
SIAM J. ScI. COMPUT.
Vol. 17, No. 4, pp. 848-869, July 1996

() 1996 Society for Industrial and Applied Mathematics
OO4

EFFICIENT ALGORITHMS FOR COMPUTING
A STRONG RANK-REVEALING QR FACTORIZATION*

MING GU AND STANLEY C. EISENSTAT

Abstract. Given an m n matrix M with m > n, it is shown that there exists a permutation FI and an integer k
such that the QR factorization

MYI= Q(Ak ckBk)
reveals the numerical rank of M: the k k upper-triangular matrix Ak is well conditioned, IlCkll2 is small, and Bk
is linearly dependent on Ak with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR
(RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new
algorithms are nearly as efficient as QR with column pivoting for most problems and take O (ran2) floating-point
operations in the worst case.

Key words, orthogonal factorization, rank-revealing factorization, numerical rank

AMS subject classifications. 65F25, 15A23, 65F35

1. Introduction. Given a matrix M 6 Rmn with m > n, we consider partial QR fac-
torizations of the form

(1) M H QR Q (Ak Bk)Ck

where Q Rmm is orthogonal, A Rk is upper triangular with nonnegative diagonal
elements, Bk Rk(n-k), Ck R(m-k)(n-k), and YI Rnn is a permutation matrix chosen
to reveal linear dependence among the columns of M. Usually k is chosen to be the smallest
integer _< k _< n for which IICII2 is sufficiently small [24, p. 235].

Golub [20] introduced these factorizations.and, with Businger [8], developed the first
algorithm (QR with column pivoting) for computing them. Applications include least-squares
computations [11, 12, 17, 20, 21, 23, 36], subset selection and linear dependency analy-
sis [12, 18, 22, 34, 44], subspace tracking [7], rank determination [10, 39], and nonsymmet-
tic eigenproblems [2, 15, 26, 35]. Such factorizations are also related to condition estima-
tion [4, 5, 25, 40] and the UR V and UL V decompositions 14, 41, 42].

1.1. RRQR factorizations. By the interlacing property of the singular values [24, Cor.
8.3.3], for any permutation YI we have

(2) oi(Ak) <_ oi(M and o’j(Ck) >_ crk+j(M)

forl_<i_<kandl_<j_<n-k. Thus,

(3) O’min(Ak) <_ ak(M) and O’max(Ck) >_ O’k+l(M).

Assume that crk(M > ak+l (M) O, so that the numerical rank of M is k. Then we
would like to find a Fl for which O’min(Ak) is sufficiently large and O’max(Ck) is sufficiently

*Received by the editors May 13, 1994; accepted for publication (in revised form) March 8, 1995. This research
was supported in part by U. S. Army Research Office contract DAAL03-91=G-0032.

Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
(minggu@math.berkeley,edu).

;Department of Computer Science, Yale University, P. O. Box 208285, New Haven, CT 06520-8285 (eisenstat-
stan@cs.yale.edu).

1Here oi(X), O-max(X), and O’min(X) denote the ith largest, the largest, and the smallest singular values of the
matrix X, respectively.

848

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 849

small. We call the factorization (1) a rank-revealing QR (RRQR) factorization if it satisfies
(cf. (3))

O- (M)
(4) O’min(Ak) > and O-max(Ck) < O-+l(M) p(k, n),

p(k,n)

where p(k, n) is a function bounded by a low-degree polynomial in k and n [13, 28]. Other,
less restrictive definitions are discussed in [13] and [37]. The term "rank-revealing QR fac-
torization" is due to Chan 10].

The Businger and Golub algorithm [8, 20] works well in practice, but there are examples
where it fails to produce a factorization satisfying (4) (see Example in 2). Other algorithms
fail on similar examples [13]. Recently, Hong and Pan [28] showed that there exist RRQR fac-
torizations with p(k, n) /k(n k) + min(k, n k), and Chandrasekaran and Ipsen [13]
developed an algorithm that computes one efficiently in practice,2 given k.

1.2. Strong RRQR factorizations. In some applications it is necessary to find a basis for
the approximate right null space of M, as in rank-deficient least-squares computations [23, 24]
and subspace tracking [7], or to separate the linearly independent columns of M from the
linearly dependent ones, as in subset selection and linear dependency analysis [12, 18, 22,
34, 44]. The RRQR factorization does not lead to a stable algorithm because the elements of

A-1B can be very large (see Example 2 in 2).
In this paper we show that there exist QR factorizations that meet this need. We call the

factorization (1) a strong RRQR factorization if it satisfies (cf. (2))

O-i M)(5) O-i(Ak) > and O-j(Ck) < O-k+j(M) ql (k, n)
q(k,n)

and
i..

for 1 < < k and < j < n k, where ql (k, n) and q2(k, n) are functions bounded by
low-degree polynomials in k and n. Clearly a strong RRQR factorization is also a RRQR fac-
torization. In addition, condition (6) makes

l-I(-A-IBk)In-k
an approximate right null space of M with a small residual independent of the condition
number of Ak, provided that Ak is not too ill conditioned [38, pp. 192-198]. See [26] for
another application.

We show that there exists a permutation FI for which conditions (5) and (6) hold with

q (k, n) v/l + k(n k) and q2(k, n) 1.

Since this permutation might take exponential time to compute, we present algorithms that,
given f > 1, find a 1-I for which (5) and (6) hold with

q (k, n) V/1 + f 2k(n k) and q2(k, n) f
Here k can be either an input parameter (Algorithm 4) or the smallest integer for which O’max (Ck)
is sufficiently small (Algorithm 5). When f > 1, these algorithms require O ((m + n log/n)n2)
floating-point operations. In particular, when f is a small power of n (e.g., or n), they
take O(mn2) time (see 4.4).

2In the worst case the runtime might be exponential in k or n. The algorithm proposed by Golub, Klema, and
Stewart [22] also computes an RRQR factorization [30], but requires an orthogonal basis for the right null space.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

850 MING GU AND STANLEY C. EISENSTAT

Recently, Pan and Tang [37] presented an algorithm that, given f > 1, computes an
RRQR factorization with p(k, n) f/k(n k) + max(k, n k). This algorithm can be
shown to be mathematically equivalent to Algorithm 5 and thus computes a strong RRQR fac-
torization with q (k, n) v/1 + f2k(n k) and q:(k, n) f. However, it is much less
efficient. Pan and Tang [37] also present two practical modifications to their algorithm, but
they do not always compute strong RRQR factorizations.

1.3. Overview. In 2we review QR with column pivoting [8, 20] and the Chandrasekaran
and Ipsen algorithm [13] for computing an RRQR factorization. In 3 we give a constructive
existence prooffor the strong RRQR factorization. In 4 we present an algorithm (Algorithm 5)
that computes a strong RRQR factorization and bound the total number of operations required
when f > 1; and in 5 we show that this algorithm is numerically stable. In 6 we report
the results of some numerical experiments. In 7 we show that the concept of a strong
RRQR factorization is not completely new in that the QR factorizati0n given by the Businger
and Golub algorithm [8, 20] satisfies (5) and (6) with q (k, n) and q2(k, n) functions that grow
exponentially with k. Finally, in 8 we present some extensions of this work, including a
version of Algorithm 5 that is nearly as fast as QR with column pivoting for most problems
and takes O (mn2) floating-point operations in the worst case.

