Yy
er

The Universit
of Manchest

MANCHESTER

1824

An Introduction to the Quality of Computed
Solutions

Hammarling, Sven

2005

MIMS EPrint: 2005.29

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

An Introduction to the Quality of Computed Solutidns

Sven Hammarling

The Numerical Algorithms Group Ltd
Wilkinson House
Jordan Hill Road
Oxford, OX2 8DR, UK

sven@nag.co.uk

December 5, 2005

1Based on [Hammarling, 2005], Chapter 4 of [Einarsson, 200&hich is available for pur-
chase from SIAM athttp://ec-securehost.com/SIAM/SE18.html . The royalties go to the
SIAM Student Travel Fund.

http://ec-securehost.com/SIAM/SE18.html
http://www.siam.org/prizes/sponsored/travel.php

CONTENTS 1

Contents

1 Introduction 2

2 Floating Point Numbersand | EEE Arithmetic 2

3 Why Worry about Computed Solutions? 5

4 Condition, Stability and Error Analysis 9
4.1 CONAION . o\ oo o e e e e 9
4.2 StabIlity . . . 14
4.3 Error Analysis e 91

5 Floating Point Error Analysis 23

6 Posing the Mathematical Problem 29

7 Error Boundsand Software 30

8 Other Approaches

9 Summary

Bibliography 35

1 INTRODUCTION 2

1 Introduction

This report is concerned with the quality of the computed numerical solutibnsathematical
problems. For example, suppose we wish to solve the system of linear eguatio= b using

a numerical software package. The package will return a computed solaéigz, and we wish

to judge whether or nat is a reasonable solution to the equations. Sadly, all too often software
packages return poor, or even incorrect, numerical results andhgiveser no means by which to
judge the quality of the numerical results. In 1971, Leslie Fox commented R34, p. 296]

“I have little doubt that about 80 per cent. of all the results printed fronctmeputer
are in error to a much greater extent than the user would believe, ..”

More than thirty years on that paper is still very relevant and worth rgadinother very readable
article is Forsythe [1970].

The quality of computed solutions is concerned with assessing how goodpauted solution is in
some appropriate measure. Quality software should implement reliable algoatidrshould, if
possible, provide measures of solution quality.

In this report we give an introduction to ideas that are important in undaetistgq and measuring
the quality of computed solutions. In particular we review the ideas of condgtability and error
analysis, and their realisation in numerical software. We take as the piirecigaple LAPACK
[Anderson et al., 1999], a package for the solution of dense andeldalinear algebra problems,
but also draw on examples from the NAG Library [NAG, a] and elsewh&he aim is not to show
how to perform an error analysis, but to indicate why an understanditigeddeas is important
in judging the quality of numerical solutions, and to encourage the use tavef that returns
indicators of the quality of the results. We give simple examples to illustrate sothe afeas that
are important when designing reliable numerical software.

Computing machines use floating point arithmetic for their computation, and stavwenith an
introduction to floating point numbers.

2 Floating Point Numbersand |EEE Arithmetic

Floating point numbers are a subset of the real numbers that can bengamiy represented in the
finite word length of a computer, without unduly restricting the range of nustepresented. For
example, the ANSI/IEEE standard for binary floating point arithmetic [IEEIB5] uses 64 bits to
represent double precision numbers in the approximate reovgs.

A floating point numberz, can be represented in terms of four integers as
x=4m x b,

whereb is the baseor radix, ¢ is the precision e is the exponentwith an exponent rangef
[emin, emax] @andm is the mantissaor significand satisfyingd < m < b — 1. If x # 0 and

http://www.netlib.org/lapack/index.html
http://www.nag.co.uk/numeric/

2 FLOATING POINT NUMBERS AND IEEE ARITHMETIC 3

m > b1 thenz is said to benormalized An alternative, equivalent representation:dé

z = 2£0.dids...d; xb°
dy da dy
- £ (Frgeog)xr
where each digit satisfigs< d; < b — 1. If d; # 0 then we see that is normalized. Ifd; = 0
andz # 0 thenz is said to bedenormalized Denormalized numbers betweerand the smallest
normalized number are calledibnormal Note that denormalized numbers do not have thetfull
digits of precision.

The following example, which is not intended to be realistic, illustrates the model.

Example 2.1 (Floating point numbers)

b=2,t=2, emin = —2, €max = 2.

All the normalized numbers havk = 1 and eitherls = 0 ords = 1, that ism is one of the two
binary integersn = 10 (= 2) orm = 11 (= 3). Denormalized numbers hawe= 01 (= 1). Thus
the smallest positive normalized numbe? ig 26min—t = % and the largest i3 x 2¢max—t = 3, The
valuel x 2¢min—t — % is the only positive subnormal number in this system. The complete set of
non-negative normalized numbers is:

13 1313 _ 3

ffffff 1,-,2

078? 16’4’872747 72? ’3

The set of non-negative floating point numbers is illustrated in Figure érevhe subnormal num-
ber is indicated by a dashed line.

b:2, t:2> emin:_2a Emax = 2

Figure 1: Floating Point Number Example

Note that floating point numbers are not equally spaced absolutely, iei#itige spacing between
numbers is approximately equal. The value
1
= x bt 1
u= 3 (1)
is called theunit roundoff or therelative machine precisioand is the furthest distance relative to
unity between a real number and the nearest floating point number. mf&&.1,u = 1 = 0.25

2 FLOATING POINT NUMBERS AND IEEE ARITHMETIC 4

and we can see, for example, that the furthest real number frons 1.25 and the furthest real
number from2.0 is 2.5. « is fundamental to floating point error analysis.

The valuee); = 2u is calledmachine epsilon

The ANSI/IEEE standard mentioned above (usually referred to as |EfEwtic), which of course
hasb = 2, specifies:

o floating point number formats,

e results of the basic floating point operations,

e rounding modes,

e signed zero, infinity+o0) and not-a-number (NaN),
e floating point exceptions and their handling and

e conversion between formats.
Thankfully, nowadays almost all machines use IEEE arithmetic. There iaglspneric ANSI/IEEE,

base independent, standard [IEEE, 1987]. The formats supportbd B\NSI/IEEE binary standard
are indicated in Table/ 1.

Format | Precision| Exponent| Approx Range| Approx Precision
Single 24 bits | 8 bits 10+38 1078

Double | 53 bits | 11 bits | 10%30% 10716

Extended| > 64 bits | > 15 bits | 10%4932 10-20

Table 1: IEEE Arithmetic Formats

The default rounding mode for IEEE arithmeticrimund to nearestin which a real number is
represented by the nearest floating point number, with rules as to howntteeha tie [Overton,
2001, Chapter 5].

Whilst the ANSI/IEEE standard has been an enormous help in standardlizatijpg point com-
putation, it should be noted that moving a computation between machines that impl&&&
arithmetic does not guarantee that the computed results will be the same. Yiar@iooccur due
to such things as compiler optimization, the use of extended precision registdrisised multiply-
add.

Further discussion of floating point numbers and IEEE arithmetic can el fmuHigham [2002]
and Overton [2001].

The valueu can be obtained from the LAPACK function SLAMCH, for single precisiathanetic,
or DLAMCH for double precision arithmetic by calling the function with the argntm@MACH
as’'e’ , and is also returned by the NAG Fortran Library routine X02AJEshould be noted that
on machines that truncate, rather than roung,is returned in place of, but such machines are
now rare. It should also be noted that 'e’ in S/IDLAMCH represes, but this should not be

1ln some ports it actually returns+ b ~2t. See the X02 Chapter introduction [NAG, b].

http://www.nag.co.uk/numeric/fl/manual/html/X02/x02_conts.html

3 WHY WORRY ABOUT COMPUTED SOLUTIONS? 5

confused withey,. The Matlab built in variableps returnse,, [MathWorks], as does the For-
tran 95/Fortran 2003 numeric enquiry functiepsilon [Metcalf and Reid, 1996; Metcalf et al.,
2004].

3 Why Worry about Computed Solutions?

In this section we consider some simple examples of numerical computation dubtare in order
to obtain reasonable solutions. For clarity of exposition, most of the exampligés and the
following sections are illustrated using decimal floating point (significantrégarithmetic, with
round to nearest.

The first example illustrates the problem of damaging subtraction, usuadiyedfto asancella-
tion.

Example 3.1 (Cancéllation)
Using four figure decimal arithmetic, suppose we wish to compute 1.000 + 1.000 x 10* —
1.000 x 10%. If we compute in the standard way from left to right we obtain

s = 1.000 + 1.000 x 10* — 1.000 x 10* = (1.000 + 1.000 x 10%) — 1.000 x 10*
= 1.000 x 10* — 1.000 x 10* = 0,

instead of the correct result ©f0. Although the cancellation (subtraction) was performed exactly,
it lost all the information for the solution.

As Example 3.1 illustrates, the cause of the poor result often happene bega@ancellation, and the
cancellation is just the final nail in the coffin. In Example 3.1, the damage w@s ith computing
s = 1.000 + 1.000 x 104, where we lost important informatiori.(000). It should be said that the
subtraction of nearly equal numbers is not always damaging.

Most problems have alternative formulations which are theoretically elguitydout may computa-
tionally yield quite different results. The following example illustrates this in tleee @d computing
sample variances.

Example 3.2 (Sample variance [Higham, 2002], Section 1.9)
The sample variance of a setrofaluesxy, zo, . . ., x, is defined as

§2 = ﬁ S (@i — 2%, @)
=1

wherez is the sample mean of thevalues

n
_ 1
r = — E Zi.
n-
=1

An alternative, theoretically equivalent, formula to compute the sample veriahéch requires
only one pass through the data is given by

n n 2
1 Z 1 Z
Si:n_l z‘:1x?_n< xl) ' <

i=1

3 WHY WORRY ABOUT COMPUTED SOLUTIONS? 6

If zT = (10000 10001 10002) then using 8 figure arithmetic (2) give$ = 1.0, the correct
answer, but (3) gives® = 0.0, with a relative error of 1.0.

