an analog way we get for the post{smoothingu(j+1)l = (Il �B�Tl Kl )u(j)l +B�Tl f l = GNl u(j)l +B�Tl f l ;(84)where B�Tl =  0 00 B�Tl;mm ! :Now we have~Cl GVl = ~Cl � ~Cl B�1l K ll = ~Cl � 43K llB�1l K ll= ~Cl �K llB�1l ~Cl = (Il �K llB�1l ) ~Cl = (GNl )T ~Cl ;i.e. the condition (80) is ful�lled. The interpolation and restriction operators I ll�1 andI l�1l we have de�ned in (58) { (60) such that condition (81) holds immediately. Condition(82) is ful�lled if the smoothing iterations, the interpolation and the restriction operatorswithin the (l � 1){grid algorithm satisfy conditions analogous to (80) and (81) (see, also[10]).Hence we know that the matrix Cl is symmetric and positive de�nite. Furthermore, thespectral equivalence inequality(1 � �m)(Clvl; vl) � ( ~Clvl; vl) � (Clvl; vl) for all vl 2 RNl(85)holds. Therefore the number of iterations of the PCCG method needed to get an ap-proximate solution with an relative accuracy " depends on the convergence factor ofAlgorithm 1. If the convergence factor of the (l � 1)-grid method for solving the coarse19



grid system (64) is independent of the discretization parameter h then the number ofiterations of this PCCG method is independent of h.Remark 3.5. Using Theorem 2.3 and 2.6, we can also prove the convergence of analgorithm similar to Yserentant's PCCG method with an hierarchical preconditionerfor FE schemes with piecewise linear elements. First, let us consider the system�43K̂ ll � 13 ~Kl�1� ûl = �43 f̂ ll � 13 ~f l�1�(86)or the equivalent system K̂ql ûl = f̂ ql :(87)We solve system (86) or (87) by means of the PCCG method with the preconditionerĈl =  Q�Tl�1Cl�1Q�1l�1 00 diag(Kl;mm) ! ;(88)where diag(Kl;mm) = diagK̂ql;mm or diag(Kl;mm) = 43diagK̂ ll;mm,Cl�1 =  K1 00 I ! ; Ql�1 = Q̂l�1Q̂l�2 � � � Q̂2:The matrices Q̂k; k = l � 1; : : : ; 2 are de�ned in an analogous way as the matrix Sl in(47). Yserentant [22] has shown the spectral equivalence inequalitycl�2(Q�Tl�1Cl�1Q�1l�1vl�1; vl�1) � (Kl�1vl�1; vl�1)(89) � c(Q�Tl�1Cl�1Q�1l�1vl�1; vl�1) for all vl�1 2 RNl�1 ;with constants c and c which do not depend on the discretization parameter. Furthermore,it can be shown (see [11])
m(diag(Kl;mm)vl;m; vl;m) � (Kl;mmvl;m; vl;m)(90) � 
m(diag(Kl;mm)vl;m; vl;m) for all vl;m 2 RNl�Nl�1 :From (89), (90), and the strengthened Cauchy inequality (76) follows immediately(1� 
)minf
m; cl�2g(Ĉl vl ; vl ) � (K̂ql vl ; vl )(91) � (1 + 
)maxf
m; cg(Ĉl vl ; vl ) for all vl 2 RNl:Instead of solving the systems (86), (87) we can also solve the systems in the nodal basis�43K ll � 13 ~Kl�1�ul = �43f ll � 13 ~f l�1�(92)or, equivalently Kql ul = f ql ;(93)by means of a PCCG method with the preconditionerCl = S�Tl Ĉl S�1l :(94) 20