1.4. Notation. By convention, Ak, /k 6 R denote upper-triangular matrices with
nonnegative diagonal elements, and B, [Rkx(n-k) and Ck, R(m-k)(n-k) denote
general matrices.

In the partial QR factorization

X= Q(A c:B)
of a matrix X Rmn (where the diagonal elements of Ak are nonnegative), we write

Jtk(X)=A/,, C(X)=C, and T(X)-(Ak B)C:
For A, a nonsingular x g matrix, 1/o)i(A) denotes the 2-norm of the ith row of A- and

o.(A) (o)1 (A) oe(A)) r. For C, a matrix with g columns, , (C) denotes the 2-norm
of the jth column of C and ,.(C) (gl (C) ?’e(C)).

17i,j denotes the permutation that interchanges the ith and jth columns of a matrix.
Aflop is a floating-point operation oe o , where oe and are floating-point numbers and o

is one of +, -, x, and /. Taking the absolute value or comparing two floating-point numbers
is also counted as a flop.. RRQR algorithms. QR with column pivoting [8, 20] is a modification ofthe ordinary
QR algorithm.

ALGORITHM 1. QR with column pivoting.
k’=0; R:=M; 1-I:=I;
while max <_j <n-k /j (Ck (R)) > do

jmax :-- argmaxx_<j_<n_ Yj (C (R));
k’-k+ 1;
Compute R := 7-’:(R 1-Ik,kq_jmax_l) and I7 := 1-I 1-Ik,k_k_jmax_l;

endfor;

When Algorithm halts, we have

O’max (C:(M FI)) < /n k max yj (C:(M 17)) < a/n k 3,
l<j<n-k

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 851

and if 3 is sufficiently small, then the numerical rank ofM is at most k. If the vector of column
norms V, (Ck (R)) is updated rather than recomputed from scratch each time, then Algorithm 1
takes about 4mnk 2kZ(m + n) + 4k3/3 flops [24, p. 236].

Algorithm 1 uses a greedy strategy for finding well-conditioned columns: having deter-
mined the first k columns, it picks a column from the remaining n k columns that maximizes
det [,4+1 (R)] (see [13]). When there are only a few well-conditioned columns, this strategy
is guaranteed to find a strong RRQR factorization (see 7). It also works well in general, but
it fails to find an RRQR factorization for the following example.

Example 1 (Kahan [33]). Let M S,K,,, where

1 0 0 1 -q

0 ff ’. 0 .
(7) Sn= and Kn=

0 0 9
-1 0 0 1

with (p, ff > 0 and 2
__

g.2 1. Let k n 1. Then Algorithm 1 does not permute the
columns of M, yet it can be shown that

cr,(M) o(1 + o)’-
O’min (Ak) 2

and the right-hand side grows faster than any polynomial in k and n.

When m n and the numerical rank of M is close to n, Stewart [39] suggests applying
Algorithm 1 to M-1. Recently, Chandrasekaran and Ipsen [13] combined these ideas to
construct an algorithm Hybrid-III(k) that is guaranteed to find an RRQR factorization, given
k. We present it in a different form here to motivate our constructive proof of the existence of
a strong RRQR factorization.

ALGORITHM 2. Hybrid-Ill(k).
R :-- M; rI := I;
repeat

imin :--- argmin<i< O) (4k(R));
if there exists a j such that det [,4k(R 1-Iimin,j+)] / det [.A(R)] > 1 then

Find such a j;

Compute R := (R I-Iimi,,j+ and PI :-- 1-I Flimi,,j+;
endif;

jmax := argmax_<j_<_ ,j (C (R));
if there exists an such that det [.A(R rli,jmax+k) / det [.Ak(R)] > 1 then

Find such an i;

Compute R := 7k(R Fli,jmax+k and FI := FI Fli,jmax+k;
endif;

until no interchange occurs;

Since the objective is to find a permutation FI for which O’min (.A(M FI)) is sufficiently
large and O’max (C,(M I-I)) is sufficiently small, Algorithm 2 keeps interchanging the most
"dependent" of the first k columns (column imin) with one of the last n k columns, and
interchanging the most "independent" of the last n k columns (column jmax) with one of the
first k columns, as long as det [4(R)] strictly increases.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

852 MING GU AND STANLEY C. EISENSTAT

Since det [4(R)] strictly increases with every interchange, no permutation repeats; and
since there are only a finite number of permutations, Algorithm 2 eventually halts. Chan-
drasekaran and Ipsen [13] also show that it computes an RRQR factorization, given k. Due to
efficiency considerations, they suggest that it be run as a postprocessor to Algorithm 1.

But Algorithm 2 may not compute a strong RRQR factorization either.
Example 2. Let k n 2 and let

S_ K_ 0 0 -oS_ c_

(A B)= /z 0 0
M =-- Ck lz 0

where Sk-1 and Kk-1 are defined as in (7), c_l (1 1) 7- E Rk-l, and

1
min o)i(S_l K_I)./

l<i<k-1

Then Algorithm 2 does not permute the columns of M (note that irnin k and jmax k + 1),
yet it can be shown that

o’_ (M) 93 (1 + qg)k-4
> and IIA-1Bll o(1 + qg)k-2,

cry- (Ak) 29
and the right-hand sides grow faster than any polynomial in k and n.

Since Algorithm does not permute the columns of M, this example also shows that Al-
gorithm 2 may not compute a strong RRQR factorization even when it is run as a postprocessor
to Algorithm 1.

3. The existence of a strong RRQR factorization. A strong RRQR factorization satis-
fies three conditions: every singular value of A is sufficiently large, every singular value of
C is sufficiently small, and every element of A-B is bounded. Since

k / n-k

r(Ck)det(Ak) Hffi(Ak)i-1 v/det(MTM)
] j=l

a strong RRQR factorization also results in a large det(A). Given k and f _> 1, Algo-
rithm 3 below constructs a strong RRQR factorization by using column interchanges to try
to maximize det(A).

ALGORITHM 3. Compute a strong RRQR factorization, given k.
R := 7Z(M); 17 := I;
while there exist and j such that det(k))/det(a) > f,

whereR--(Ak ckBk)andTk(RFlij+k)-- (Ckk)- do

Find such an and j;
Compute R := 7gk(R 17i,j+k) and I7 := FI 17i,j+k;

endwhile;

While Algorithm 2 interchanges either the most "dependent" column of Ak or the most
"independent" column of Ck, Algorithm 3 interchanges any pair of columns that sufficiently
increases det(Ag). As before, there are only a finite number of permutations and none can
repeat, so that it eventually halts.

3The algorithms in this section are only intended to prove the existence of a strong RRQR factorization. Efficient
algorithms will be presented in 4 and 8.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 853

To prove that Algorithm 3 computes a strong RRQR factorization, we first express
det(k)/det(Ak) in terms of o)i(Ak), yj(Ck), and (A-1Bk)i,j.