(3) can clearly suffer from cancellation, as illustrated in the example. Ootltez hand, (2) always
gives good results unlessis very large [Higham, 2002, Problem 1.10]. See also Chan et al. [1983]
for further discussion of the problem of computing sample variances.

Sadly, it is not unknown for software packages and calculators to impletmelgorithm of (3).
For example in Excel 2002 from Microsoft Office XP (and in previoussians of Excel also), the
function STDEV computes the standard deviatigrgf the data

T = (100000000 100000001 100000002)

ass = 0. Considering the pervasive use of Excel and the importance of sthddaiation and its
use in applications, it is disappointing to realise that (3) has been useddgy\besions of Exc:%LFI
See Cox et al. [2000] for further information, as well astisal [1998], McCullough and Wilson
[1999] and McCullough and Wilson [2002]. The spreadsheet frorar@ffice.org version 1.0.2
produces the same result, but gives no information on the method used itpitsysem; on the
other hand the Gnumeric spreadsheet (version 1.0.12) gives thetamsalt, although again the
function description does not describe the method dsed.

A result that is larger than the largest representable floating point numbaid tooverflow For
example, in double precision |IEEE arithmetic for which the approximate rang@&-%%, if =
10290, thenz? would overflow. Similarly,z~2 is said tounderflowbecause it is smaller than the
smallest non-zero representable floating point number.

As with the unit rounding error or machine epsilon discussed in Section By#tdlow and under-
flow thresholds can be obtained from the LAPACK function S/IDLAMCH bililcg the function
with the argument CMACH a®’ and’'u’ respectively; from the NAG Fortran Library routines
X02ALF and X02AKF respectively; the Matlab built in variablesalmax andrealmin ; and
from the Fortran 95 numeric enquiry functiongge andtiny

Care needs to be taken to avoid unnecessary overflow and damagiedlawd The following
example illustrates this care in the case of computing the hypotenuse of themgjed triangle
shown in Figure 2.

, 2= VTR

x
Figure 2: Hypotenuse of a right angled triangle

2The algorithm has at last been replaced in Excel from Office 2003 hwtow gives the correct answer.
30penOffice.org version 2.0 also now gives the correct result.

3 WHY WORRY ABOUT COMPUTED SOLUTIONS? 7

Example 3.3 (Hypotenuse)
In Figure 2, ifx ory is very large there is a danger of overflow, evenig representable. Assuming
thatx andy are non-negative, a safe method of computirig

a = max(z,y), b = min(z,y)

0, a=0.

This also avoids being computed as zeroaf andy? both underflow. We note that Stewart [1998,
p.139 and p.144] actually recommends computirag

P (2)® + ()%, wheres =z +y, s>0
0, s=0

because this is slightly more accurate on a hexadecimal machine. An interaiggimgptive for
computing Pythagorean sums is given in Moler and Morrison [1983]; Isedaubrulle [1983] and
Higham and Higham [2005, section 22.9] .

We can see that (3) of Example 3.2 also has the potential for overflowratatflow and, as well as
implementing this formula rather than a more stable version, Excel does nah&kecessary care
to avoid underflow and overflow. For example, for the values (1.0ERO&200), STDEV in Excel

2003 from Microsoft Office 2003 returns the mysterious syn#iddlUM!, which signifies a numeric
exception, in this case overflow, due to the fact {H&t02°°)2 overflows in IEEE double precision
arithmetic. The correct standard deviation is of course 0. Similarily, for éheeg (0, 1.0E-200,

2.0E-200), STDEYV returns the value 0 rather than the correct valudd&f200. OpenOffice.org
version 1.0.2 also returns zero for this data, and overflows on the peegiata. Mimicking Excel

is not necessarily a good thirfg!

The computation of the modulus of a complex number x, + ix; requires almost the same
computation as that in Example 3.3.

Example 3.4 (Modulus of a complex number)

|z = /a2 + 7.

a = max(|z,|, |z;|), b = min(|z,|, |zi|)
b\2
|I”: a\/1+(a), a>0
, a=0.
Again this also avoidsr| being computed as zeroaif andz? both underflow.
Another example where care is needed in complex arithmetic is complex division
T T tim (zy + i) (yr — 1y5)

Yy oy + iy Y2+ y?

“OpenOffice.org version 2.0 now produces the correct result éodéta (1.0E200, 1.0E200), but underflows for (O,
1.0E-200, 2.0E-200).

3 WHY WORRY ABOUT COMPUTED SOLUTIONS? 8

Again, some scaling is required to avoid overflow and underflow. Seextample Smith [1962],
Stewart [1985] and Priest [2004]. Algol 60 procedures for the derpperations of modulus, divi-
sion and square root are given in Martin and Wilkinson [1968] and th& N#Avrary Chapter, A02,
for complex arithmetic has routines based upon those Algol procedeefisexample NAG [b].
A careful C function is given in the Priest reference above. Occabipsome aspect of complex
floating point arithmetic is incorrectly implemented, see for example Blackfoat Et997, Section
7.

Another example, similar to the previous examples, requiring care to avoitlav@nd damaging
underflow is that of real plane rotations where we need to computecos # ands = sin # such

that
c= E, s = g, wherez = /a2 4 y?
2 z

or alternatively
c=—, 8= —.
z

Another convenient way to express the two choices is as

+1
V1 t2

If G is theplane rotation matrix

c= s =ct, wheret =tanf = - . (4)
Yy

then, with the choices of (4),
T +z
“(0)-(0)
When used in this way for the introduction of zeros the rotation is generathetaGivens plane
rotation [Givens, 1954; Golub and Van Loan, 1996]. Givens himself certairdi tare in the com-
putation ofc ands. To see an extreme case of the detailed consideration necessary to impgement
seemingly simple algorithm, but to be efficient, to preserve as much accigrpogsible throughout

the range of floating point numbers, and to avoid overflow and damagueyflow see Bindel et al.
[2002], where the computation of the Givens plane rotation is fully disclsse

Sometimes computed solutions are in some sense reasonable, but may nait beewiser was
expecting. In the next example, the computed solution is close to the exatibisphut does not
meet a constraint that the user might have expected the solution to meet.

Example 3.5 (Sample mean [Higham, 1998])
Using three figure floating point decimal arithmetic:

(5.01 +5.03)/2 = 10.0/2 = 5.00

and we see that the computed value is outside the range of the data, althougit inaccurate.

Whether or not such a result matters depends upon the application, busisua that needs to be
considered when implementing numerical algorithms. For instance if

Y = CcosS T

4 CONDITION, STABILITY AND ERROR ANALYSIS 9

then we probably expect the propefty < 1 to be preserved computationally, so that a value
ly| > 1is never returned. For a monotonic function we may expect monotonicity todsewed
computationally.

In the next section we look at ideas that help our understanding of whatitutes a quality solution.

4 Condition, Stability and Error Analysis

4.1 Condition

Firstly we look at the condition of a problem. Tleenditionof a problem is concerned with the
sensitivity of the problem to perturbations in the data. A problem is ill-conditohemall changes
in the data cause relatively large changes in the solution. Otherwise amrisbleell-conditioned.
Note that condition is concerned with the sensitivity of the problem, and is @mtEmt of the
method we use to solve the problem. We now give some examples to illustrate saimiwh
conditioned problems.

Example 4.1 (Cubic equation)
Consider the cubic equation

23 — 2122 + 1202 — 100 = 0,

whose exact roots atg = 1,z = x3 = 10. If we perturb the coefficient of® to give
0.992% — 2122 + 1202 — 100 = 0,

the roots become; =~ 1.000, x5 ~ 11.17,z3 = 9.041, so that the changes in the two roatsand
x3 are significantly greater than the change in the coefficient. On the othdr ttenroots of the
perturbed cubic equation

1.012% — 2122 + 1202 — 100 = 0,

arex; ~ 1.000, x9,x3 =~ 9.896 + 1.0444, and this time the double root has become a complex
conjugate pair with a significant imaginary part.

We can see that the roats andxs are ill-conditioned. Note that we cannot deduce anything about
the condition ofc; just from this data. The three cubic polynomials are plotted in Figure 3.

Example 4.2 (Eigenvalue problem)

The matrix
10 100 O 0
0 10 100 O
0 0 10 100
0 0 0 10

has eigenvalueks, = Ao = A3 = A4 = 10, whereas the slightly perturbed matrix

A=

10 100 O 0

0 10 100 O

0 0 10 100
1075 0 0 10

4 CONDITION, STABILITY AND ERROR ANALYSIS 10

150

100

50~

-100 L L L I I
0 2 4 6 8 10 12

Figure 3: Cubic Equation Example

has eigenvalues; = 11, Ao, A3 =10+14, \y = 0.

Example 4.3 (Integral)

10
I —/ (aex — be*x) dzx

—10
Whena =b=1, I =0, butwherm = 1,b = 1.01, I ~ —220. The functionf(z) = ae® — be™ 7,
whena = b = 1 is plotted in Figure 4. Notice that the vertical scale has a scale fagtoso that a
small change in function can make a large change in the area under tiee curv

25

15K

25 I I I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 4: Integral Example

4 CONDITION, STABILITY AND ERROR ANALYSIS 11

Example 4.4 (Linear equations)
The equationsiz = b given by

99 98\ [x1\ _ [197
(100 o) (52) = (100 ®
have the solution; = x5 = 1, but the equations
98.99 98\ [x1\ _ (197
100 99) \zo/) \199

have the solution:; = 100,22 = —99. The two straight lines represented by (5) are plotted in
Figure 5, but to the granularity of the graph we cannot tell the two lines.apar

20

—60|

801

-100 1 1 1 1 1 1 1 1 I
0 10 20 30 40 50 60 70 80 90 100

Figure 5: Linear Equations Example

To be able to decide whether or not a problem is ill-conditioned it is clearlyat#s to have some
measure of the condition of a problem. We show two simple cases where webtan such a
measure, and quote the result for a third example. For the first caseiwe tthe condition number
for the evaluation of a function of one variable [Higham, 2002, Section 1.6]

Lety = f(x) with f twice differentiable and’(z) # 0. Also lety = f(z + ¢). Then, using the
mean value theorem

g-y = flet+te—fl)

— fla)e+ fw(”’z!*ee)e’{ 6 (0,1)
giving
J-—y _(xf'(x)\ € .2
= () sro@
The quantity
f(z)

4 CONDITION, STABILITY AND ERROR ANALYSIS 12

is called thecondition numbenf f since
M ~ ‘E‘
‘ " ‘ Kl(.’]?) - .