In this case we get the spectral equivalence inequality(1� 
)minf
m; cl�2g(Cl vl ; vl ) � (Kql vl ; vl )(95) � (1 + 
)maxf
m; cg(Cl vl ; vl ) for all vl 2 RNl;i.e. the number of PCCG iterations needed for solving the systems (92) or (93) is of theorder O(log(h�1l�1) log(��1)).4. An analysis of the number of arithmetical operations needed for thegeneration of the FE systems and the matrix{vector multiplication. In the pre-vious Section we have seen that Algorithm 1 can be interpreted as an usual multigridalgorithm for solving the system Kql ul = f ql . Furthermore, we can formulate Algorithm 1in terms of the h{ or p{hierarchical basis, i.e. we have four possibilities for an imple-mentation of this algorithm. To give an answer which implementation of the algorithmwill be the most e�cient with respect to the arithmetical work we analyse the number ofarithmetical operations needed for the generation of the FE systems�43K ll � 13 ~Kl�1�ul = �43f ll � 13 ~f l�1� ; �43K̂ ll � 13 ~Kl�1� ûl = �43 f̂ ll � 13 ~f l�1� ;Kql ul = f ql ; and K̂ql ûl = f̂ ql :Additionally, we compare the number of operations needed for a matrix by vector multi-plication.The sti�ness matrices and load vectors are computed element by element. Therefore, �rstwe analyse the arithmetical work for the generation of an element sti�ness matrix and anelement load vector. The entries of the element sti�ness matrices are de�ned byK(r);(��)q = Z� �A(J (r)q )�Tr� ~'�(�); (J (r)q )�Tr� ~'�(�)� jdetJ (r)q j d� :For simplicity we consider the �rst boundary value problem, i.e. �N = ;, such that theentries of the element load vectors are given byf (r);(�)q = Z� f(x(�)) ~'�(�)jdetJ (r)q j d� ;where ~'�, ~'� stand for the shape functions corresponding to the piecewise linear nodalbasis, the h{hierarchical basis, the piecewise quadratic nodal basis, or the p{hierarchicalbasis and q = l� 1 or q = l. Using the representation(J (r)q )�T = 1detJ (r)q 0@ x(r;3)2 � x(r;1)2 x(r;1)2 � x(r;2)2x(r;1)1 � x(r;3)1 x(r;2)1 � x(r;1)1 1A = 1detJ (r)q ( �J (r)q )�T(see also (22)) we getK(r);(��)q = 1jdetJ (r)q j Z� �A( �J (r)q )�Tr� ~'�(�); ( �J (r)q )�Tr� ~'�(�)� d� :21



For the computation of ( �J (r)q )�Tr� ~'� and detJ (r)q we have to calculate the di�erences ofthe coordinatesx(32)1 = x(r;3)1 � x(r;2)1 ; x(13)1 = x(r;1)1 � x(r;3)1 ; x(21)1 = x(r;2)1 � x(r;1)1 ;x(23)2 = x(r;2)2 � x(r;3)2 ; x(31)2 = x(r;3)2 � x(r;1)2 ; x(12)2 = x(r;1)2 � x(r;2)2 ;(96)which requires Q+diff = 6 additions and for the computation of detJ (r)q we need addi-tionally Q�J = 2 multiplications and Q+J = 1 addition.Next we discuss the arithmetical work for the generation of the matrix �43K ll � 13 ~Kl�1�.In this case we have to compute the element sti�ness matricesK l;(r)q = 24 1jdetJ (r)q j Z� �A( �J (r)q )�Tr�'�(�); ( �J (r)q )�Tr�'�(�)� d�353�;�=1 ;where the functions '�, '� are de�ned by the relations (23) and q = l; l� 1, respectively.A simple calculation leads to( �J (r)q )�Tr�'1 = (x(23)2 x(32)1 )T ;( �J (r)q )�Tr�'2 = (x(31)2 x(13)1 )T ;( �J (r)q )�Tr�'3 = (x(12)2 x(21)1 )T :(97)Because the element sti�ness matricesK l;(r)q are symmetric we have to calculate six entriesper element sti�ness matrix. We need Q�f1 = 1 multiplication for the computation of2jdetJ (r)q j. The element K l;(r);(11)q of the element sti�ness matrix is equal to12jdetJ (r)q j ha11 x(23)2 x(23)2 + 2a12 x(23)2 x(32)1 + a22 x(32)1 x(32)1 i ;where aij are the entries of the symmetric matrix A. The elementsK l;(r);(22)q and K l;(r);(33)qcan be computed in the same way. If we suppose that 2a12 is computed at the begin ofthe generation process, then we need for the computation of such an elementQ+e;1 = 2 additions and Q�e;1 = 7 multiplications :(98)For the element K l;(r);(12)q we haveK l;(r);(12)q = 12jdetJ (r)q j ha11 x(31)2 x(23)2 + a12 [x(13)1 x(23)2 + x(31)2 x(32)1 ] + a22 x(13)1 x(32)1 i :The elements K l;(r);(13)q and K l;(r);(23)q are de�ned in the same way. Therefore we need forthe computation of each element K l;(r);(��)q , (��) 2 f(12); (13); (23)g,Q+e;2 = 3 additions and Q�e;2 = 8 multiplications :(99)To add an element sti�ness matrix to the global sti�ness matrix we need Q+e;add = 6additions. Consequently, the total work for the generation of an element sti�ness matrixare Q+e = Q+diff + Q+J + 3Q+e;1 + 3Q+e;2 + Q+e;add = 28Q�e = Q�J + 3Q�e;1 + 3Q�e;2 + Q�f1 = 48 :(100) 22