LEMMA 3.1. Let

C Ck

where Ak has positive diagonal elements. Then

det(Ak) v/(A;1Bk)i2,j + (yj(Ck)/Coi(Ak))2
det(A)

Proof. First, assume that < k or that j > 1. Let Ak 1-Ii,k QA be the QR factorization
of A Fli,k, let/ OTB I-Ii,j and C 171,j, and let 1] diag(I-l/,k, lql,j). Then

(AkI-Ii’k Bk171’J)(0) (k k)R (-I =_

C I71,j Im- C

is the QR factorization of R 1-]. Since bothA andk have positive diagonal elements, we have
det(A) det(). Since -1/ FIA-1Bk171,j, we have (A-1Bk)i,j (-1 k)k,1.
Since -1 FI,A-IBO_ and postmultiplication by an orthogonal matrix leaves the 2-
norms of the rows unchanged, we have 09i(Ak) 09k(fk). Finally, we have yj(Cg)
Thus it suffices to consider the special case k and j 1.

Partition

T+l (R)

Ak-1 b b2 B

Y2 C;
C+

Then coi(Ak) Y1, ’j(Ck) Y2, and (AlBk)i,j fl/’l. But det(Ak) det(Ak_l) ’1 and

det(k) det(Ak_) f12 + , so that

det(k) (fl/y1)2 + (y2/Y1)2: ((A;1Bk)i2,j + (yj(Ck)/i(Ak))2,
det(Ak)

which is the result required.
Let

maxljn_k (AIBk)2p(R,k)
lSiSk, i,j + /]]vj’Ck’i’ak 2"

Then by Lemma 3.1, Algorithm 3 can be rewritten as the following.

ALGORITHM 4. Compute a strong RRQR factorization, given k.

Compute R
C

ile (R, k) > f d
Find/and j such that](A B)i,j + (gj(C)/mi(A)) > f;

(A B):=(Ri,+)and’=i+;Compute R
C

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

854 MING GU AND STANLEY C. EISENSTAT

Since Algorithm 4 is equivalent to Algorithm 3, it eventually halts and finds a permutation
FI for which p(Tgk(M FI), k) < f. This implies (6) with q2(k, n) f. Now we show that
this also implies (5) with q (k, n) v/1 + f2k(n k), i.e., that Algorithms 3 and 4 compute
a strong RRQR factorization, given k.

THEOREM 3.2. Let

Ak Bk) 7k(M FI)R
Ck

satisfy p R k) < f Then

cri(M)
(8) cri(Ak) > < < k,

V/1 + f2k(n k)

and

(9) aj(Ck) < aj+k(M) V/1 + f2k(n k), 1 < j < n k.

Proof For simplicity we assume that M (and therefore R) has full column rank. Let
Ol O’max(Ck)/Crmin(Ak), and write

R= (Ak C/ot)(Ik

Then by [29, Thm. 3.3.16],

(10) ai(R) < ai(k) IlW]12,

A-I B’ I\ k Wl.
Otln-k

l<i<n.

Since O’min(Ak) O’max(Ck/Ol), we have o’i(/1) ri(Ak) for 1 < < k. Moreover,

IlWlll2 <_ 1/ IIA-BII22/
/ AIB 22 / Ck A-II

< 4- IIA-IBII2F 4-Ilfkll%llA-all2F
k n-k

ZZ{ta; ti,j 4- /j(Ck)2/O)i(Ak)2
I
!

i=1 j=l

< 1 + f2k(n-k),
so that IIW 112 _< 4’i / f2k(n k). Plugging these relations into (10), we get (8). Similarly,
let

(OtAk) (Ak Bk) (Otlk -A-Bk) RW2.k2 Ck Ck In-k
Then

rj(fk) O’j+k(/2) aj+(R)IIW2112 _< aj+(M) V/1 + f2k(n k),

which is (9). [3

4. Computing a strong RRQR factorization. Given f > and a tolerance 6 > 0,
Algorithm 5 below computes both k and a strong RRQR factorization. It is a combination of
the ideas in Algorithms 1 and 4 but uses

fi(R, k) max max {l(A-lBk)i,jl ’j(Ck)/o)i(Ak)]<i <k, <j <n-k

instead of p(R, k) and computes co.(Ak), ?’.(Ck), and A-B recursively for greater efficiency.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 855

ALGORITHM 5. Compute k and a strong RRQR factorization.
k:=0; R Ck := M; FI:=I;
Initialize co,(Ak), y,(C), and A-1B;
while max <j<n-k Yj (Ck) >-- do

jmax ": argmax <_j <_n-k Vj Ck
k:=k+ 1;

(ZkBk)’--Jk(Rr-lkk+jmax_l)andI-l:--I-lr-lk,k+jmax_l;Compute R
Ck

Update co,(Ak), y,(Ck), and A1Bk;
while t3 (R, k) > f do

and j such thatl(A-lBk)i,j[> f or yj(Ck)/Coi(Zk) > f;Find/

(ZkBk).=J’k(RI-Ii,j+k)andI-I.--FIl-Iij+k;Compute R --= C
Modify co,(A), v,(C), and A- B;endwhile;

endwhile;

Since its inner while-loop is essentially equivalent to Algorithm 4, Algorithm 5 must
eventually halt, having found k and a permutation I-I for which 3(R, k) _< f. This implies that
p(Tg(M YI), k) <_ f, so that (5) and (6) are satisfied with4 ql (k, n) v/1 + 2fZk(n k)
and qz k, n) /-f

Remark 1. Note that

O’k+l (m) O’max (Ck) 1 j(Ck)
> > max

cry(M) ql(k,n)2 0"min(Ak) ql(k,n)2 1<_i<_, <_j<_n- coi(Ak)

and

cr+l(M)
<

O’max(Ck)
< v/k(n_k) max

yj(C)
Crk(M) O’min(Ak) l<i<k, l<j<n-k 09i(Ak)

Thus Algorithm 5 can detect a sufficiently large gap in the singular values of M if we change
the condition in the outer while-loop to

max ffj(Ck) > or max yj(Ck)/Coi(Ak) >_ ,
<j<n-k <i <k, <j<n-k

where is some tolerance. This is useful when solving rank-deficient least-squares problems
using RRQR factorizations (see 11, 12] and the references therein):

In 4.1-4.3 we show how to update Ak, B, Ck, co,(Ak), y,(Ck), and A1B after k
increases and to modify them after an interchange. In 4.4 we bound the total number of
interchanges and the total number of operations. We will discuss numerical stability in 5.

4.1. Updating formulas. Let

R=(Ak-1 Bk-1) and J-k(Rl-lkk+jmax_l)=(Ak Bk)C-I Ck

Assume that we have already computed Ak-, Bk-, Ck-, co,(Ak_), F, (Ck-), and A-_ Bk-.
In this subsection we show how to compute A, Bk, Ck, co,(Ak), F,(Ck), and A Bk. For
simplicity we assume that jniax 1, SO that ?’1 (Ck-1) >_ Fj(Ck-1) for < j < n k + 1.