Thus if x(x) is large the problem is ill-conditioned, that is small perturbations @an induce large
perturbations in the solution

Example 4.5
Lety = f(x) = cosx. Then we see that

k(z) = |z tan x|

and, as we might expectps x is most sensitive close to asymptotessaf x, such asc close to
w/QE If we takex = 1.57 ande = —0.01 then we find that

k() ‘E‘ ~ 12.5577,
T
which is a very good estimate dfj — y)/y| = 12.55739. . ..

For the second example we consider the condition number of a system ofdoegtionsdz = b.
If we let & be the solution of the perturbed equations

(A+ E)t = b,

then

A(z —z) = —Ez, sothatt —z = —A"'Ex,
giving

|2 — =| 4 1y 1E]

L < ATY - IEN = (JA] - A7) e (6)

o S 1A IEL = (A A7) o

The quantity

k(A) = [|A]l - [lA7H

is called the condition number of with respect to the solution of the equatioAs = b, or the
condition number of4 with respect to matrix inversion. Sinde= AA~!, for any norm such that
III]| = 1, we have that < x(A), with equality possible for thé, 2 andoco norms. If A is singular
thenk(A) = oc.

Example 4.6 (Condition of matrix)
For the matrix of Example 4.4 we have that

99 98

(99 98
A _<—1oo 99)

®The given condition number is not valid at= /2, sincecos 7/2 = 0.

and

A7, = 199,

4 CONDITION, STABILITY AND ERROR ANALYSIS 13

so that
r1(A) = 199% ~ 4 x 10%.

Thus we can see that if is only accurate to about 4 figures, we cannot guarantee any agéarac
the solution.

The term condition number was first introduced by Turing in the contexysiems of linear equa-
tions [Turing, 1948]. Note that for an orthogonal or unitary ma@ix:»(Q) = 1.

As a third illustration we quote results for the sensitivity of the root of a patyiab Consider
f(d,’) = apz" + an—lxnil + ...+ a1z + ao,

and leta be a single root off (x) so thatf(a) = 0, but f'(a)) # 0. Let p(z) be the perturbed
polynomial

p(x) = f(x) + eg(m), g(x> = bpa" + bn—lxn_l + ...+ b1z + by,
with rooté = « + 6, so thatp(&) = 0. Then [Wilkinson, 1963, Section 7, Chapter 2] shows that

eg(a)
fla)]

Wilkinson also shows that if is a double root then

0] =

()|

Example 4.7 (Condition of roots of cubic equation)
For the rootv = x1 = 1 of the cubic equation of Example 4.1, wihr) = z3 ande = —0.01, we
have

0] =~

f(z) = 3% — 422 4 120

so that
—0.01 x 13

81

and hence this root is very well-conditioned with respect to perturbatiotigigoefficient of:>.
On the other hand, for the double reot= 10, we have

|0] ~ ‘ ~ 0.0001

f"(z) = 62 — 42,
so that

~ 1.054

<—2 x —0.01 x 103>5

o ~

and this time the perturbation eproduces a rather larger perturbation in the root. Becaisaot
particularly small the estimate 6fis not particularly accurate, but we do get a good warning of the
ill-conditioning.

4 CONDITION, STABILITY AND ERROR ANALYSIS 14

Higham [2002, Section 25.4] gives a result for the sensitivity of a rbatgeneral nonlinear equa-
tion.

Problems can be ill-conditioned simply because they are poorly scaled asftbe result of a poor
choice of measurement units. Some algorithms, or implementations of algoritherissansitive

to scaling or attempt automatic scaling, but in other cases a good choicdinfszm be important
to the success of an algorithm. It is also all too easy to turn a badly scalelépranto a genuinely
ill-conditioned problem.

Example 4.8 (Badly scaled matrix)

If we let A be the matrix
4o (2% 10° 10°
“ L1007 2x1079)°

thenks(A) ~ 1.67 x 10'8 and soA is ill-conditioned. However we can row scafeas

107 0 /2x10° 10° 2 1
B_DA_< 0 109> (1079 2><10—9> - <1 2)’
for which k2(B) = 3, so thatB is well-conditioned. On the other hand if we perform a plane
rotation onA with ¢ = 0.8, s = 0.6 we get

0.8 0.6\ /2 x 10? 109
C=GA = (—0.6 0.8>< 1079 2><10—9>

_ 8x1084+3x 10710 4x10®+6x 10710
- —6x108+4x 10710 —3x10848x10719/"

SinceG is orthogonaly,(C) = r2(A) ~ 1.67 x 108, and saC is of course as ill-conditioned as
A, but now scaling cannot recover the situation. To see(thigtgenuinely ill-conditioned, we note

that
N g [8 4
C=~2x10 (—6 _3

which is singular. In double precision IEEE arithmetic, this would be the flogtingt representa-
tion of C.

Many of the LAPACK routines perform scaling, or have options to equiléotlhe matrix in the case
of linear equations [Anderson et al., 1999, Sections 2.4.1 and 4.4.ighdkh, 2002, Sections 7.3
and 9.8], or to balance in the case of eigenvalue problems [AndersbnE329, Sections 4.8.1.2
and 4.11.1.2].

42 Stability

The stability of a method for solving a problem is concerned with the sensitivity of the mdthod
(rounding) errors in the solution process. A method that guaranteescasate a solution as the
data warrants is said to be stable, otherwise the method is unstable. To empinagisint we note
that, whereas condition is concerned with the sensitivity of the problem, stabitigncerned with
the sensitivity of the method of solution.

4 CONDITION, STABILITY AND ERROR ANALYSIS 15

An example of an unstable method is that of (3) for computing sample varisve@ow give two
more simple illustrative examples.

Example 4.9 (Quadratic equation)
Consider the quadratic equation

1.62% — 100.1z + 1.251 = 0.

Four significant figure arithmetic when using the standard formula

. —b+ Vb? — dac
- 2a

gives
x1 = 62.53, x9 = 0.03125.

If we use the relationship,xo = c/a to computer, from x; we instead find that
ro = 0.01251.

The correct solution ig1 = 62.55, z0 = 0.0125. We can see that in using the standard formula to
compute the smaller root we have suffered from cancellation, sibée- 4ac is close to(—b).

Even a simple problem such as computing the roots of a quadratic equatasgreat care. A very
nice discussion is to be found in Forsythe [1969].

Example 4.10 (Recurrence relation)
Consider the computation gf, defined by

1
Yn = (1/8)/0 a"e"dr, (7)

wheren is a non-negative integer. We note that, since in the intebval, (1/e)e” is bounded by
unity, it is easy to show that
0<y, <1/(n+1). (8)

Integrating|(7) by parts gives
Yn=1—nyn_1, yo = 1 — 1/e = 0.63212055882856. . . 9)

and we have a seemingly attractive method for computjnipr a given value of.. The result of
using this forward recurrence relation, with IEEE double precision aritiairte compute the values
of y; up toys; is shown in Table 2. Bearing in mind the bounds of (8), we see that laters/ahee
diverging seriously from the correct solution.

A simple analysis shows the reason for the instability. Sifsceannot be represented exactly, we
cannot avoid starting with a slightly perturbed valgg, So let

Yo = Yo + €.

4 CONDITION, STABILITY AND ERROR ANALYSIS 16

Yo Al Y2 Y3 Yq Ys Yo yr
0.6321| 0.3679| 0.2642 | 0.2073| 0.1709 0.1455 | 0.1268| 0.1124
Ys Y9 Y10 Y11 Y12 Y13 Y14 Y15
0.1009| 0.0916| 0.0839 | 0.0774| 0.0718 0.0669 | 0.0627| 0.0590
Y16 Y17 Y18 Y19 Y20 Y21
0.0555| 0.0572| -0.0295| 1.5596| -30.1924| 635.0403

Table 2: Forward Recurrence fgy,

Then, even if the remaining computations are performed exactly we see that

1 = 1l—9o = y1—c¢
Yo = 1=2y1 = y2+2€
ys = 1—3y2 = y3— 6be
ya = 1—4ys = ys+ 24e

and a straightforward inductive proof shows that
Yn = Yn + (—=1)"nle.

Whenn = 21,n! =~ 5.1091 x 10'°. We see clearly that this forward recurrence is an unstable
method of computing,,, since the error grows rapidly as we move forward.

The next example illustrates a stable method of computing

Example 4.11 (Stablerecurrence)
Rearranging (9) we obtain the backward recurrence

Yn—1 = (L= yn)/n,
Suppose that we have an approximatif, ., t0 y,+. and we let
Yn+m = Yntm T €.
Then, similarly to the result of Example 4.10, we find that

(-1 ne
n+m)(n+m-—1)...(n+1)

Qn:yn+(

and this time the initial error decays rapidly, rather than grows rapidly asamigie 4.10. If we
take an initial guess afy; = 0, we see from (8) that

le| < 1/21 < 0.05.
Using this backward recurrence relation, with IEEE double precisionmaeitie, gives the value
1o = 0.63212055882856,

which is correct to all the figures shown. We see that this backwardresme is stable.