Because we assumed that f is constant over triangles �(r)l�1 2 Tl�1 (see Section 2) we getfor the entries of the element load vectorsf l;(r);(�)q = 16fj�(r)q jdetJ (r)q j � = 1; 2; 3;i.e. we have to perform Q�f = 2 multiplications to get all entries of the element loadvector and for the addition of the element load vector to the global load vector we needQ+f;add = 3 additions. The element sti�ness matrices corresponding to the elements �(r)l�1and �(k)l with ��l;(r)l�1 = [k��l;(k)l are the same and the entries of the element load vectors f l;(r)l�1 ,f l;(k)l di�er only by the factor 14. Therefore, the total arithmetical work for the generationof the sti�ness matrices Kl�1, K ll and the load vectors f l�1, f ll are31Rl�1 + 4(Q+e;add +Q+f;add)Rl�1 additions and 50Rl�1 +Rl�1 multiplications;i.e. 67Rl�1 additions and 51Rl�1 multiplications;(101)where Rl�1 denotes the number of triangles of Tl�1.The element sti�ness matrices corresponding to the h{hierarchical basis areK̂ l;(r)l = 24 1jdetJ (r)l�1j Z� �A( �J (r)l�1)�Tr�'�(�); ( �J (r)l�1)�Tr�'�(�)� d�356�;�=1 ;where '�, '� are de�ned by the relations (23). For the computation of the matrix elementsK̂ l;(r);(��)l , (��) 2 f(11); (12); (13); (21); (22); (23); (31); (32); (33)g the arithmetical work isgiven by (100). For the matrix elements K̂ l;(r);(��)l , (��) 2 f(14); (15); (16); (24); (25); (26);(34); (35); (36)g we haveK̂ l;(r);(��)l = Xk2I(�) 1jdetJ (r)l�1j Z�(k) �A( �J (r)l�1)�Tr�'�(�); ( �J (r)l�1)�Tr�'�(�)� d�= 18jdetJ (r)l�1j Xk2I(�)�A( �J (r)l�1)�Tr�'�(�)j�(k) ; ( �J (r)l�1)�Tr�'�(�)j�(k)� ;where I(4) = f1; 2; 4g, I(5) = f2; 3; 4g, and I(6) = f1; 3; 4g (see also Section 2). Using thespecial structure of (J (r)l�1)�Tr�'�, � = 1; 2; 3, (see (97)) and (J (r)l�1)�Tr�'�, � = 4; 5; 6,from Table 3 we see that K̂ l;(r);(14)l = K̂ l;(r);(35)l , K̂ l;(r);(16)l = K̂ l;(r);(25)l , and K̂ l;(r);(24)l =K̂ l;(r);(36)l . Consequently, the additional arithmetical work for the calculation of these 9elements are9Q+e;2 + 6Q+s2 additions and 9Q�e;2 +Q�f2 multiplications;(102)where Q+s2 = 2 is the arithmetical work for the summation over k 2 I(�) and Q�f2 = 1is the multiplication 4jdetJ (r)l�1j.Using again the vectors (J (r)l�1)�Tr�'�, � = 4; 5; 6 from Table 3, it follows thatK̂ l;(r);(44)l = K̂ l;(r);(55)l = K̂ l;(r);(66)l :23



Table 3( �J (r)l�1)�Tr�'�, � = 4; 5; 6( �J (r)l�1)�Tr�'4 ( �J (r)l�1)�Tr�'5 ( �J (r)l�1)�Tr�'6�(1) 2(x(31)2 x(13)1 )T (0 0)T 2(x(12)2 x(21)1 )T�(2) 2(x(23)2 x(32)1 )T 2(x(12)2 x(21)1 )T (0 0)T�(3) (0 0)T 2(x(31)2 x(13)1 )T 2(x(23)2 x(32)1 )T�(4) �2(x(12)2 x(21)1 )T �2(x(23)2 x(32)1 )T �2(x(31)2 x(13)1 )TTherefore, the arithmetical operations needed for the computation of these elements are3Q+e;1 +Q+s2 additions and 3Q�e;1 multiplications:(103)For the matrix elements K̂ l;(r);(��)l , (��) 2 f(45); (46); (56)g, we haveK̂ l;(r);(��)l = 1jdetJ (r)l�1j Xk2I(�)\I(�) Z�(k) �A( �J (r)l�1)�Tr�'�(�)j�(k) ; ( �J (r)l�1)�Tr�'�(�)j�(k)� d�;where each sum consists of two identical summands. Therefore, we need for the compu-tation of these elements3Q+e;2 additions and 3Q�e;2 multiplications :(104)The addition of the element sti�ness matrix into the global sti�ness matrix requiresQ+e;add = 21(105)Consequently, we see from (100),(102),(103),(104), and (105) that the total arithmeticalwork for the generation of the element sti�ness matrix in the h{hierarchical basis areQ+e = Q+diff + Q+J + 6Q+e;1 + 15Q+e;2 + 7Qs2 + Q+e;add = 99Q�e = Q�J + 6Q�e;1 + 15Q�e;2 + Q�f1 + Q�f2 = 166 :(106)For the element load vector we havef̂ l; (r); (�)l = 16fj�(r)l�1 jdetJ (r)l�1j for � = 1; 2; 3 andf̂ l; (r); (�)l = 18fj�(r)l�1 jdetJ (r)l�1j for � = 4; 5; 6(see also (40)), i.e. we need Q�f = 3 multiplications and for the addition of an elementload vector to the global load vector Q+f;add = 6 additions. Consequently, the total workfor the generation of the global sti�ness matrix K̂ ll and the load vector f̂ ll is105Rl�1 additions and 169Rl�1 multiplications:(107) 24