4To get ql (k, n) dl + f2k(n k) and q2(k, n) f, replace 3(R, k) by p(R, k) or replace f by f/x/
(assuming that f > v) in Algorithm 5.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

856 MING GU AND STANLEY C. EISENSTAT

Let H E R(m-k)(m-k) be an orthogonal matrix that zeroes out the elements below the
diagonal in the first column of Ck-1, and let

Bk-1 b B) and HCk_l
C

where ?, Yl (Ck-1). Then

Ak-1 b B)Ck / cT
C

so that

Ak (Ak-1

Let A-_l Bk-1 u U). Then

and

and Ck C.

and

Letu (/zl [dk_l) T andc (vl ,1)n_k) T. Then co,(Ak) and ?,,(C) can be computed
from

2 2co(Ak) and 1/coi(Ak)2 1/o)i(Ak_l)2 -+- [1i/ <_ <_ k-

so that

/j(Ck)2 Yj+I (Ck-1)2 1), 1 < j < n k.

The main cost of the updating procedure is in computing HC_I and U hieT/, which
take about 4(m-k)(n-k) and 2k(n-k) flops, respectively, for a total ofabout 2(2m -k)(n-k)
flops.

Remark 2. Since f > 1, p(R, k 1) < f, and V > Vj+l(Ck-1) > vj, for _< j <
n k, we have

[(A-’Bk)i,jl < 2f and gj(Ck)/Coi(Ak) < ", f,

p(k(R 1-I,jmx), k) <_ f.

This bound will be used in 5.1.
4.2. Reducing a general interchange to a special one. Assume that there is an inter-

change between the ith and (j + k)th columns of R. In this subsection we show how to reduce
this to the special case k and j 1.

Let

If j > 1, then interchange the (k + 1)st and (k + j)th columns of R. This only interchanges
the corresponding columns in Bk, C, y. (C), and A1B. Henceforth we assume that < k
and j 1.

A-l Bk (U ucT /?’)cT/?,

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 857

Partition

Ak ot a
A2,2

where A1,1 6 R(i-1)(i-1) and A2,2 6 R(k-i)(k-i) are upper triangular. Let I-Ik be the permu-
tation that cyclically shifts the last k " + columns of Ak to the left, so that

(AI,1 A1,2 al)Ak FIk af o

A2,2

Note that Ak FIk is an upper-Hessenberg matrix with nonzero subdiagonal elements in columns
i,i+l k-1.

To retriangularize Ak 1-Ik, we apply Givens rotations to successively zero out the nonzero
subdiagonal elements in columns i, + 1 k (see [19, 24]). Let Q be the product of
these Givens rotations, so that QAk FIk is upper triangular.

Let I-I diag(lqk, In-k), so that the ith column of R is the kth column of R F!. Then

R(-I= (AkFlk Bk) and k(R(-l)=-- (k k) (QAkl-Ik QffBk)Ck Ck Ck

Since A-I I’IffA- Qk and postmultiplication by an orthogonal matrix leaves the 2-norms
of the rows unchanged, it follows that

og.(k) 1-I o9.(Ak), F.((k) y.(Ck), and -hk lq (A-Bk).
The main cost of this reduction is in computing TQk Ak FIk and QBk, which takes about

3 ((n i)2 (n k)2) < 3k(2n k) flops.

4.3. Modifying formulas. In this subsection we show howto modify Ak, Bk, Ck, co. (Ak),
F.(Ck), and A- Bk when there is an interchange between the kth and (k + 1)st columns of R.
We assume that we have already zeroed out the elements below the diagonal in the (k 4- 1)st
column.

we have

Writing

Ak_ bl b2 B

B , ,z c
Ck } F v c

Ck+l

Ak-! b2 bl B

,]-k+l(RYlkk+l)(k k) ’lz/P T1

Ck+l

where p V/lZ2 4- 1) 2, }7 ,,o, el (#c1 4- 1)c2)/p, and 2 (1)c1 tzc2)/p.
From the expression for R, we also have

1/y

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

858 MING GU AND STANLEY C. EISENSTAT

where u A-ll bl. Since Ak_l is upper triangular, we can compute u using back-substitution.
Moreover,

so that

It follows that

and

(11)

Simplifying,

(ul U)(A-_I1-u/y)(b2 B)A-1Bk

We also have

A-_ll b2 Ul +/zu and A-I_I B U + uc/y.

-All b2/) (A-I_
1/

--(Ul q" /ZU)/)7
1/

1 ylz2/(gp) lz2/to2 v2/102 and y/Z/(7,O) #/p2.

A-11B (Ul -[- u + ,cl ,efl9
U + u (pCl tZ.l)T/
+ ue/ u/.

Plugging these relations into (11), we get

-; ((’ .) Ip
izlp

U + (WU Ulna’)/ .
ef/

Let

u= Ul+/Xu= c= and Ca=
[k-1 Lk-1 Un-k n-k

Then og,(Ak) and v,(Ck) can be computed from

and

-2 -2 //2 2,and O)i(/k)2 Ooi(Ak)2 +]Z / // 1 < < k 1,

-2 vf, 2<j<n-k.’l(k) 13//9 and /j(k)2 yj(Ck)2 Af_ 1)j

The cost of zeroing out the elements below the diagonal in the (k + 1)st column is about
4(m k)(n k) flops, the cost of computing u is about k2 flops, and the cost of computing
/-/ is about 4k(n k) flops. Thus the total cost of the modification is about 4m(n k) + k2

flops.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 859

4.4. Efficiency. In this subsection we derive an upper bound on the total number of
interchanges and bound the total number of flops. We only consider the case f > 1.

Let r be the number of interchanges performed for a particular value of k (i.e., within the
inner while-loop), and let A be the determinant of A after these interchanges are complete
(by convention, A0 1). Since det(A) A_I ?’jmax (C_1) before the interchanges, and
each interchange increases det(A) by at least a factor of f, it follows that

Ak Ak-1 /jmax(Ck-1) fr.
By (3), we have

trl+l(M) < O’max (CI(M)) < IICz(M)IIF /n- /jmax (C(M)),

for _< < n, so that

Ak >_ Ak-1 - cry(M) f > -- cri(M) its,

where t =1 Ti is the total number of interchanges up to this point. On the other hand,
from (2) we also have

k k

Ak H o’i(A) <_ H cri(M).
i=1 i=1

Combining these relations, we have ft < (q/-), so that t < k logf V/ft.
The cost of the updating procedure is about 2(2m k)(n k) flops (see 4.1), the cost

of the reduction procedure is at most about 3k(2n k) flops (see 4.2), and the cost of the
modifying procedure is about 4m(n k) + k2 flops (see 4.3). For each increase in k and each
interchange, the cost of finding 3(R, k) is about 2k(n k) flops (taking k(n k) absolute
values and making k(n k) comparisons).