4 CONDITION, STABILITY AND ERROR ANALYSIS 17

It should also be said that the integral|of (7) can be evaluated stably wiffficulty using a good
numerical integration (quadrature) formula, since the funcfiorn) = (1/e)x"e" is non-negative
and monotonic throughout the interyal 1].

In the solution of ordinary and partial differential equations one fornmefability can arise by
replacing a differential equation by a difference equation. We first iitisstthe problem by the
solution of a simple nonlinear equation.

Example 4.12 (Par asitic solution)
The equation
e " =99z (10)

has a solution close to= 0.01. By expanding:—" as a power series we have that

2 .’L‘3 2

—r _ —_ 1'7_7 ~ _ £
et =1 :1:+2! 3!+...~1 :1:+2!

and hence an approximate solution of (10) is a root of the quadratic equatio
2% — 200z 42 =0,

which has the two roots; ~ 0.0100005, z2 ~ 199.99. The second root clearly has nothing to do
with the original equation and is callegbar asitic solution.

In the above example we are unlikely to be fooled by the parasitic solutiorg iga clearly does
not come close to satisfying (10). But in the solution of ordinary or parifédrential equations
such bifurcations, due to truncation error, may not be so obvious.

Example 4.13 (Instability for ODE)
For the initial value problem

Y = f(z,y), y = yo whenz = x, (11)

the mid-point rule, or leap-frog method, for solving the differential equasaiven by

Yr41l = Yr—1 + 20 fr, (12)

whereh = x; — x;_1 for all i andf, = f(x,,y,). This method has a truncation error@th?)
[Isaacson and Keller, 1966, Section 1.3, ChaptérT8jis method requires two starting values, so
one starting value must be estimated by some other method. Consider the ease wh

f(xay):aya yOZ]-a :EOZO,

so that the solution of (11) ig = e**. Figures 6 and 7 show the solution obtained by using (12)
whenh = 0.1 for the cases: = 2.5 anda = —2.5 respectively. In each case the valueyofis
taken as the correct four figure value,= 1.284 whena = 2.5 andy; = 0.7788 whena = —2.5.

We see that in the first case the numerical solution does a good job in follohérgxact solution,
but in the second case oscillation sets in and the numerical solution divergethe exact solution.

SHere it is called the centered method. It is an example of a Biystmethod.

4 CONDITION, STABILITY AND ERROR ANALYSIS 18

The reason for the behaviour in the above example is that (12) has thie@solu
I\NT 1\T
yr=A(ah+ (1+a%?)?) + B (ah— (1+a%?)?) | (13)

where A and B are constants that depend on the intial conditions. With the initial conditioes
1,70 = 0 andy; = ", z; = h we find thatd = 1 + O(h®), B = O(h3). We can see that the
first term in (13) approximates the exact solution, but the second termaisaaific solution. When
«a > 0 the exact solution increases and the parasitic solution decays, and smisds but when
a < 0 the exact solution decays and the parasitic solution grows as illustrated ire Figu An

500

450 -

400 -

350

300

250

200

150

100

50

I I I
0 0.5 1 15 2 25

Figure 6: Stable ODE Example

0.5

Figure 7: Unstable ODE Example

entertaining discussion, in the context of the Milne-Simpson method, of thegdleenomenon is

4 CONDITION, STABILITY AND ERROR ANALYSIS 19

given in Acton [1970, Chapter 5], a book full of good advice and insighmore recent book by
Acton in the same vein is [Acton, 1996].

4.3 Error Analysis

Error analysisis concerned with analysing the cumulative effects of errors. Usualletbasrs
will be rounding or truncation errors. For example, if the polynomial

p(x) = po + pr1z + pax? + -+ ppa”

is evaluated at some point= « using Horner's scheme (nested multiplication) as

pla) =po+api+- -+ a2+ (P +apy))...),

we might ask under what conditions, if any, on the coefficigt®1, ..., p, anda, the solution
will, in some sense, be reasonable? To answer the question we needtonp@nferror analysis.

Error analysis is concerned with establishing whether or not an algoritstatte for the problem

in hand. Aforward error analysigs concerned with how close the computed solution is to the exact
solution. Abackward error analysiss concerned with how well the computed solution satisfies
the problem to be solved. On first acquaintance, that a backwardasratysis, as opposed to a
forward error analysis, should be of interest often comes as a surpti® next example illustrates
the distinction between backward and forward errors.

Example 4.14 (Linear equations)

Let
99 98 1
A= (100 99> and b = (1> .
Then the exact solution of the equatiohs = b is given by
(1

r = 1)
Also leti be an approximate solution to the equations and defineedidual vectorr as

r=>b— Az. (14)

Of course, for the exact solution= 0 and we might hope that for a solution closexto- should be
small. Consider the approximate solution

. (297 (197
= (_2.99> , forwhich & — z = <_1.99> ;

and sat looks to be a rather poor solution. But for this solution we have that

L (001
—\ 0.01

4 CONDITION, STABILITY AND ERROR ANALYSIS 20

and we have almost solved the original problem. On the other hand thexappgte solution

. 1.01 . . 0.01
T = <0‘99> , forwhich & — x = <0.01) ,

(LT
197

and, although: is close tar, it does not solve a problem close to the original problem.

gives

Once we have computed the solution to a system of linear equations b we can, of course,
readily compute the residual of (14). If we can find a maffisuch that

Ei=r, (15)

then
(A+E)t =10

and we thus have a measure of the perturbatiod irequired to make: an exact solution. A
particularE that satisfies (15) is given by

B rzT
2Ty
From this equation we have that
2T 123 11,

and from (15) we have that

. gl
I7[ly < [IEl,llZ]l,, sothat|Ell, > =2
12|
and hence i
r
1Elly = =
12|

Thus, this particulaf? minimizes| E||,. SincezTz = |||, it also minimizesE in the Frobenius
norm. This gives us aa posterioribound on the backward error.

Example 4.15 (Perturbation in linear equations)
Consider the equationtx = b of Example 4.14 and the ‘computed’ solution

. (297 . (-0.01
T = <_2.99) for which r = (0.01))

T <—0.0297 0.0299

Then

A _ ~Ta
"=\ 0.0207 —0.0299) , &2 =17.761

4 CONDITION, STABILITY AND ERROR ANALYSIS 21

and
B (—0.00167 0.00168)

0.00167 —0.00168

Note that|E| ./ || Al = 1.695x10~° and so the computed solution corresponds to a small relative
perturbation inA.

From (6) we have that
|7 =2l _) IEl
[/ — 1Al
and so, if we knows(A), then an estimate of the backward error allows us to estimate the forward
error.

As a general rule, we can say that approximately:

forward error< condition numberx backward erroﬁ.

Although the idea of backward error analysis had been introduced leysptih was James Hardy
Wilkinson who really developed the theory and application, and gave usnal@rstanding of error
analysis and stability, particularly in the context of numerical linear algebea. the classic books
Wilkinson [1963] and Wilkinson [1965]. A typical picture of Wilkinson, aéully expounding his
ideas, is shown in Figure 8. A wonderful modern book that continues téndon tradition is
Higham [2002]. The solid foundation for the numerical linear algebradsdyaelies heavily on the
pioneering work of Wilkinson; see also Wilkinson and Reinsch [1971]

Wilkinson recognised that error analysis could be tedious and oftenreelggreat care, but was
nevertheless essential to our understanding of the stability of algorithms.

“The clear identification of the factors determining the stability of an algorithm
soon led to the development of better algorithms. The proper understarfdingrse
iteration for eigenvectors and the development of the QR algorithm by Brarethe
crowning achievements of this line of research.

“For me, then, the primary purpose of the rounding error analysis waghiris
[Wilkinson, 1986, p. 197.]

As a second example to illustrate forward and backward errors, conggeonsider the quadratic
equation of Example 4.9.

Example 4.16 (Errorsin quadratic equation)
For the quadratic equation of Example 4.9 we saw that the standard fornwalatgarootst, =
62.53, x5 = 0.03125. Since the correct solution is = 62.55, xo = 0.0125 the second root has a

’In Givens 1954 technical report quoted earlier [Givens, 1954]chvtvas never published in full and must be one
of the most oft quoted technical reports in numerical analysis, as weleaintroduction of Givens plane rotations, it
describes the use of Sturm sequences for computing eigenvaluedaijdridl matrices, and contains probably the first
explicit backward error analysis. Wilkinson, who so successfully idgezi and expounded the theory and analysis of
rounding errors, regarded ttaepriori error analysis of Givens as “one of the landmarks in the history of thgesti
[Wilkinson, 1965, Additional notes to Chapter 5].

4 CONDITION, STABILITY AND ERROR ANALYSIS 22

Figure 8: James Hardy Wilkinson (1919 — 1986)

large forward error. If we form the quadratjGr) = 1.6(x — x1)(x — x2), rounding the answer to
four significant figures, we get

q(z) = 1.62% — 100.1z + 3.127

and the constant term differs significantly from the original value of 1.861that there is also a
large backward error. The standard method is neither forward némwiaad stable. On the other
hand, for the computed roats = 62.53, x5 = 0.01251 we get

q(z) = 1.62% — 100.1z + 1.252,

so this time we have both forward and backward stability.

An example of a computation that is forward stable, but not backward statilat of computing
the coefficients of the polynomial

p(x)=(r—x1)(x —x2) ... (T —), ; >0

In this case, since the are all of the same sign, no cancellation occurs in computing the coefficients
of p(x) and the computed coefficients will be close to the exact coefficigmis we have small
forward errors. On the other hand, as Example 4.1 illustrates, the rogslpfomials can be
sensitive to perturbations in the coefficients and so the roots of the compolgtbmial could
differ significantly fromzq, xo, . .., z,.

Example 4.17 (11I-conditioned polynomial)
The polynomial whose roots ate = i,i = 1,2,...,20, is

p(z) = 2% — 2102 + ... 4 20!