In the case of the quadratic nodal basis the element sti�ness matrices are de�ned byKq;(r)l = 24 1jdetJ (r)l�1j Z� �A( �J (r)l�1)�Tr� �(�); ( �J (r)l�1)�Tr� �(�)� d�356�;�=1 ;where the functions  �(�) and  �(�) are given by the formula (46). Because the integrandsin these integrals are quadratic functions we will use the quadrature rule (25) for thecomputation of the matrix elements, i.e.Kq;(r)l = 24 16jdetJ (r)l�1j 3Xk=1 �A( �J (r)l�1)�Tr� �(�(k)); ( �J (r)l�1)�Tr� �(�(k))�356�;�=1 :(108)The values of (J (r)l�1)�Tr� �, � = 1; 2; : : : ; 6, in the quadrature points �(k) are given inTable 4. Table 4( �J (r)l�1)�Tr� �, � = 1; 2; : : : ; 6�(k) ( �J (r)l�1)�Tr� 1 ( �J (r)l�1)�Tr� 2 ( �J (r)l�1)�Tr� 3(0:5; 0) (x(23)2 x(32)1 )T (x(31)2 x(13)1 )T � (x(12)2 x(21)1 )T(0; 0:5) (x(23)2 x(32)1 )T � (x(31)2 x(13)1 )T (x(12)2 x(21)1 )T(0:5; 0:5) � (x(23)2 x(32)1 )T (x(31)2 x(13)1 )T (x(12)2 x(21)1 )T�(k) ( �J (r)l�1)�Tr� 4 ( �J (r)l�1)�Tr� 5 ( �J (r)l�1)�Tr� 6(0:5; 0) �2(x(12)2 x(21)1 )T 2(x(12)2 x(21)1 )T 2(x(12)2 x(21)1 )T(0; 0:5) 2(x(31)2 x(13)1 )T 2(x(31)2 x(13)1 )T �2(x(31)2 x(13)1 )T(0:5; 0:5) 2(x(23)2 x(32)1 )T �2(x(23)2 x(32)1 )T 2(x(23)2 x(32)1 )TFor the matrix elements Kq;(r);(��)l , � = 1; 2; 3, the three summands in the sum over k in(108) are the same such that we haveKq;(r);(��)l = 12jdetJ (r)l�1j �A( �J (r)l�1)�Tr� �(�(1)); ( �J (r)l�1)�Tr� �(�(1))� :Consequently, we need3Q+e;1 additions and 3Q�e;1 +Q�f3 multiplications(109)with Q�f3 = 1 for the computation of 2jdetJ (r)l�1j.From the special structure of (J (r)l�1)�Tr� � we see that the computation of the matrixelements Kq;(r);(��)l , (��) 2 f(12); (13); (23)g requires3Q+e;2 additions and 3Q�e;2 +Q�f4 multiplications(110)where Q�f4 = 1 is the arithmetical work for the computation of 6jdetJ (r)l�1j.25



From Table Tables 4 we see that the amount of arithmetical work for the computation ofthe matrix elements Kq;(r);(��)l , (��) 2 f(14); (15); (16); (24); (25); (26); (34); (35); (36)g is9Q+e;2 + 9Q+s2 additions and 9Q�e;2 +Q�f5 multiplications(111)with Q�f5 = 1 for the computation of 3jdetJ (r)l�1j.Furthermore, we see that the arithmetical work for the computation of the elementsKq;(r);(��)l , � = 4; 5; 6, is the same as in the case of the h{hierarchical basis, i.e3Q+e;1 +Q+s2 additions and 3Q�e;1 +Q�f6 multiplications(112)with Q�f6 = 1 for the computation of 32 jdetJ (r)l�1j.The computation of the elements Kq;(r);(��)l , (��) 2 f(45); (46); (56)g, requires addition-ally 3Q+s2 additions(113)With (109),(110),(111),(112),(113), the amount of arithmetical work Q+e;add = 21 , forthe addition of the element sti�ness matrix to the global matrix, the arithmetical workfor the computation of the di�erences of the coordinates (96) (Q+diff = 6) and the workfor the computation of detJ (r)l�1 (Q+J = 1,Q�J = 2) leads to the total arithmetical workQ+e = Q+diff + Q+J + 6Q+e;1 + 12Q+e;2 + 13Q+s2 + Q+e;add = 102Q�e = Q�J + 6Q�e;1 + 12Q�e;2 + Q�f3 + Q�f4 + Q�f5 + Q�f6 = 144 :(114)For the element load vector we havef q;(r)l = 24Z� f �(�)jdetJ (r)l�1j d�356�=1 :Using again quadrature rule (25) we getf q;(r)l = "fj�(r)l�1 jdetJ (r)l�1j 16 3Pk=1 (�(k))#6�=1=  0 0 0 16 fj�(r)l�1 jdetJ (r)l�1j 16 fj�(r)l�1 jdetJ (r)l�1j 16 fj�(r)l�1 jdetJ (r)l�1j!T ;i.e. we need Q�f = 2 multiplications for the computation of 16 fj�(r)l�1 jdetJ (r)l�1j and Q+f;add=3additions for the addition of the element load vector to the global load vector. Conse-quently, the total amount of arithmetical work for the computation of the sti�ness matrixKql and the load vector f ql is105Rl�1 additions and 146Rl�1 multiplications:(115)In the case of the p{hierarchical basis we have to compute the matrix elementsK̂q;(r);(��)l = 1jdetJ (r)l�1j �A( �J (r)l�1)�Tr�'�(�); ( �J (r)l�1)�Tr�'�(�)�(116) �; � = 1; 2; 326