Let kf be the final value ofk when Algorithm 5 halts. Then the total number ofinterchanges

t is bounded by kf logf v/-ff, which is O (kf) when f is taken to be a small power of n (e.g.,
or n). Thus the total cost is at most about

[2(2m k)(n k) 4- 2k(n k)]
k=l

4- t max [3k(2n k) 4- 4m(n k) 4- k2 4- 2k(n k)]
l<k<kf

< 2mkf(2n kf) 4- 4tzn(m 4- n)

flops. When f is taken to be a small power of n (e.g., or n), the total cost is O (mnkf)
flops. Normally the is quite small (see 6), and thus the cost is about 2mkf(2n kf) flops.
When m >> n, Algorithm 5 is almost as fast as Algorithm 1; when m n, Algorithm 5 is
about 50% more expensive. We will discuss efficiency further in 6 and 8.

5. Numerical stability. Since we update and modify co,(A), y,(C), and A-B rather
than recompute them, we might expect some loss of accuracy. But since we only use these
quantities for deciding which pairs of columns to interchange, Algorithm 5 could only be
unstable if they were extremely inaccurate.

In 5.1 we give an upper bound for p(R, k) during the interchanges. Since this bound
grows slowly with k, Theorem 3.2 asserts that A can never be extremely ill conditioned,
provided that a(M) is not very much smaller than IIMII2. This implies that the elements of

A-1B cannot be too inaccurate. In 5.2 we discuss the numerical stability of updating and
modifying co,(Ak) and 9/,(Ck).

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

860 MING GU AND STANLEY C. EISENSTAT

5.1. An upper bound on p(R, k) during interchanges. We only consider the case

f>l.
LEMMA 5.1. Let A, C, U Rkk, where A is upper triangular with positive diagonal

elements and U (ui,j). If

i, + ((c/o)(a) <- f, <- , J <- ,
then

v/det[(AU)rAU + CTC] < det(A) (V/ f)k.
Proof. First, note that

k

v/det[(AU)rAU + CrC] VIai ((AcU))
i=1

Let ot O’min(A), and write

W=-(AcU)=(A otis)(&)
By [29, Thm. 3.3.4], we have

k k

i=1 i=1

Since ai (/) o’i (A), for < < k, we have
k k

1--I ri()) H cri(A) det(A).
i=1 i=1

Now, since zT"z is symmetric and positive definite,

H O’i () V/det(r) < (rr lT)i, (ei 112,
i=1 i=1 i=1

and, since

we have

_1 _-iiA_al[2 _< / max
or l<i<k o)i(A min o)i(A)’

l<i<k

k

llell] 2" + (c)---2 < z + (c) < z
oe2 min oi(A)2-i=1 l<i<k

The result follows immediately.
To derive an upper bound on p(R, k) during the interchanges, we use techniques similar

to those used by Wilkinson [43] to bound the growth factor for Gaussian elimination with
complete pivoting,5 Let

W(r) r S 1/(s-l)

s=2

5See [13] for a connection between the growth factor for Gaussian elimination with partial pivoting and the
failure of RRQR algorithms.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 861

which is Wilkinson’s upper bound on the growth factor for Gaussian elimination with complete
pivoting on a r r matrix. Although W(r) is not a polynomial in r, it grows rather slowly [43]"

THEOREM 5.2. IfAlgorithm 5 performs r interchangesfor some k > 1, then

p(k(M H), k) < 2x/ f (r + 1) W(r + 1).

Proof Assume that Algorithm 5 will perform at least one interchange for this value of k;
otherwise the result holds trivially.

Let I-I (t) be the permutation after the first interchanges, where 0 < < r + 1. Partition

M FI (l) (/t(l) t/t(l))k "’n-k

where a(l) Rm xk /t(l) R (n-k)
"*k and ""-k 6 Assume that r/(/, r) columns of M +1) are from

/tq) Since there are r + 1 more interchanges, we have6Mq) and that the rest are fromn-k’
O(1, r) <r-l+l.

Without loss of generality, we assume that the first k r/(l) columns of ""k are
/t(the first k 0(l, z) columns of .,,k and that the last r/(l z) columns of /t(+l).... are the first

r/(1 r) columns of a/t0) Then we can write"an-k"

AI,1 A1,2 B1 B1,2
"-’k A2 2 B2,1 B2 2Rq) (M Hq)) =-- (I) C1,1 C1,2C’k

C2,2

where A2,2, CI,1 E Rr/(/’z)xr/(/’z) and the partition is such that

a(r+l)
R(+1) 7"(M 1-I (+))

These relations imply that

(12)

n(r+l)
AI,1 B1,1

B2,1Uk
Tk

Ck

det(A(/)) det(Al,1) det(A2,2)

and

(13) det(Ar+l)) det(Al,1) V//det [Bf, IB2,1 + Cr Cl,1]1,1

Let f(l) p(Rq), k). By the definition of p(R, k), we have

v/(A-1B2,1122,2 + 2 -<

A1,2
A2,2

B1,2
B2,2

C2,2

for 1 < i, j _< 0(1, r). Applying Lemma 5.1 and recalling that r/(l, r) < r + 1, we have

v/det [B2T,1B2,1 + CT C1,1] < det(A2,2)(v/2(r -1+ 1) f(l)) z-l+l1,1

Combining with (12) and (13), we get

det(A (r+l) det(A/)) (V/2(r 1+ l)f(/>) z-l+lk)<

6It is possible that r/(l, r) < r + since a column may be interchanged more than once.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

862 MING GU AND STANLEY C. EISENSTAT

On the other hand, Algorithm 5 ensures that

Comparing these two relations, we have

(14) fq) f(r) <_ (2r_/+ fq)) r-+l 0<l<r.

Since

s-1 1

l= (r /)(r + 1)
+

taking the product of the (r 1)(r + 1)st root of (14) with 1, 2 and the rth
root of (14) with 0, we have

\/=1

+V’=0Z_,
r-I 1/2

_< 2 (r + 1) (T- l’J- 1) 1/(r-t) (f(5)m/(r-5
=0 \=0

which simplifies to

f(r) < f(o)2 =’ (r + 1) H sl/(-)
s--2

_< 2f() (r + 1)lA2(r + 1).

Remark 2 at the end of 4.1 implies that f(0) _< V/ f. Plugging this into the last relation
proves the result. q

From 4.4 we have rk _< k log/.v/ft. For example, when < f < n, we have rk < k,
so that p(R, k) <_ 0 (n k l/V(k)).

5.2. Computing the row norms ofA- and the eolurnn norms of Ck. In this section
we discuss the numerical stability of updating and modifying o),(A) and y,(C) as a result
of interchanges, assuming that f is a small power of n.

For any o > 0, we let (C)n(c) denote a positive number that is bounded by oe times
a slowly increasing function of n. By Theorems 3.2 and 5.2, IIA-]] On(1
and Ilfkll2 O (a/(M)) after each interchange. As Algorithm 5 progresses, IIA-II2
increases from On (1lain(M)) to On(1 while Ilfkll2 decreases from On (a(M))
to On (ak+(M)). A straightforward error analysis shows that the errors in 1/coi(Ak)2 and
?’j(Ck) are boundedby On (/a’(M)) and On (e a?(M)), respectively, where e isthe machine
precision. Hence the error in 1/coi (A)2 is less serious than the error in yj (Ck)2, which can be
larger than IICk 1122 when IICk 112 _< On (,/’g cr (M)).