5 FLOATING POINT ERROR ANALYSIS 23

Suppose that the coefficient of° is computed as-(210 + 2723); then we find thatrig, v17 ~
16.73 + 2.813i. Thus a small error in computing a coefficient produced a polynomial withifsig
cantly different roots from those of the exact polynomial. This polynomidiisussed in Wilkinson
[1963, Chapter 2, Section 9] and Wilkinson [1984]. See also Wilkins88%1 Section 2].

5 Floating Point Error Analysis

Floating point error analysids concerned with the analysis of errors in the presence of floating
point arithmetic. It is based on the relative errors that result from easie bperation. We give just
a brief introduction to floating point error analysis in order to illustrate thesdea

Let = be a real number; then we use the notati¢n)fto represent the floating point valueaaf The
fundamental assumption is that

1l () = 2(1+¢), |e| < u (16)

whereu is the unit roundoff of/(1). Of course,

fl () — =z

= €.

A useful alternative is

x fl (z) —x

Example 5.1 (Floating point numbers)
Consider four figure decimal arithmetic with

1
u:§><10_3:5><10_4.

If v = /2 = 1.414213. .. then f(z) = 1.414 and

M) =) 15% 104,
X

rerz\

If z =1.000499. .. then flz) = 1.000 and

fl(z) —
le| = @) —= ~5x107 = u.
x

If z = 1000.499. .. then f(x) = 1000 and again

fl(xz) —
le| = (:le ~5x 107" =u.

5 FLOATING POINT ERROR ANALYSIS 24

Bearing in mind|(16), ifr andy are floating point numberghen the standard model of floating
point arithmetic, introduced by Wilkinson [1960], is given by

fllz®@y) =(x@y)(1+e), | <u,
(18)
where® = +, —, x, +.

It is assumed, of course, that y produces a value that is in the range of representable floating
point numbers. Comparable to (17), a useful alternative is

TRy

fl(x®y):m,

19] < w.
When we consider a sequence of floating point operations we frequastdjn products of error
terms of the form
I+e)=14e)1+e)...(1+¢)
so that
(1-u)" <14+e<(1+u).

If we ignore second order terms then we have the reasonable assumaﬁon th

le| < ru. (19)

We now give three illustrative examples. In all three examplesrihere assumed to be floating
point numbers, that is, they are values that are already representesl ¢ortiputer. This is, of
course, a natural assumption to make when we are analysing the errasrirpatation.

Example 5.2 (Product of values)
Letx = xoz; ...z, andz = fl(x). Thus we have products to form, each one introducing an error
bounded by.. Hence from| (18) we get

.f::E0£C1(1+€1)x2<1+62)...$n(1—|—6n), |61| <u (20)

and from (19) we see that
z=z(l+e), | <nu, (21)

where
I+e=(14+e)1+e)...(1+epn).

We can see from (21) that this computation is forward stable, becausedtitt is close to the
exact result, and from (20) the computation is also backward stableysethe result is exact
for a slightly perturbed problem; that is the result is exact for the dgtaq(1 + €1),x2(1 +
€2)y .y n(1+ €,).

8Those who are uncomfortable with the approximation may prefer to reftacbounde| < ru with one of the form
le| < 7y, wherey, = (ru)/(1 — ru) andru < 1is assumed. See Higham [2002], Lemma 3.1.

5 FLOATING POINT ERROR ANALYSIS 25

Example 5.3 (Sum of values)
Lets =z + 22+ ...+ x, ands = fl(s). By considering

Sp="M(sp—1+x), $1=11
it is straightforward to show that

s = 1'1(1—|—61)+$2(1—|—61)+$3(1+62)+...+xn(1+6n_1)
= s+ (z1€1 + xo€1 + 2€a + ...+ Tp€n_1), & < (n—r+ 1)u.

Here we see that summation is backward stable, but is not necessarigrdastable. Example 3.1
gives a case where summation is not forward stable, but notice that thestzmhgplution is the
exact solution of the slightly perturbed problem

1.000 4 1.000 x 10* — 1.0001 x 10* = 0,

which illustrates the backward stability.

Note that if thex; all have the same sign, then summation is forward stable because
15 —s| < (|Jz1| + |x2| + ... + |zn])nu = |s|nu

so that
|3 — 5]

<nu, s #0.
sl

Example 5.4 (Difference of two squares)
Consider the computation

z=x? — > (22)
We can, of course, also expresas
z=(z+y)(z—y). (23)
If we computez from (22) we find that
z = fl (x2 - y2) =22(14¢) —y*(1 +)

= z-+ ($2€1 - y2€2)a €1, €2 < 2u

and so this is backward stable, but not forward stable. On the other iharsicompute: from (23)
we find that

N>

= iz +y)(r—y) =@+y)(z-y)(1+e)
= z(l+4+e€), e<3u

and so this is both backward and forward stable. As an example, if we take
x = 543.2, y = 543.1, so thatz = 108.63
and use four significant figure arithmetic we find that
Z =100, but z = 108.6.

Clearlyz has suffered from cancellation, buhas not.

5 FLOATING POINT ERROR ANALYSIS 26

We now quote some results, without proof, of solving higher level lineagtaly problems to il-
lustrate the sort of results that are possible. Principally we consider thigosoof then linear
eqguations

Ar=b (24)

by Gaussian elimination and we assume that the reader is familiar with Gaussiaragtmimhe
kth step of Gaussian elimination can be expressed as

Ap = M P Ap_1Qp, Ag = A, (25)

where P, and@);. are permutation matrices, one or both of which may be the unit matrix, chosen to
implement whatever pivoting strategy is used adg is the multiplier matrix chosen to eliminate
the elements below the diagonal of thid column of A;_;. This results in the factorization

A= PLUQ,

where P and(@ are permutation matriceg, is a unit lower triangular matrix antl is upper trian-
gular. To simplify analysis it is usual to assume that, with hindsightas already been permuted
so that we can work withl <= PTAQT. In this case/ (25) becomes

Ap = MpAyp_1, Ap=A

andM; andA;_; have the form

r o 0 U1 w1 Xg1
Mpy=(0 1 0,4 = 0 oax1 b,
0 —my I 0 ap—1 Ar—

my, IS chosen to eliminate,_1, so that
ap—1 — ap_1my =0, giving my = ap_1/ag_1,

Aj,_; is updated as
3) T
Ak = Ak—l - mkbgfl = (ak bAk >

ap Ag
and
A= LU, whereL = M;*M;'... M ", andU = A,,_;.
Since
I 0 O
Mi'=10 1 0
0 mp 1
we have that
1 0 0 0
may 1 0 0
ma3i1 ms32 0 0
L= .
Mp—1,1 Mnp—12 1 0

5 FLOATING POINT ERROR ANALYSIS 27

It can be shown that the computed factérandU satisfy
LU =A+F,
where various bounds afi are possible; for example, for theoco or F' norms

max || Ay

IF] < 3ngullAll, g = ——7—
1]l

g is called thegrowth factor Similarly it can be shown that the computed solution|of| (24),
satisfies
(A+ E)z = b,

where a typical bound is
12| < 3n°gul|A].

We can see that this bound is satisfactory unlesslarge, so it is important to choogeor @, or
both, in order to control the size gf This is essentially the classic result of Wilkinson [1961] and
Wilkinson [1963, Section 25], where the-norm is used and the use of partial pivoting is assumed,;
see also Higham [2002, Theorem 9.5].

The next example gives a simple demonstration of the need for pivoting.

Example 5.5 (The need for pivoting)

Consider the matrix
0.001 12
A= (10 —10> '

and the use of four significant figure arithmetic. Since this is just a two by twoxmee have that
M, ! — L andM, A = U. Denoting the computed matriX by X, we find that

- 10 0.001 12 -~ (0001 12
L=L= <10000 1) U= (0 —120010> and U = < 0 —120000) !
which gives
-~ (0 0
v-v= (0 10)

-~ 0 0 -
F-LU—A-(O 10>—U—U.

and

Thus whilst||F'|| is small relative td|U ||, it corresponds to a large relative perturbatiofj ii|. On
the other hand if we permute the two rows of A to give

- 10 —10
A= <0.001 12 > ’
we have that

. 10 10 —10 - (10 —10
L_L_<0.0001 1>’U_<0 12.001) a”dU_<o 12.00)’

5 FLOATING POINT ERROR ANALYSIS

which gives

and

-~ (0 0
U_U_<0 —0.001>

-~ 0 0 ~
F=LU-A= <o —0.001> =U-U.

This time|| F'|| is small relative to bothiU || and|| A||.

If we putm = max |m;;| then we can show that

g<(1+m) L.

Partial pivoting ensures that

m < 1and hencg < 2" 1.

28

Only very special examples get anywhere near this bound, one exampl® dVilkinson being

matrices of the form

1 0
-1 1
-1 -1
A=
-1 -1
-1 -1

0 0 1 1
0 1 0 1

1 0

, forwhichU = | .
-1 .. 1 1 0 0
-1 .- -1 1 0 0

0
0

o O O

1
0

1
2
4

2n; 2
2n—1

Despite such examples, in practice partial pivoting is the method of choiteateful software
should at least include an option to monitor the growth factor.

There are classes of matrices for which pivoting is not needed to cah&growth ofg [Higham,
2002, Table 9.1]. Perhaps the most important case is that of symmetric pakifinite matrices
for which it is known a priori that growth cannot occur, and so Gawmsslignination is stable when
applied to a system of equations for which the matrix of coefficients is symmesitve definitg.

The choice of pivots is affected by scaling and equilibration, and a guaice of scaling can lead
to a poor choice of pivots. A full discussion on pivoting strategies, eqatiibn and scaling, as well
as sage advice, can be found in Higham [2002].