K̂q;(r);(��)l = 1jdetJ (r)l�1j �A( �J (r)l�1)�Tr� �(�); ( �J (r)l�1)�Tr�'�(�)�(117) � = 1; 2; 3; � = 4; 5; 6K̂q;(r);(��)l = 1jdetJ (r)l�1j �A( �J (r)l�1)�Tr� �(�); ( �J (r)l�1)�Tr� �(�)�(118) �; � = 4; 5; 6 :The arithmetical work for the computation of the matrix elements in (116) is given by(100) and for the matrix elements in (118) by (112) and (113).The integrands in the formula (117) are linear functions such that we use the midpointrule for the computation of this integrals, i.e.Z� v(�1; �2) d� � 12 v �13 ; 13� :We have (J (r)l�1)�Tr� 4(13; 13) = �43 �x(12)2 x(21)1 �T(J (r)l�1)�Tr� 5(13; 13) = �43 �x(23)2 x(32)1 �T(J (r)l�1)�Tr� 4(13; 13) = �43 �x(31)2 x(13)1 �T :(119)Using the special structure of (97) and (119) we see that we need for the computation ofthe 9 matrix elements de�ned in (117)6Q+e;2 additions and 6Q�e;2 multiplications :(120)From (100),(112),(113), (120) and the arithmetical work Qe;add = 21 for the addition ofthe element sti�ness matrix to the global sti�ness matrix we obtain the total arithmeticalwork Q+e = Q+diff + Q+J + 6Q+e;1 + 9Qe;2 + 4Q+s2 + Q+e;add = 75Q�e = Q�J + 6Q�e;1 + 9Q�e;2 + Q�f1 + Q�f6 = 118 :(121)For the element load vector we havef̂ q; (r)l = "16 fj�(r)l�1 jdetJ (r)l�1j#6�=1 ;i.e. we need Q�f = 2 multiplications and Q+f;add = 6 additions for the assemblingprocess. Consequently, we need for the computation of the global sti�ness matrix K̂ql andthe global load vector f̂ ql81Rl�1 additions and 120Rl�1 multiplications:(122)From (101),(107),(115), and (122) it follows that the generation of the sti�ness matrixand the load vector in the piecewise linear nodal basis is the cheapest. Furthermore, we27



see that the application of the p{hierarchical basis is more e�cient with respect to thearithmetical work than the quadratic nodal basis.Next, we will estimate the number of arithmetical operations required for the matrix-vector multiplications �43K ll � 13 ~Kl�1�ul(123)or K̂ql ul :(124)For the sake of simplicity we suppose that the domain 
 is a rectangle and the triangula-tion consists of isosceles rectangular triangles. If we neglect the in
uence of the boundary,each row in the matrices K ll and Kl�1, respectively, have 7 nonzero elements. Therefore,a matrix{vector multiplication with (123) requires approximately7Nl +Nl + 7Nl�1 +Nl�1 = 8(Nl +Nl�1) � 10Nlmultiplications, and 6Nl + 6Nl�1 +Nl�1 = 6Nl + 7Nl�1 � 31=4Nladditions. The matrix (124) has 1=4Nl rows with 19 non{zero elements and 3=4Nl rowswith 9 non{zero elements, i.e. the matrix{vector multiplication with the matrix K̂ql re-quires 19=4Nl + 27=4Nl = 23=2 multiplicationsand 18=4Nl + 24=4Nl = 21=2 additions:Thus the equivalent multiplication with the extrapolated matrix in (123) is slightlycheaper than the multiplication with the hierarchical quadratic matrix of (124). In total,for the generation of the matrices, as well as for performing Algorithm 1, the computa-tional work for the extrapolated system based on (K ll ;Kl�1; f ll; f l�1) is smaller than forthe quadratic system with (K̂ql ; f̂ ql ).
28