Algorithm 5 uses the computed values of co, (Ak) and ?’, (Ck) only to decide which columns
to interchange. But although these values do not need to be very accurate, we do need to avoid
the situation where they have no accuracy at all. Thus we recompute rather than update or

modify y, (Ck) when maxm <_j <_n-k ’j (Ck) On (rl (M)). This needs to be done at most
twice if one wants to compute a strong RRQR factorization with Ak numerically nonsingular.
A similar approach is taken in xqp, the LAPACK implementation of Algorithm 1.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 863

6. Numerical experiments. In this section we report some numerical results for a Fortran
implementation (SRRQR) of Algorithm 5 and the all-Fortran implementation (DGEQPF) of
Algorithm 1 in LAPACK [1]. The computations were done on a SPARCstation/10 in double
precision where the machine precision is 1.1 10-16.

We use the following sets of n n test matrices:
1. Random: a random matrix with elements uniformly distributed in [-1, 1];
2. Scaled random: a random matrix whose ith row is scaled by the factor rli/n, where

r/>0;
3. GKS: an upper-triangular matrix whose jth diagonal element is l/v-] and whose

(i, j) element is -1//, for j > (see Golub, Klema, and Stewart [22]);
4. Kahan (see Example 1 in 2);
5. Extended Kahan: the matrix M S3 R3 l, where

$31 --diag(1, g’, 9
2 g.3/-1) and R3 ll qg Hl

is .a power of 2; - > 0, 0 > 1/41 1, and g.2 .3f_ q92 1; 0 < /z << 1; and

Hi Rll is a symmetric Hadamard matrix (i.e., H Ii and every component of

Hl is +1).
In particular, we chose r/= 20e, 99 0.285, and/x 20e/,v/ft.

In exact arithmetic Algorithm does not perform any interchanges for the Kahan and
extended Kahan matrices.. To preserve this behavior in DGEQPF we scaled the jth columns
of these matrices by 1 100j and 1 10j e, respectively, for 1 < j < n. To prevent
DGEQPF from taking advantage of the upper-triangular structure we replaced all of the zero
entries by random numbers of the order e2.

For each test matrix, we took n 96, 192, and 384, and set f 10/-ff and 6
3 10-13 IIMII2 in SRRQR. For the extended Kahan matrix, we also used f 992/1 and

4/2cr21+1 (M); these results are labeled Extended Kahan*.
The results are summarized in Tables 1 and 2. Execution time is in seconds; rank is the

value of k computed by SRRQR; ts is the total number of interchanges in the inner while-loop
of SRRQR; and

ql (k, n) v/1 + 2fZk(n k) and f ifk<n
q2(k,n)= 0 ifk=n

are the theoretical upper bounds on

cri(M) crj(Ck))max
l<_i<_k, l<_j<_n-k cri(Ak) crk+j(M

and max
<i <k, l_<j <n-k

respectively, for SRRQR.
The execution times confirm that Algorithm 5 is about 50% more expensive than Algo-

rithm 1 on matrices that require only a small number ts of interchanges. And as predicted,
Algorithm failed to reveal the numerical rank ofthe Kahan matrix. Finally, the results suggest
that the theoretical upper bounds ql (k, n) and q2(k, n) are much too large for 0 < k < n.

For the extended Kahan matrices with f p21 there were no interchanges until the 2/th

step, when the ith column was interchanged with the (2/-t- i)th column for 1, 2 1.
These n/3 column interchanges show that Algorithm 5 may have to perform O(n)
interchanges before finding a strong RRQR factorization for a given f (see 4.4) and can be
more than twice as expensive as Algorithm 1. However, the extended Kahan matrix is already
a strong RRQR factorization with f 104eft for the values of n used here, which is why no
interchanges were necessary.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

864 MING GU AND STANLEY C. EISENSTAT

Matrix
type

Random

Scaled
random

GKS

Kahan

Extended
Kahan

Extended
Kahan*

TABLE
SRRQR versus DGEQPF: Execution time.

Order
U SRRQR

96 0.20
192 1.57
384 16.2
96 0.19
192 1.48
384 14.5
96 0.20
192 1.58
384 15.5
96 0.21
192 1.59
384 15.7
96 0.17
192 1.38
384 13.4
96 0.38
192 3.21
384 31.4

Execution time
Rank

DGEQPF k
0.13 96 0
0.98 192 0
11.0 384 0
0.15 74 0
1.16 147 0
11.4 290 0
0.13 95 0
1.00 191 0
10.7 383 0
0.13 95
0.99 191
10.5 383
0.15 64 0
1.16 128 0
11.4 256 0
0.15 64 32
1.16 128 64
11.7 256 128

TABLE 2
SRRQR versus DGEQPF." Bounds.

max max _AT1Bk_ijMatrix Order i,j i(Ak) k+j(M) i,j

type N
SRRQR ql (k, n) DGEQPF SRRQR q2(k, n) DGEQPF

96 0 0 0
Random 192 0 0 0

384 0 0 0

96 2.93 5.59x 103 2.38 1.71 98.0 1.75
Scaled 192 3.39 1.13x104 3.04 1.58 1.96x102 1.41
random 384 3.75 2.29x 104 3.76 1.37 3.92x 102. 1.16

96 1.12 1.35x103 1.12 0.71 98.0 0.71
GKS 192 1.09 1.91 x 103 1.09 0.71 1.96x 102 0.71

384 1.07 2.71 x 103 1.07 0.71 3.92x 102 0.71

96 1.04 1.35x103 1.04x 101 0.78 98.0 4.92x 109
Kahan 192 1.04 1.91x103 1.86x107 0.78 1.96x102 1.40x102

384 1.04 2.71x103 5.98x106 0.78 3.92x102 1.27x1023
96 3.22 6.27 x 103 3.22 2.60 98.0 2.60

Extended 192 5.76 1.25 x 104 5.76 5.20 1.96 x 102 5.20
Kahan 384 10.9 2.51 x 104 10.9 10.4 3.92x 102 10.4

96 1.17 1.66x 102 3.22 0.38 2.60 2.60
Extended 192 1.09 6.65 x 102 5.76 0.19 5.20 5.20
Kahan* 384 1.05 2.66x 103 10.9 0.10 10.4 10.4

7. Algorithm 1 and the strong RRQR factorization. Using the techniques developed
in 3, we now show that Algorithm 1 satisfies (5) and (6) with ql (k, n) and q2(k, n) functions
that grow exponentially with k. We need the following lemma.

