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Abstract. Main objects here are normal-form games, featuring un-
certainty and noncooperative players who entertain local visions, form local
approximations, and hesitate in making large, swift adjustments. For the pur-
pose of reaching Nash equilibrium, or learning such play, we advocate and illus-
trate an algorithm that combines stochastic gradient projection with the heavy-
ball method. What emerges is a coupled, constrained, second-order stochastic
process. Some friction feeds into and stabilizes myopic approximations. Con-
vergence to Nash play obtains under seemingly weak and natural conditions,
an important one being that accumulated marginal payo¤s remains bounded
above.

Key words: Noncooperative games, Nash equilibrium, stochastic programming
and approximation, the heavy ball method.

1. Introduction
Game theory has become an enormously important …eld of study [18], [22]. It now
o¤ers unity or coherence to many lines of inquiry. To wit, various social sciences,
while steadily growing more game-theoretic, increasingly reckon Nash equilibrium as
a focal point and key concept. Additional bonus and impetus comes with making
those sciences more experimental [16].

The Nash solution concept nicely formalizes stable interaction among noncooper-
ative players. In doing so it tends, however, to make larger demands on the players’
knowledge and rationality than can easily be justi…ed. Usually, to become a clever
strategist one needs substantial learning or much experience. Therefore, Nash equi-
librium begs some justi…cation in dynamic terms [15], [19], [21].

Four features of human behavior then seem important. First, individuals always
try to improve own welfare (or payo¤). Second, they typically do not quite know all
strategic possibilities, intentions or consequences. Third, they are likely to form local
perspectives and approximations. Fourth, they hesitate in making quick and large
adjustments.

¤University of Bergen e-mail: helge.berglann@econ.uib.no Support from the Research Council of
Norway is gratefully acknowledged.

yCorresponding author, University of Bergen and Norwegian School of Economics and Business
Administration; e-mail: sjur.‡aam@econ.uib.no. Thanks for support are due Ruhrgas, Røwdes fond
and Meltzers høyskolefond.

1



Stochastic Approximation, Momentum, and Nash Play 2

To embody all these features in dynamics, and to accommodate exogenous un-
certainty as well, we advocate and illustrate here use of stochastic approximation [6].
That vehicle, which leans heavily on di¤erential equations, subscribes to a tradition
that goes back to classical mechanics - and to Newton’s claim that the initial state
of a mechanical system determines its development.

The purpose of this paper is to put that claim to use for the study of stochastic
games. Alternatively, one may read this paper as dealing with stochastic program-
ming, parallel computation, or global optimization. Subsequent arguments are orga-
nized around a noncooperative stage game repeated time and again. Technicalities
and proofs are found in the references.

2. The Game
There is a …xed, …nite set I of players. Agent i 2 I is constrained to choose his strategy
xi from a nonempty compact convex subsetXi of a Euclidean space. He always seeks
to improve own expected payo¤ ¼i(xi; x¡i) := E¦i(xi; x¡i; !). Here x¡i =: (xj)j 6=i
denotes the part of the overall strategy pro…le x = (xi) that is controlled by i0s
rivals. The elementary event ! belongs to a complete probability space (­; ¾; ¹);
with respect to which one takes the mathematical expectation E: Each bivariate
function (x; !) 7! ¦i(x; !) 2 R is concave, di¤erentiable in xi; and integrable in !:

Of prime interest are points x 2 X := ¦i2IXi where each marginal payo¤
mi(x) := @

@xi
¼i(x) is normal to Xi - or quite simply, nil. That is, letting Pi denote

the orthogonal projection onto Xi we seek a …xed point x = (xi) of the system

xi Ã Pi [xi + smi(x)] for all i and arbitrary s > 0: (1)

Any such …xed point is a Nash equilibrium. (1) amounts to a decentralized projected
gradient procedure. It portrays fairly myopic parties, each trying to improve his
linear approximation of own expected payo¤. Modern, stochastic versions of such
methods mirror two common aspects of human behavior: …rst, mean values (i.e.
mathematical expectations E) are costly - and sometimes impossible - to compute;
second, information concerning levels and gradients is readily available only at the
current point. So, in our optic, letting Mi(x; !) := @

@xi
¦i(x; !) denote i’s realized

marginal payo¤, one might hope to have almost sure convergence of the following
stochastic process : For each i recursively posit

xk+1
i := Pi

£
xki + skMi(x

k; !k)
¤
: (2)

Here, at stage k = 0; 1; :::; arrives a new event !k 2 ­, independently sampled
according to the prescribed measure ¹: Input at that stage k is also a positive stepsize
sk; selected a priori subject to

X
sk = +1 and

X
s2k < +1: (3)

The hope that process (2) converges is well founded provided x 7! m(x) := [mi(x)]i2I
be globally monotone; see [9], [10], [11], [12], [13]. Otherwise, there are good reasons
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to be worried about convergence. Re‡ecting such worries our object here is to expand
on gradient methods while preserving their many appealing properties.