5. Numerical results. In this Section we want to demonstrate that the Algorithm 1converges to a FE solution with a discretization error in the same order as we obtain bya discretization with quadratic elements. Furthermore, we show that the convergencerate of Algorithm 1 is independent of the discretization parameter. We compare ourresults with a multigrid algorithm applied to FE equations resulting from a discretizationwith quadratic elements. All algorithms are implemented within the multigrid packageFEMGP [9, 20]. The computations were performed on a PC 80486 (33 MHz) using theLAHEY{Fortran compiler.Let us �rst consider the problem:Find u 2 H10 (
) such that Z
 (Arxu;rxv) dx = Z
 fv dx(125)for all v 2 H10(
) holds,where 
 = (0; 1) � (0; 1), A =  4 44 5 !, and f = �2(9 sin �x sin�y � 8 cos �x cos�y).The exact solution of this problem is u = sin�x sin�y.Because we want to compare Algorithm 1 with an algorithm for solving the FE equationsobtained by using quadratic elements, we discretize problem (125) by means of the usualnodal basis of piecewise linear functions and by means of the p{hierarchical basis. Ananalysis of the arithmetical work for the generation of the FE systems shows that it isalmost the same in both cases. Table 5 demonstrates this fact.Table 5Comparison of the CPU{time needed for the generation of the FE systemsnumber of degrees number of CPU{time for the generation oflevel l of freedom triangles of Tl�1 Kl�1, K ll , f l�1, f ll K̂ql , f̂ ql3 49 32 0.007 sec 0.011 sec4 225 128 0.029 sec 0.044 sec5 961 512 0.118 sec 0.178 sec6 3969 2048 0.473 sec 0.713 sec7 16129 8192 1.892 sec 2.851 secIn the Table 6 the number of iterations and the CPU{time needed by the application ofAlgorithm 1 are given. Within the Algorithm 1 we used for the pre{smoothing (62) twoiteration steps of the lexicographically forward Gauss{Seidel method, one iteration stepof a (l�1){grid algorithm for solving the coarse{grid system (64), and two iteration stepsof the lexicographically backward Gauss{Seidel method for the post{smoothing (66). Theresults show that the number of iterations is independent of the discretization parameter.If we use one iteration step of Algorithm 1 as preconditioner in the PCCG method forsolving the system �43K ll � 13 ~Kl�1�ul = �43f ll � 13 ~f l�1� ;(126) 29



we get an algorithm with better convergence, the so{called MG(1){PCCG method (seealso Remark 3.4). For comparison we use Algorithm 10 as preconditioner in the PCCGmethod for solving the system K̂ql ûql = f̂ ql(127)The results are presented in Table 6. Table 6Comparison of the Algorithm 1, of the PCCG method (Algorithm 1 as preconditioner), and the PCCGmethod (Algorithm 10 as preconditioner). The algorithms are terminated, when the relative defect becomessmaller than 10�4. MG(1){PCCG method for solving the systemsAlgorithm 1 (126) (127)l number of number of number ofiterations CPU{time iterations CPU{time iterations CPU{time3 13 0.11 sec 5 0.06 sec 5 0.05 sec4 14 0.54 sec 6 0.28 sec 6 0.28 sec5 14 2.36 sec 6 1.15 sec 6 1.10 sec6 14 9.83 sec 6 4.83 sec 6 4.66 sec7 14 41.58 sec 6 19.83 sec 6 19.49 secFinally, we compare the discretization errors u�ull and u�uql in the H1{ and L2{norm,respectively. Here ul denotes the FE solution obtained by means of Algorithm 1 and uqlthe FE solution by a discretization with piecewise quadratic functions. We remark that inour example the right{hand side f is not constant on triangles �(r)l�1, which we had assumedin the proofs of the Theorems 2.3 and 2.6. Therefore, in our example the right{hand sides�43f ll � 13 ~f l�1� and f̂ ql are not identical. But the system (126) gives also a FE solutionwith almost the same discretization error as the system (127).Table 7Comparison of the discretization errorsLevel l ku� ullkH1 ku� uqlkH1 ku� ullkL2 ku� uql kL23 0.1306 0.1426 0.4074-02 0.4226-024 0.3347-01 0.3481-01 0.5404-03 0.5440-035 0.8426-02 0.8539-02 0.6850-04 0.6864-046 0.2110-02 0.2118-02 0.8577-05 0.8582-057 0.5278-03 0.5283-03 0.9328-06 0.9331-06As second example we consider a linear elasticity problem, i.e.:Find the displacement �eld u = (u1; u2)T 2 V0, such thatE1 + � Z
 �@u1@x1 @v1@x1 + @u2@x2 @v2@x2 + �1 � � divudivv(128) +12�@u1@x2 + @u2@x1��@v1@x2 + @v2@x1�� dx = Z�N g2;1v1 + g2;2v2 dsholds for all test functions v 2 V0. 30