LEMMA 7.1 (Faddeev, Kublanovskaya, and Faddeeva 16]). Let W (wi,j) R be
an upper-triangular matrix with toi, 1 and [wi,jl < for <_ < j < n. Then

I(W-1)i,jl 2n-2, _< i, j _< n, and IIW-1llF _<
/4 + 6n-

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 865

THEOREM 7.2. Let FI be the permutation chosen by Algorithm 1, and let

(Ak Bk) =7"k(Ml-[).R =_
Ck

Then

(15) ai (Ak) " ai(M)
n_i 2i

(16) aj(C) < ak+j(M) /n- k 2k,

and

forl i kandl j n-k.
Pro@ For simplicity we assume that M (and therefore R) has Nll rank.
Let

R (Ak ckBk)_ D (WI,1 W1,2),,2 DW and Wj (WI,I__ ,)1
where D diag(d, d2 dm) is the diagonal of R, W, Rkk is unit upper triangular,
Wl,2 Rkx(n-k), W2,2 G R(m-k)x(n-k), and wj R is the jth column of Wl,2. Since
Algorithm would not cause any column interchanges if it were applied to R, it follows that
d d2 dk and that no component of Wj has absolute value large than 1.

Let ui,j (a[’ Bk)i,j. Then -ui,j is the (i, k + 1) component of W. Applying the

first result in Lemma 7.1 to the lower right (k + 2) x (k + 2) submatrix of, we have
lui,jl 2k-i, which is (17).

As in the proof of Theorem 3.2, let amax(Ck)/amin(Ak) and write

Then

O’j(Ck) O’j+k(/2 < aj+k(R) IIW2112 aj+k(M) IIW2112.
But

IIW2112 -+-IIA[aBII-t-2

k n-k

< I_t_ZZu2 +[[[[2[[- [[2Fi,j ..Ck.._..A
i=1 j=l

k n-k

-1- _,{U,j -+- (gj(Ck)/O)i(Ak))2}.
i=1 j=l

Since 1/o)i(A) < 1/(dko)i(Wl,1)) and vj(C) _< d, we have

u2)2)2i, + ((C)/i(A)) < (W21i,k+l -I- 1/ogi(Wl,1 1/o)i(j
Using the second result in Lemma 7.1, it follows that

k k

+ < I1 ; 11
i=1 i=1

so that W211 4k (n k), which gives (16).

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

866 MING GU AND STANLEY C. EISENSTAT

Similarly, writing

we have

A-lotln_kB) _--/1 Wl,

cry(M) r(R) < cry(k1) IIWIlI2 cr(A) /n k 2.
Taking k and noting that o’i(Ai) < cri(A:) by the interlacing property of the singular
values [24, Cor. 8.3.3], we get (15). [3

If R has very few linearly independent columns, then we can stop Algorithm 1 with a
small value of k and are guaranteed to have a strong RRQR factorization. Results similar to
Theorem 7.2 can be obtained for the RRQR algorithms in 10, 18, 25], and [3.9].

8. Some extensions. We have proved the existence of a strong RRQR factorization for
a matrix M 6 R xn with rn > n and presented an efficient algorithm for computing it. In this
section, we describe some further improvements and extensions of these results.

Since Algorithm 1 seems to work well in practice [5, 10, 11, 13], Algorithm 5 tends to

perform very few (and quite often no) interchanges in its inner while-loop. This suggests
using Algorithm 1 as an initial phase (cf. [13] and [37]), and then using Algorithm 4 to remove
any dependent columns from A, reducing k as needed (cf. 10] and 18]). In many respects
the resulting algorithm is equivalent to applying Algorithm 5 to M-1 (cf. Stewart [39]).

ALGORITHM 6. Compute k and a strong RRQR factorization.

Compute ?’, (C);
while max <_j <_n-k /j Ck >_ do

jmax "= argmax j<n-k)/j Ck
k:=k+l;

--= :-- "fk(R Ilk k+jmax-1) and H rI Il knt_jmax_l

Update 9/, (Ck);
endwhile;
Compute co,(A) and A- B;repeat

while 3 (R, k) > f do

j such that [(a-1 nk)i,j[> f or yj(Ck)/Ogi(ak) > f;Find/ and

(ak Bk) "--TP,k(Rl-Ii,j+k) and[-I’--l-IIlij+k;Compute R
C

Modify m,(A), v,(C), and A-B;endwhile;
if minl<i< (.oi(A) <_ (then

imin :-" argmin<i< 09i(Ak);

Compute R
C

Downdate o,(A), ,,(C), and A-1 B;
endif;

until k is unchanged;

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 867

As before, Algorithm 6 eventually halts and finds k and a strong RRQR factorization.
The total number of interchanges t is bounded by (n k) log/4eft, which is O (n k) when
f is taken to be a small power of n (see 4.4). The formulas for downdating co,(A), v,(C),
and A-1B are analogous to those in 4.1.

Algorithm 6 initializes o),(A) and A-1B after the first while-loop, at a cost of O(kZn)
flops. However, since they are only used to decide which (if any) columns to interchange and
whether to decrease k, they do not need to be computed very accurately. To make the algorithm
more efficient, we could instead use the condition estimation techniques in [4, 5, 10, 27], and
[40] to generate unit vectors u and v such that

and IIB[A-r v 2 IIB[A-r 2.

Let the imaxth component of A-lu be the largest in absolute value. To find the smallest entry
in o).(A), we note that

1/O)imax(Ak) max 1/o)i(A)](A-lu)imaxl
l<i<k

Similarly, let the jmaxth component of B[A-rv be the largest in absolute value. To find the
largest entry of A-1B in absolute value, we compute the jmaxth column of A-1B and look
for the largest component in absolute value. Since the condition estimates cost O (n2) flops,
the resulting algorithm will take nearly the same number of flops as QR with column pivoting
when at most a few interchanges are needed. As Algorithm 6 could take O(n) interchanges
and all condition estimation techniques can fail, Algorithm 6 could be very inefficient and can
fail as well, although we believe that this is quite unlikely in practical applications.

Most of the floating-point operations in Algorithms 5 and 6 can be expressed as Level-2
BLAS. Using ideas similar to those in [3] and [6], it should be straightforward to develop
block versions of these algorithms so that most of the floating-point operations are performed
as Level-3 BLAS.

The restriction m > n is not essential and can be removed with minor modifications to

Algorithms 5 and 6. Thus these algorithms can also be used to compute a strong RRQR fac-
torization for Mr, which may be preferable when one wants to compute an orthogonal basis
for the right approximate null space.

Finally, the techniques developed in this paper can easily be adopted to compute rank-
revealing LU factorizations [9, 13, 31, 32]. This result will be reported at a later date.

Acknowledgments. The authors thank Shivkumar Chandrasekaran and Ilse Ipsen for
many helpful discussions and suggestions, and Gene Golub, Per Christian Hansen, W. Kahan,
and Pete Stewart for suggestions that improved the presentation.

REFERENCES

1] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. Du CROZ, A. GREENBAUM, S. HAMMARLING,
A. MCKENNFY, S. OSTROUCHOV, AND D. SORENSEN, LAPACK Users’ Guide, 2nd ed., Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1994.

[2] T. BEULUN AND R VAN DOORUN, An improved algorithmfor the computation ofKronecker’s canonicalform of
a singular pencil, Linear Algebra Appl., 105 (1988), pp. 9-65.