For methods that use orthogonal transformations we can usually obtain ssmdarbounds, but
without the growth factor, since orthogonal transformations preseev@-tmorm andF—norm.
For example, if we use Householder transformations to perfotpRafactorization of A for the
solution of the least squares problenin, |b — Az||,, whereA is anm by n,m > n matrix of
rankn [Golub, 1965], the computed solutiansatisfies

min [|(b+ f) = (A + E)Z],,

wheref and E satisfy bounds of the form

1fllp < cxmnulbllp, [Ellp < comnul[All .

The variant of Gaussian elimination that is usually used in this ca8hadgesky’s methad

6 POSING THE MATHEMATICAL PROBLEM 29

andc; andce are small integer constants [Lawson and Hanson, 1995, page 90].

Similarly, for the solution of the eigenvalue probleta: = Az, whereA is ann by n matrix, using
Housholder transformations to redut® upper Hessenberg form, followed by 1€ algorithm to
further reduce the Hessenberg form to upper triangular Schur foencatimputed solution satisifies

(A+ E)i = \&
where
1By < p(n)ullAll 5
andp(n) is a modestly growing function of [Wilkinson, 1965; Anderson et al., 1999].

We note that the bounds discussed so far are calbethwisebounds, but in many cases they can
be replaced bgomponentwisbounds which bound the absolute values of the individual elements,
and so are rather more satisfactory. For instancé,iff a sparse matrix, we would probably prefer
not to have to perturb the elements that are structurally zero. As a simple lexamopsider the
triangular equations

Tx =b, T —n byn triangular

and letz be the solution computed by forward or backward substitution, dependinghether?”
is lower or upper triangular respectively. Then it can readily be shoatxthatisifes

(T + E)i‘ =0, with |€ij| < nu|tij|,

which is a strong componentwise result showing backward stability [High@6%,2rheorem 8.5].

Associated with componentwise error bounds are componentwise conditioipens. Once again
see Higham [2002] for further details and references.

6 Posingthe Mathematical Problem

In this short section we merely wish to raise awareness of the need to mox#ilarp correctly,
without offering any profound solution.

It can be all too easy to transform a well-conditioned problem into an ill-timmed problem. For
instance, in Example 4.10 we transformed the well-conditioned quadratlkpr of finding

yn = (1/e) /01 x"e’dx, n >0,
into the ill-conditioned problem of finding,, from the forward recurrence relation
Yn =1 —nYn_1, yo=1—1/e.
As another example, we noted in Section 4.3 that polynomials can be very ditiomed. It follows
that the eigenvalues of a matrix should most certainly not be computed via the characteristic

equation ofA. For example, ifA is a symmetric matrix with eigenvalues = i,i = 1,2,.. ., 20,
then the characteristic equation df det(A — AA), is very ill-conditioned (see Example 4/17).

7 ERROR BOUNDS AND SOFTWARE 30

On the other hand, the eigenvalues of a symmetric matrix are always weltiooed [Wilkinson,
1965, Section 31, Chapter 2].

The above two examples illustrate the dangers in transforming the mathemasickdmpr Some-
times it can be poor modelling of the physical problem that gives rise to anritlitoned mathe-
matical problem, and so we need to think carefully about the whole modellinggso

We cannot blame software for giving us poor solutions if we provide thengyproblem. We can,
of course, hope that the software might provide a measure for the canditibe problem, or some
measure of the accuracy of the solution to give us warning of a poorgdpm®blem.

At the end of Section 4.1 we also mentioned the desirability of careful chbioeasurement units,
in order to help avoid the effects of poor scaling.

7 Error Bounds and Software

In this section we give examples of reliable software that return informakiontahe quality of the

solution. Firstly we look at the freely available software package LAPAGKderson et al., 1999],

and then at an example of a commercial software library, the NAG Libra#&ygM]. The author of

this report has to declare an interest in both of these software prothacisone of the authors of
LAPACK and is currently a software developer employed by NAG Ltd. Nalyrthe examples are
chosen because of familiarity with the products and belief in them as qualitipgisy but | have

nevertheless tried not to introduce bias.

LAPACK stands forLinear AlgebraPACK age and is a numerical software package for the solu-
tion of dense and banded linear algebra problems aimed at PCs, workssatibinigih-performance
shared memory machines. One of the aims of LAPACK was to make the softffiaien¢ on mod-
ern machines, whilst retaining portability, and to this end it makes extensivefiise Basic Linear
Algebra Subprograms (BLAS), using block-partitioned algorithms baped the Level 3 BLAS
wherever possible. The BLAS specify the interface for a set of sugspms for common scalar
and vector (Level 1), matrix-vector (Level 2) and matrix-matrix operati@revel 3). Their motiva-
tion and specification are given in Lawson et al. [1979], Dongarra g1288a] and Dongarra et al.
[1990] respectively. Information on block-partitioned algorithms andigperance of LAPACK can
be found in Anderson et al. [1999, Chapter 3]. See also Golub and.&@m [1996, particularly
Section 1.3], and [Stewart, 1998, Chapter 2], which also has someis@mesdion on computation.

LAPACK has routines for the solution of systems of linear equations, lineat gguares problems,
eigenvalue and singular value problems, including generalized problsmelleas routines for the
underlying computational components such as matrix factorizations. In agditlot of effort was
expended in providing condition and error estimates. Quoting from the#iragraph of Chapter 4
— Accuracy and Stability — of the LAPACK Users’ Guide:

“In addition to providing faster routines than previously available, LAPA@Kvides
more comprehensive and better error bounds. Our goal is to proviokebeunds for
most quantities computed by LAPACK."

In many cases the routines return the bounds directly; in other casesdls Ggide gives details
of error bounds and provides code fragments to compute those bounds.

http://www.netlib.org/lapack/index.html

7 ERROR BOUNDS AND SOFTWARE 31

As an example, routine DGESV solves a system of linear equatioAsX = B, whereB is a
matrix of one or more right-hand sides, using Gaussian elimination with pas@inmy. Part of the
interface is

SUBROUTINE DGESVX(..., RCOND, FERR, BERR, WORK, ..., INFO)

where the displayed arguments return the following information:

RCOND - Estimate of reciprocal of condition numbey,x(A)

FERRj) - Estimated forward error fok;

BERR;) - Componentwise relative backward error fo§ (smallest relative
change in any element of and B; that makesY; an exact solu-
tion)

WORWK) - Reciprocal of pivot growth factot,/g

INFO - Returns a positive value if the computed triangular faéfois

singular or nearly singular

Thus DGESVX is returning all the information necessary to judge the qualitheofcomputed
solution.

The routine returns an estimate lofx(A), rather than:(A) to avoid overflow wher is singular,

or very ill-conditioned. The argument INFO is the LAPACK warning or efitag, and is present

in all the LAPACK user callable routines. It returns zero on successfit] a negative value if
an input argument is incorrectly supplied, for example< 0, and a positive value in the case
of failure, or near failure as above. In the above example, INFO retima valuei if u; = 0,

in which case no solution is computed sinces exactly singular, but returns the valuet 1 if
1/k(A) < u, in which caseA is non-singular to working precision. In the latter case a solution
is returned, and so INFO & + 1 acts as a warning that the solution may have no correct digits.
The routine also has the option to equilibrate the maftrixSee the documentation of the routine
for further information, either in the Users’ Guide, or in the source ca@ddéable from netlib at
http://www.netlib.org/lapack/index.html

As a second example from LAPACK, routine DGEEVX solves the eigeriproldlz = Ax for the

eigenvalues and eigenvectoks, x;,7 = 1,2, ..., n of then by n matrix A. Optionally, the matrix

can be balanced and the left eigenvectord afan also be computed. Part of the interface is
SUBROUTINE DGEEVX(..., ABNRM, RCONDE, RCONDV, ...)

where the displayed arguments return the following information:

ABNRM - Norm of the balanced matrix
RCONDE) - Reciprocal of the condition number for thid eigenvalues;
RCONDY) - Reciprocal of the condition number for thign eigenvector, sep

10 the LAPACK naming scheme the D stands for double precision, GEdoel matrix, SV for solver and X for
expert driver

http://www.netlib.org/lapack/index.html

7 ERROR BOUNDS AND SOFTWARE 32

Following a call to DGEEVX, approximate error bounds for the computedneaaes and eigen-
vectors, say EERRBD) and VERRBDY), such that

A — Al
G(Dl-,z/i)

EERRBD(/)

<
< VERRBD(i),

wheref(7;, ;) is the angle between the computed and true eigenvector, may be returnesl by th
following code fragment, taken from the Users’ Guide:

EPSMCH = DLAMCH(E)
DO 10 | = 1, N

EERRBD(I) = EPSMCH ABNRM/RCONDE(I)
VERRBD(l) = EPSMCH ABNRM/RCONDV/(])
10 CONTINUE

These bounds are based upon Table 3, extracted from Table 4.5 &BACIK Users’ Guide, which
gives approximate asymptotic error bounds for the nonsymmetric eigdaproibhese bounds as-

Simple eigenvalue |\, — \;| < || Ely/s:
Eigenvector 0(s,vi) S ||Ellp/sen

~

Table 3: Asymptotic Error Bounds fotz = Ax

sume that the eigenvalues are simple eigenvalues. In addition if the problentasdiitioned,
these bounds may only hold for extremely smgl||, and so the Users’ Guide also provides a
table of global error bounds which are not so restrictive|éil,. The tables in the Users’ Guide
include bounds for clusters of eigenvalues and for invariant subspand these bounds can be
estimated using DGEESX in place of DGEEVX. For further details see ThACKFUsers’ Guide
[Anderson et al., 1999, Chapter 4] and for further information sdal@and Van Loan [1996, Chap-
ter 7] and Stewart and Sun [1990].

LAPACK is freely available via netI@, is included in the NAG Fortran 77 Library and is the basis
of the dense linear algebra in the NAG Fortran 90 and C Libraries. Tueesions of a number
of LAPACK routines are included in the NAG Fortran SMP Library. The mat@mputations
of MATLAB have been based upon LAPACK since Version 6 [MathWoikiggham and Higham,
2005].