Here g2 = (g2;1; g2;2)T denotes the surface tractions, E is Young's elasticity modulus, and� is the Poisson ratio. The space V0 is de�ned by V0 = fv 2 [H1(
)]2 : v1(x)=v2(x)=0on �Dg and @
 = ��D [ ��N , �D \ �N = ;.
: ???????????F
�����������������������������@@@ @@@ @@@���������@@@ @@@ @@@������@@@ @@@| {z }�D

E = 196 GPa� = 0:3g2;1 = 0g2;2 = 8>><>>: F = 1000 N on the upper partof the boundary0 otherwiseFig. 3. Shape of the domain and data for the test problemAgain we compare the CPU{time needed for the generation of the FE systems in thenodal basis of piecewise linear functions and in the p{hierarchical basis.Table 8Comparison of the CPU{time needed for the generation of the FE systemsnumber of degrees number of CPU{time for the generation oflevel l of freedom triangles of Tl�1 Kl�1, K ll , f l�1, f ll K̂ql , f̂ ql ,3 586 128 0.27 sec 0.24 sec4 2194 512 0.99 sec 0.96 sec5 8492 2048 4.01 sec 3.89 secFurthermore, we give results concerning the application of the Algorithm 1 and its useas preconditioner in the PCCG method. We mention here, that the constant in thestrengthened Cauchy inequality (76) is relatively large, namely 
 = 0:94 (see [11]), andtherefore the convergence of the Algorithm 1 is poor. In Table 9 we summarise someresults for Algorithm 1 and we compare the MG(1){PCCG method for the systems (126)and (127). Additionally, we compare these algorithms with the PCCG method discussedin Remark 3.5, i.e. the HB{PCCG method.Finally, we compare the energy of the FE solutions obtained by solving the systems (126)and (127), respectively. From Table 10 we see that we have in both cases the sameFE solution.
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Table 9Comparison of the Algorithm 1, of the MG(1){PCCG method (Algorithm 1 as preconditioner), theMG(1){PCCG method (Algorithm 10 as preconditioner), and the HB{PCCG method. The algorithmsare terminated, when the relative defect becomes smaller than 10�4.MG(1){PCCG method HB{PCCG methodAlgorithm 1 for solving the system for solving the system(126) (127) (126)l number of number of number of number ofiterations iterations iterations iterationsCPU{time CPU{time CPU{time CPU{time25 9 9 373 3.51 sec 1.32 sec 1.32 sec 1.43 sec26 9 9 464 15.37 sec 5.87 sec 5.66 sec 6.87 sec25 9 9 545 63.11 sec 23.40 sec 23.67 sec 32.63 secTable 10Comparison of the energy norms of the solutionsenergy norm of the solution of the systemLevel l (126) (127)3 6.34388 6.343864 6.41933 6.419315 6.45374 6.45378
Fig. 4. The triangulation (level 4) and the contour of the domain with its deformation32