[3] C.H. BISCHOF, A block QRfactorization algorithm using restricted pivoting, in Proceedings, Supercomputing
’89, ACM Press, New York, 1989, pp. 248-256.

[4] Incremental condition estimation, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 312-322.
[5] C. H. BISCHOF AND P. C. HANSEN, Structure preserving and rank-revealing QR-factorizations, SIAM J. Sci.

Statist. Comput., 12 (1991), pp. 1332-1350.
[6] ,A block algorithmfor computing rank-revealing QRfactorizations, Numerical Algorithms, 2 (1992),

pp. 371-392.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

868 MING GU AND STANLEY C. EISENSTAT

[7] C.H. BSCHOF AYO G. M. SIROFF, On updating signal subspaces, IEEE Trans. Signal Processing, 40 (1992),
pp. 96-105.

[8] E A. BUSYGER AYD G. H. GoIu3, Linear least squares solutions by Householder transformations, Numer.
Math., 7 (1965), pp. 269-276.

[9] T. E CIAy, On the existence and computation ofLU-factorizations with small pivots, Math. Comp., 42 (1984),
pp. 535-547.

10] Rank revealing QRfactorizations, Linear Algebra Appl., 88/89 (1987), pp. 67-82.
[11] T. E CHAN AND E C. HANSEN, Computing truncated singular value decomposition least squares solutions by

rank revealing QR-factorizations, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 519-530.
[12] Some applications of the rank revealing QRfactorization, SIAM J. Sci. Statist. Comput., 13 (1992),

pp. 727-741.
[13] S. CHANDRASEKARAN AND I. IPSEN, On rank-revealing QR factorisations, SIAM J. Matrix Anal. Appl.,

15 (1994), pp. 592-622.
[14] ,Analysis ofa QR algorithmfor computing singular values, SIAM J. Matrix Anal. Appl., 16 (1995),

pp. 520-535.
15] J. DEMMEL, M. HEATH, AND H. VAN DER VORST, Parallel numerical linear algebra, in Acta Numerica, A. Iserles,

ed., Vol. 2, Cambridge University Press, Cambridge, 1993, pp. 111-197.
[16] D. K. FADDEEV, V. N. KUBLANOVSKAYA, AND V. N. FADDEEVA, Solution of linear algebraic systems with

rectangular matrices, Proc. Steklov Inst. Math., 96 (1968), pp. 93-111.
17] ,Sur les systemes lineaires algebriques de matrices rectangulaires et malconditionees, in Programma-

tion en Mathematiques Numeriques, Editions Centre Nat. Recherche Sci., Paris VII, 1968, pp. 161-170.
[18] L. V. FOSTER, Rank and null space calculations using matrix decomposition without column interchanges,

Linear Algebra Appl., 74 (1986), pp. 47-71.
[19] E E. GmI, G. H. GoIu3, W. MURRAY, AND M. A. SAUNDERS, Methods for modifying matrix factorizations,

Math. Comp., 28 (1974), pp. 505-535.
[20] G. H. Gou3, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965),

pp. 206-216.
[21] Matrix decompositions and statistical computation, in Statistical Computation, R. C. Milton and J. A.

Nelder, eds., Academic Press, New York, 1969, pp. 365-397.
[22] G. H. GoIu3, V. KLEMA, AND G. W. STEWART, Rank Degeneracy and Least Squares Problems, Tech. Report

TR-456, Dept. of Computer Science, University of Maryland, College Park, MD, 1976.
[23] G. H. GouB AYD V. PEREYRA, The differentiation of pseudo-inverses, separable nonlinear least squares

problems and other tales, in Generalized Inverses and Applications, M. Z. Nashed, ed., Academic Press,
New York, 1976, pp. 303-324.

[24] G. H. GouB AYO C. E VAT LOAy, Matrix Computations, 2nd ed., The Johns Hopkins University Press,
Baltimore, MD, 1989.

[25] W. B. GRAGG AND G. W. STEWART, A stable variant of the secant method for solving nonlinear equations,
SIAM J. Numer. Anal., 13 (1976), pp. 880-903.

[26] M. Gu, Finding Well-Conditioned Similarities to Block-Diagonalize Nonsymmetric Matrices is NP-Hard, J. of
Complexity, 11 (1995), pp. 377-391.

[27] W.W. HAER, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 311-316.
[28] Y. P. HOyG AYD C.-T. PAY, Rank-revealing QR factorizations and the singular value decomposition, Math.

Comp., 58 (1992), pp. 213-232.
[29] R.A. HORY AYD C. R. JOHYSOy, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[30] T.-M. HWANG, W.-W. LIT, AND D. PERCE, An Alternative Column Selection Criterion for a Rank-Revealing

QR Factorization, Tech. Report BCSTECH-93-021, Boeing Computer Services, Seattle, WA, July 1993.
To appear in Math. Comp..

[31 Improved Boundfor Rank Revealing LU Factorizations, Tech. Report BCSTECH-93-007, Boeing
Computer Services, Seattle, WA, Oct. 1993.

[32] T.-M. HWAYG, W.-W. LIT, AYD E. K. YArG, Rank revealing LUfactorizations, Linear Algebra Appl., 175
(1992), pp. 115-141.

[33] W. KAHAY, Numerical linear algebra, Canad. Math. Bull., 9 (1966), pp. 757-801.
[34] V.E. KATE, R. C. WARD, AYD G. J. DAWS, Assessment of linear dependencies in multivariate data, SIAM J.

Sci. Statist. Comput., 6 (1985), pp. 1022-1032.
[35] V. N. KU3LANOVSKAYA, AB-Algorithm and its modifications for the spectral problems of linear pencils of

matrices, Numer. Math., 43 (1984), pp. 329-342.
[36] C.L. LAWSOy AYD R. J. HAYSOY, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[37] C.-T. PAY AYD P. T. P. TAYG, Bounds on Singular Values Revealed by QR Factorizations, Preprint MCS-P332-

1092, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, Oct.
1992.

[38] G.W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.
[39] ,Rank degeneracy, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 403-413.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

STRONG RANK-REVEALING QR FACTORIZATIONS 869

[40] G.W. STEWART, Incremental Condition Calculation and Column Selection, Tech. Report CS TR-2495, Dept.
of Computer Science, University of Maryland, College Park, MD, July 1990.

[41] , An updating algorithm for subspace tracking, IEEE Trans. Signal Processing, 40 (1992),
pp. 1535-1541.

[42] ,Updating a rank-revealing ULVdecomposition, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 494-499.
[43] J. H. WILI(IYSON, Error analysis of direct methods of matrix inversion, J. Assoc. Comput. Mach., 8 (1961),

pp. 281-330.
[44] S. WOLD, A. RUHE, H. WOLD, AND W. J. DUNN, III, The collinearity problem in linear regression. The par-

tial least squares (PLS) approach to generalized inverses, SIAM J. Sci. Statist. Comput., 5 (1984),
pp. 735-743.

D
ow

nl
oa

de
d

12
/3

0/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