We now take an example from the NAG Fortran Library. Routine DO1AJF isreeal purpose
integrator using an adaptive procedure, based on the QUADPACK eoQIXGS [Piessens et al.,
1983], which performs the integration

= / ' fa)de,

wherela, b] is a finite interval. Part of the interface to DO1AJF is

SUBROUTINE DO1AJF(..., EPSABS, EPSREL, RESULT, ABSERR, .. .)

Hhttp://www.netlib.org/lapack/index.html

7 ERROR BOUNDS AND SOFTWARE 33

where the displayed arguments return the following information:

EPSABS - The absolute accuracy required
EPSREL - The relative accuracy required
RESULT - The computed approximation fo
ABSERR - An estimate of the absolute error

In normal circumstanceABSERRsatisfies
|I — RESULT < ABSERR< max(EPSABSEPSRELX |I|).

See the NAG Library documentation [NAG, b] and Piessens et al. [1983]ifther details. QUAD-
PACK is freely available from net@, and a Fortran 90 version of QAGS is available from the more
recent quadature package, CUBPACK [Cools and Haegemans,, 2@@igh is also available from
netlib. Typically the error estimate for a quadrature routine is obtained akpgense of additional
computation with a finer interval, or mesh, or the use of a higher order guadrformula.

As a second example from the NAG Library we consider the solution of aB.®0utine DO2PCF
integrates

y' = f(t,y), giveny(to) = yo,
wherey is then element solution vector andis the independent variable, using a Runge-Kutta
method. Following the use of DO2PCF, routine DO2PZF may be used to comiolia grror
estimates. Part of the interface to DO2PZF is

SUBROUTINE DO2PZF(RMSERR, ERRMAX, TERRMX, ...)

where the displayed arguments return the following information:

RMSERR) - Approximate root mean square error for
ERRMAX - Maximum approximate true error
TERRMX - First point at which maximum approximate true error occurred

The assessment of the error is determined at the expense of computing @coorate solution
using a higher order method to that used for the original solution.

The NAG DO2P routines are based upon the RKSUITE software by Bratlal. [1992], which is
also available from netl#5. See also Shampine and Gladwell [1992] and Brankin et al. [1993]. A
Fortran 90 version of RKSUITE is also avail@esee Brankin and Gladwell [1997].

Many routines in the NAG Library attempt to return information about acgurBloee documentation
of the routines includes a section labelled “Accuracy” which, when gpjate, gives further advice
or information. For instance, the optimization routines generally quote the optingalitgitions
that need to be met for the routine to be successful. These routinesui@isaand sometimes
return a warning, or error, when it is likely that an optimum point has beand, but not all the
optimality conditions have been met. NAG and the authors of the routines fe¢hihe much the
best approach for reliability — even if users would sometimes prefer thatese more optimistic!

2http://www.netlib.org/quadpack/
Bhttp://www.netlib.org/ode/rksuite/
Yhttp://www.netlib.org/ode/rksuite/ or http://www.netlib.org/toms/771

http://www.netlib.org/toms/824
http://www.netlib.org/quadpack/
http://www.netlib.org/ode/rksuite/
http://www.netlib.org/ode/rksuite/
http://www.netlib.org/toms/771

8 OTHER APPROACHES 34

8 Other Approaches

What does one do if the software does not provide suitable estimates mdhecy of the solution,
or the sensitivity of the problem? One approach is to run the problem withrpedwdata and
compare solutions. Of course, the difficulty with this approach is to know hest to choose
perturbations. If a small perturbation does significantly change the saltltien we can be sure
that the problem is sensitive, but of course we cannot rely on the svié we can have trust that
the software implements a stable method, then any sensitivity in the solution is deept@kbem,
but otherwise we cannot be sure whether it is the method or problem tleatsiige.

To help estimate such sensitivity there exists software that uses stochastomgilyive statis-
tical estimates of backward error, or of sensitivity. One such examplECPEE, is described in
Chaitin-Chatelin and Frayg41996, Chapter 8] and provides a module for statistical backward er-
ror analysis as well as a module for sensitivity analysis. Another examplAIIH\@\E; see for
example Vignes [1993].

Another approach to obtaining bounds on the solution is the use of inteitbethatic, in conjunction
with interval analysis [Moore, 1979; Kreinovich; Alefeld and MayerQ@D Some problems can be
successfully solved using interval arithmetic throughout, but for som#gms the bounds obtained
would be far too pessimistic; however interval arithmetic can often be appiad posteriori tool to
obtain realistic bounds. We note that there is a nice interval arithmetic toolbMdafitab, INTLAB,

by Rump [1999] that is freely availal% see also Hargreaves [2002]. It should be noted that in
general, the aim of interval arithmetic is to return forward error boundb@ssolution.

Example 8.1 (Cancellation and interval arithmetic)

As a very simple example consider the computatior of Example 3.1 using four figure interval
arithmetic. Bearing in mind that interval arithmetic works with intervals that areagueed to
contain the exact solution, we find that

s=[s1 s2] = [1.000 1.000] + [1.000 x 10* 1.000 x 10*] — [1.000 x 10* 1.000 x 10
= [1.000 x 10* 1.001 x 10*] — [1.000 x 10* 1.000 x 10
= [0 10],

so whilst the result is somewhat pessimistic, it does give due warning oatteeltation.
Finally we comment that one should not be afraid to exert pressure wvesefdevelopers to provide

features that allow one to estimate the sensitivity of the problem and the egaitte solution.

9 Summary

We have tried to illustrate the niceties of numerical computation and the detailébds o be
considered when turning a numerical algorithm into reliable, robust nuatesddtware. We have
also tried to describe and illustrate the ideas that need to be understood ¢otfedquality of

15At the time of writing, a free academic version is available fitattp://www-anp.lip6.fr/cadna/Accueil.php
Bhttp://www.ti3.tu-harburg.de/english/index.html

http://www-anp.lip6.fr/cadna/Accueil.php
http://www.ti3.tu-harburg.de/english/index.html

REFERENCES 35

a numerical solution, especially condition, stability and error analysis, imgutthe distinction
between backward and forward errors.

We emphasise that one should most certainly be concerned about the gfi@iitynputed solu-
tions, and use trustworthy quality software. We cannot just blithely assuathestbults returned by
software packages are correct.

This is not always easy since scientists wish to concentrate on their seirdchould not really
need to be able to analyse an algorithm to understand whether or not itlidearatzthod for solving
their problem. Hence the emphasis in this report on the desirability of sofwavéding proper
measures of the quality of the solution.

We conclude with a quotation:

“You have been solving these damn problems better than | can pose them.”
Sir Edward Bullard, Director NPL, in a remark to Wilkinson in the mid 1950s. See
Wilkinson [1985, p. 11].

Software developers should strive to provide solutions that are atdeastod as the data deserves.

References

F. S. Acton.Numerical Methods thatualy Work Harper and Row, New York, USA, 1970.

F. S. Acton.Real Computing Made Real: Preventing Errors in Scientific and Enging€aicula-
tions Princeton University Press, Princeton, NJ, USA, 1996. ISBN O&G3863-2.

G. Alefeld and G. Mayer. Interval analysis: Theory and applicatidn§€omput. Appl. Math121:
421-464, 2000.

E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. Demmel, J. J.daora, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. C. SorenséAPACK Users’ Guide SIAM,
Philadelphia, PA, USA, 3rd edition, 1999. ISBN 0-89871-447-8. (wwetlib.org/lapack/lug/).

D. Bindel, J. Demmel, W. Kahan, and O. Marques. On computing Givensaasareliably and
efficiently. ACM Trans. Math. Software8:206-238, 2002.

L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. J. Dongarra, Snidearling, A. Petitet, H. Ren,
K. Stanley, and R. C. Whaley. Practical experience in the numericaledsiog heterogeneous
computing.ACM Trans. Math. Softwar@3:133-147, 1997.

R. W. Brankin and I. Gladwell. Algorithm 77Irksuite _90: Fortran 90 software for ordinary
differential equation initial-value problem&CM Trans. Math. Softwar3:402—-415, 1997.

R. W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of rexigitta codes for the
initial value problem for ODEs. Softreport 92-S1, Mathematics Departnsentthern Methodist
University, Dallas, TX 75275, USA, 1992.

REFERENCES 36

R. W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of exphenge-kutta codes. In
R. P. Agarwal, editorContributions to Numerical Mathematicgages 41-53. World Scientific,
River Edge, NJ, USA, 1993. (WSSIAA, vol. 2).

J. L. Britton, editor.Collected Works of A. M. Turing: Pure Mathematid$orth-Holland, Amster-
dam, The Netherlands, 1992. ISBN 0-444-88059-3.

F. Chaitin-Chatelin and V. Fraysd_ectures on Finite Precision Computatioif®AM, Philadelphia,
PA, USA, 1996. ISBN 0-89871-358-7.

T. F. Chan, G. H. Golub, and R. J. LeVeque. Algorithms for computingahgpée variance: Analy-
sis and recommendationEhe American Statisticiat37:242—247, 1983.

R. Cools and A. Haegemans. Algorithm 824: CUBPACK: A package feoraatic cubature;
framework descriptionACM Trans. Math. Softwar@9:287-296, 2003.

M. G. Cox, M. P. Dainton, and P. M. Harris. Testing spreadsheets #ret packages used in
metrology: Testing functions for the calculation of standard deviation. N&joR CMSC 07/00,
Centre for Mathematics and Scientific Computing, National Physical Labgrafeddington,
Middlesex TW11 OLW, UK, 2000.

D. S. Dodson. Corrigendum: Remark on “Algorithm 539: Basic Linear BigeSubroutines for
FORTRAN usage”ACM Trans. Math. Softwar®:140, 1983.