6. Conclusions. We have shown that multigrid � -extrapolation can be interpretedas an implicit method to form higher order FE sti�ness matrices. This is not only oftheoretical interest, but leads to an e�cient higher order multilevel solution technique forPDE. In particular, this extrapolation technique can be used on unstructured meshes.The resulting algorithm is competitive with multilevel methods that use higher orderelements directly. The convergence rate and numerical work per iteration are comparable,but the algorithm has the advantage of a possibly simpler structure. In particular, the� -extrapolation method is easy to incorporate into existing low order methods, becauseit di�ers from the basic algorithm for linear elements only by a slight modi�cation of the�ne-to-coarse restriction process.The alternative analysis for � -extrapolation given in R�ude [18] is based on asymptoticexpansions for quadrature rules over the triangle, and shows that the method can begeneralized when the coe�cients are not piecewise constant. In this case the linear com-bination of the sti�ness matrices constitute an appropriate numerical quadrature formulafor the quadratic sti�ness matrix. This analysis also opens the possibility to generalizethis technique to higher order. Some preliminary results for these extensions are containedin R�ude [15], [16], and [17]. REFERENCES[1] O. Axelsson and I. Gustafsson, Preconditioning and two{level multigrid methods of arbitrarydegree of approximation, Mathematics of Computation, 40 (1983), pp. 219{242.[2] R. E. Bank and T. F. Dupont, An optimal order process for solving elliptic �nite elementequations, Mathematics of Computations, 36 (1981), pp. 35{51.[3] H. Blum, Q. Lin, and R. Rannacher, Asymptotic error expansions and Richardson extrapolationfor linear �nite elements, Numer. Math., 49 (1986), pp. 11{37.[4] D. Braess, The contraction number of a multigrid method for solving the Poisson equation, Nu-merische Mathematik, 37 (1981), pp. 387{404.[5] A. Brandt, Multigrid techniques: 1984 guide with applications to 
uid dynamics, GMD Studien,85 (1984).[6] W. Hackbusch, Multi{Grid methods and applications, vol. 4 of Springer Series in ComputationalMathematics, Springer{Verlag, Berlin, 1985.[7] W. Hackbusch and U. Trottenberg, eds., Multigrid methods, vol. 960 of Lecture Notes inMathematics, Berlin{Heidelberg{New York, 1982, Springer{Verlag. Proc. of the Conferenceheld at K�oln{Porz, November 23{27, 1981.[8] M. Jung, Konvergenzfaktoren von Mehrgitterverfahren f�ur Probleme der ebenen linearen Ela-stizit�atstheorie, ZAMM, 67 (1987), pp. 165{173.[9] M. Jung, Eine Einf�uhrung in die Theorie und Anwendung von Mehrgitterverfahren, Wis-senschaftliche Schriftenreihe 9, Technische Universit�at Karl{Marx{Stadt, 1989.[10] M. Jung, U. Langer, A. Meyer, W. Queck, and M. Schneider, Multigrid preconditionersand their applications, in Third Multigrid Seminar, Biesenthal 1988, G. Telschow, ed., Berlin,1989, Karl{Weierstrass{Institut, pp. 11{52. Report R{MATH{03/89.[11] M. Jung, U. Langer, and U. Semmler, Two{level hierarchically preconditioned conjugate gra-dient methods for solving linear elasticity �nite element equations, BIT, 29 (1989), pp. 748{768.[12] J. F. Maitre and F. Musy, The contraction number of a class of two{level methods, an exactevaluation for some �nite element subspaces and model problems, in [7], 1982, pp. 535{544.[13] G. Marchuk and V. Shaidurov, Di�erence Methods and their Extrapolations, Springer, NewYork, 1983.[14] S. McCormick and U. R�ude, On local re�nement higher order methods for elliptic partial di�er-ential equations, International Journal of High Speed Computing, 2 (1990), pp. 311{334. Alsoavailable as Bericht I-9034, TU M�unchen.33



[15] U. R�ude, Multiple tau-extrapolation for multigrid methods, Bericht I-8701, Institut f�ur Informatik,TU M�unchen, January 1987.[16] U. R�ude, On the accurate computation of singular solutions of Laplace's and Poisson's equation, inMultigrid Methods: Theory, Applications, Supercomputing: Proceedings of the Third CopperMountain Conference on Multigrid Methods, April 5-10, 1987, S. McCormick, ed., New York,1988, Marcel Dekker.[17] U. R�ude, Extrapolation and related techniques for solving elliptic equations, Bericht I-9135, Institutf�ur Informatik, TU M�unchen, September 1991.[18] U. R�ude, Extrapolation techniques for constructing higher order �nite element methods, BerichtI-9304, Institut f�ur Informatik, TU M�unchen, Juli 1993.[19] N. Schieweck, A multigrid convergence proof by a strengthened Cauchy inequality for symmetricelliptic boundary value problems, in Second Multigrid Seminar, Garzau, November 5{8, 1985,G. Telschow, ed., Karl{Weierstrass{Institut f�ur Mathematik, Berlin, 1986, pp. 49{62. ReportR{Math{08/86.[20] T. Steidten and M. Jung, Das Multigrid{Programmsystem FEMGPM zur L�osung elliptischerund parabolischer Di�erentialgleichungen einschlie�lich mechanisch{thermisch gekoppelter Pro-bleme (Version 06.90), Programmdokumentation, Technische Universit�at Karl{Marx{Stadt,Sektion Mathematik, 1990.[21] C.-A. Thole, Beitr�age zur Fourieranalyse von Mehrgittermethoden: V{cycle, ILU{Gl�attung,anisotrope Operatoren, Diplomarbeit, Institut f�ur Angewandte Mathematik, Universit�at Bonn,1983. Diplomarbeit.[22] H. Yserentant, On the multi{level splitting of �nite element spaces, Numer. Math., 49 (1986),pp. 379{412.Authors' address:Dr. rer. nat. Michael JungTechnische Universit�at Chemnitz{ZwickauFakult�at f�ur MathematikPSF 964D { 09009 Chemnitze{mail: dr.michael.jung@mathematik.tu{chemnitz.deDr. rer. nat. habil. Ulrich R�udeTechnische Universit�at Chemnitz{ZwickauFakult�at f�ur MathematikPSF 964D { 09009 Chemnitze{mail: ruede@mathematik.tu{chemnitz.de
34