D. S. Dodson and R. G. Grimes. Remark on algorithm 539: Basic Lineabfdge@ubprograms for
Fortran usageACM Trans. Math. Softwar@:403—-404, 1982.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Andedeset of FORTRAN Basic
Linear Algebra SubprogramsACM Trans. Math. Softwarel4:1-32, 399, 1988a. (Algorithm
656. See also Dongarra et al. [1988b]).

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Codage’An extended set of
FORTRAN Basic Linear Algebra SubprogramsACM Trans. Math. Softwarel4:399, 1988b.
(See also Dongarra et al. [1988a]).

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set 9EL8 Basic Linear Algebra
SubprogramsACM Trans. Math. Softward 6:1-28, 1990. (Algorithm 679).

A. A. Dubrulle. A class of numerical methods for the computation of Pythemoisums.IBM J.
Res. Develop27(6):582-589, November 1983.

B. Einarsson, editor. Accuracy and Reliability in Scientific Computing SIAM,
Philadelphia, PA, USA, 2005. ISBN 0-89871-584-9. (Accompanyingb wsite:
http://www.nsc.liu.se/wg25/book/).

G. E. Forsythe. Pitfalls in computation, or why a math book isn’t enodgher. Math. Monthly9:
931995, 1970.

G. E. Forsythe. What is a satisfactory quadratic equation solver. Ireprand P. Henrici, editors,
Constructive Aspects of the Fundamental Theorem of Alggtarges 53—61. Wiley, New York,
NY, USA, 1969.

http://www.nsc.liu.se/wg25/book/

REFERENCES 37

L. Fox. How to get meaningless answers in scientific computation (and wikiatabout it). IMA
Bulletin, 7:296-302, 1971.

W. Givens. Numerical computation of the characteristic values of a reah&tric matrix. Technical
Report ORNL-1574, Oak Ridge National Laboratory, Oak Ridge, &éssee 37831, USA, 1954.

G. H. Golub. Numerical methods for solving linear least squares problddwsner. Math. 7:
206-216, 1965.

G. H. Golub and C. F. Van LoanMatrix Computations The Johns Hopkins University Press,
Baltimore, MD, USA, 3rd edition, 1996. ISBN 0-8018-5414-8.

S. Hammarling. An introduction to the quality of computed solutions. In B. Eioarssditor,
Accuracy and Reliability in Scientific Computinmages 43—-76. SIAM, Philadelphia, PA, USA,
2005. (Accompanying web site for bookttp://www.nsc.liu.se/wg25/book/).

G. Hargreaves. Interval analysis in MATLAB. Master’s thesis, Dapant of Mathematics, Uni-
versity of Manchester, Manchester M13 9PL, UK, 2002.

D. J. Higham and N. J. HighanMATLAB Guide SIAM, Philadelphia, PA, USA, 2nd edition, 2005.
ISBN 0-89871-578-4.

N. J. Higham. Accuracy and Stability of Numerical Algorithm&IAM, Philadelphia, PA, USA,
second edition, 2002. ISBN 0-89871-521-0.

N. J. Higham. Can you “count” on your computer?
http://mww.maths.man.ac.uk/ ~ higham/talks/ , 1998. (Public lecture for
Science Week 1998).

IEEE. ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754-19EE Press, New
York, NY, USA, 1985.

IEEE. ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic: S&4187 IEEE
Press, New York, NY, USA, 1987.

E. Isaacson and H. B. KelleAnalysis of Numerical Method&Viley, New York, NY, USA, 1966.
(Reprinted with corrections and new Preface by Dover Publications, Yéeky 1994, ISBN 0-
486 68029-0).

L. Kniisel. On the accuracy of statistical distributions in Microsoft Excel®dmput. Statist. Data
Anal, 26:375-377, 1998.

V. Kreinovich. Interval computationsttp://www.cs.utep.edu/interval-comp/

C. L. Lawson and R. J. HansoBolving Least Squares Problenfrentice-Hall, Englewood Cliffs,
NJ, USA, 1974. (Republished as Lawson and Hanson [1995]).

C. L. Lawson and R. J. HansorSolving Least Squares Problem€lassics in Applied Mathe-
matics, 15. SIAM, Philadelphia, PA, USA, 1995. ISBN 0-89871-356(Revised version of
Lawson and Hanson [1974]).

http://www.nsc.liu.se/wg25/book/
http://www.maths.man.ac.uk/~higham/talks/
http://www.cs.utep.edu/interval-comp/

REFERENCES 38

C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Lirdgebra Subprograms for
FORTRAN usage.ACM Trans. Math. Softwares:308-323, 1979. (Algorithm 539. See also
Dodson and Grimes [1982] and Dodson [1983]).

R. S. Martin and J. H. Wilkinson. Similarity reduction of a general matrix to Helserg form.
Numer. Math, 12:349-368, 1968. (See also [Wilkinson and Reinsch, 1971, pp3589-

MathWorks. MATLAB. The Mathworks, Inchttp://www.mathworks.com

B. D. McCullough and B. Wilson. On the accuracy of statistical procedim®licrosoft Excel 2000
and Excel XP.Comput. Statist. Data Anak0:713-721, 2002.

B. D. McCullough and B. Wilson. On the accuracy of statistical procesluwrdlicrosoft Excel 97.
Comput. Statist. Data Anal31:27-37, 1999.

M. Metcalf and J. K. ReidFortran 90/95 ExplainedOxford University Press, Oxford, UK, 1996.

M. Metcalf, J. K. Reid, and M. CohenFortran 95/2003 Explained Oxford University Press,
Oxford, UK, 2004. ISBN 0 19 852693 8.

C. Moler and D. Morrison. Replacing square roots by Pythagorean.d&k]. Res. Develop27
(6):577-581, November 1983.

R. E. Moore.Methods and Applications of Interval Analys8IAM, Philadelphia, PA, USA, 1979.

NAG(a). The NAG Library. NAG Ltd. http://www.nag.com/numeric/ , or
http://www.nag.co.uk/numeric/

NAG(b). The NAG Fortran Library Manual. NAG Ltd.
http://www.nag.com/numeric/fl/manual/html/FLlibrary manual.asp , or
http://mww.nag.co.uk/numeric/fl/manual/html/FLlibra rymanual.asp

M. L. Overton. Numerical Computing with IEEE Floating Point Arithmeti8IAM, Philadelphia,
PA, USA, 2001. ISBN 0-89871-482-6.

R. Piessens, E. de Doncker-Kapenga, C.Uberhuber, and D. K. KahanerQUADPACK — A
Subroutine Package for Automatic Integratiddpringer-Verlag, Berlin, Germany, 1983.

D. M. Priest. Efficient scaling for complex divisionACM Trans. Math. Software30:389-401,
2004.

S. M. Rump. INTLAB — INTerval LABoratory. In T. Csendes, edit@revelopments in Reliable
Computing pages 77-104. Kluwer Academic, Dordrecht, The Netherlands, 1999

L. F. Shampine and I|. Gladwell. The next generation iofge-kutta codes. In Cash J. R. and
I. Gladwell, editors,Computational Ordinary Differential Equationpages 145-164. Oxford
University Press, Oxford, UK, 1992. (IMA Conference SeriesyNgeries 39).

R. L. Smith. Algorithm 116: Complex divisiolCommuns Ass. comput. Mach:435, 1962.

G. W. Stewart. Matrix Algorithms: Basic Decompositionsolume |I. SIAM, Philadelphia, PA,
USA, 1998. ISBN 0-89871-414-1.

http://www.mathworks.com
http://www.nag.com/numeric/
http://www.nag.co.uk/numeric/
http://www.nag.com/numeric/fl/manual/html/FLlibrarymanual.asp
http://www.nag.co.uk/numeric/fl/manual/html/FLlibrarymanual.asp

REFERENCES 39

G. W. Stewart. A note on complex divisioACM Trans. Math. Softward 1:238-241, 1985.
G. W. Stewart and J. SuMatrix Perturbation Theory Academic Press, London, UK, 1990.

A. M. Turing. Rounding-off errors in matrix processé&3. J. Mech. appl. Math1:287-308, 1948.
(Reprinted in Britton [1992] with summary, notes and corrections).

J. Vignes. A stochastic arithmetic for reliable scientific computatddath. and Comp. in Sim35:
233-261, 1993.

J. H. Wilkinson. Rounding Errors in Algebraic ProcessesNotes on Applied Science, No0.32.
HMSO, London, UK, 1963. (Also published by Prentice-Hall, Englewaiffs, NJ, USA,
1964, translated into Polish as Bledy Zaokragke Procesach Algebraicznych by PWW, War-
saw, Poland, 1967 and translated into German as Rundungsfehler ingesprerlag, Berlin,
Germany, 1969. Reprinted by Dover Publications, New York, 1994).

J. H. Wilkinson. The Algebraic Eigenvalue Problen®xford University Press, Oxford, UK, 1965.
(Also translated into Russian by Nauka, Russian Academy of Sciencés). 19

J. H. Wilkinson. The perfidious polynomial. In G. H. Golub, edi®®tudies in Numerical Analysis,
Volume 24 chapter 1, pages 1-28. The Mathematical Association of America, 1984rded
the Chauvenet Prize of the Mathematical Association of America).

J. H. Wilkinson. Error analysis revisitedIMA Bulletin, 22:192—-200, 1986. (Invited lecture at
Lancaster University in honour of C. W. Clenshaw, 1985).

J. H. Wilkinson. Error analysis of direct methods of matrix inversidrACM 8:281-330, 1961.

J. H. Wilkinson. The state of the art in error analysAG Newsletter2/85:5-28, 1985. (Invited
lecture for the NAG 1984 Annual General Meeting).

J. H. Wilkinson. Error analysis of floating-point computatiddumer. Math,. 2:319-340, 1960.

J. H. Wilkinson and C. Reinsch, editorddandbook for Automatic Computation, Vol.2, Linear
Algebra Springer-Verlag, Berlin, Germany, 1971.