Like (2) the procedure considered below does not presume much of foresight, ex-
perience, competence or optimization. In essence, it re‡ects iterated, noncoordinated
pursuit of better payo¤s. It does, however, modify the …rst-order gradient dynamics
(2) by adding a second-order heavy-ball momentum, just like the harmonic oscillator
of classical mechanics. Essentially, instead of assuming that player i pursues the gra-
dient method 0 = mi(x)¡ _xi we posit that he rather drives the second-order process
Äxi = mi(x) ¡ _xi: The latter must be suitably modi…ed, of course, to account for
discrete time, uncertainty, and constraints. This is done next.

3. Repeated Play
Let

©
!k

ª
be a sequence of independent realizations of !; each having distribution

¹: As model of repeated play we advocate that iteratively at stages k = 0; 1; ::; each
individual i updates his current strategy xki and velocity vki by the rule

xk+1
i := Pi

£
xki + skvki

¤

vk+1i := vki + Pi
£
xki + skMi(xk; !k)

¤
¡ Pi

£
xki + skvki

¤
¾

(4)

As earlier, Pi denotes orthogonal projection onto Xi. Also like above, the parameter
sk > 0 is the stepsize used at stage k; selected a priori subject to (3). The initial
points (x0i ; v0i ); i 2 I; are determined by accident or historical factors better discussed
in each particular setting.

To appreciate process (4) it helps to endow it with a clock that shows accumulated
”time” tk := s0 + ¢ ¢ ¢ + sk¡1; (¿ 0 := 0) at the on-set of stage k: Then, upon writing
xi(tk) := xki and vi(tk) := vki we see that (4) assumes the form

fxi(tk+1) ¡ xi(tk)g=sk := fPi [xi(tk) + skvi(tk)] ¡ xi(tk)g=sk
fvi(tk+1) ¡ vi(tk)g =sk :=

©
Pi

£
xi(tk) + skMi(x(tk); !k)

¤ ¡ Pi [xi(tk) + skvi(tk)]
ª
=sk

Thus, since sk = tk+1 ¡ tk ! 0+; it turns out that behind (4) lurks - in expectation
and the limit - a di¤erential system

_xi = PTixi [vi]
_vi = PTixi [mi(x)] ¡ PTixi [vi]

¾
(5)

Orthogonal projection PTixi is here done onto the tangent cone Tixi := clR+(Xi¡xi)
of Xi at xi: By a solution to (5) we understand an absolutely continuous pro…le
0 · t 7! [x(t); v(t)] = [xi(t); vi(t)]i2I which satis…es (5) almost everywhere. We
suppose that the potential energy

0 · t 7!
Z t

0

X

i2I
PTixi(¿) [mi(x(¿ ))] ¢ _xi(¿ )d¿ (6)

remains bounded above along solution trajectories of (5). Following the arguments
in [14] one may prove the following
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Theorem 1. (Convergence of repeated play) Suppose system (5) has unique so-
lution trajectories. Then, under the hypotheses above and the assumption that Nash
equilibria are isolated, any discrete-time trajectory (xk; vk) generated by (4) must be
such that xk converges to a Nash equilibrium. 2

Examples and illustrations of process (4), when deterministic, are found in [14]. We
remark that at any stage k player i might, quite reasonably, …rst update his veloc-
ity vk+1

i as prescribed and thereafter set xk+1
i := Pi

£
xki + skvk+1

i
¤
: In subsequent

simulations we observe that this practice speeds up convergence.

4. Time-Homogeneous Play
When telling our tale about repeated play, we …nd it di¢cult sometimes to argue in
favor of a time-inhomogeneous system. So, what happens if sk is constant? Clearly,
…xing this parameter is risky - and notably with sti¤ systems. To address that issue
assume, for simplicity, that there are no constraints - or alternatively, that these have
already been incorporated by means of suitable penalties. Setting di = di(x; vi; !) :=
Mi(x; !) ¡ vi; iteration (4) then comes in autonomous, more tractable form

xk+1i := xki + svki
vk+1
i := vki + sdki

¾
(7)

In simulations of (7), to hedge against sti¤ness and facilitate convergence, we replace
dki with a weighted sum aidki + bid

k¡1
i ; using thus

xk+1i := xki + svki
vk+1
i := vki + s(aidki + bid

k¡1
i )

¾
(8)

The parameters ai; bi could account for accumulated learning on how to adapt in a
complex dynamic environment.1 We remark that the second equation in (8) is strik-
ingly similar to a control algorithm commonly used in process industry, namely: the
so-called Proportional-Integral-Controller; see [5], [17], [23], [24]. We take advantage
of this to …nd appropriate ai; bi-parameters in the example below:

5. An Example
Let each i 2 I here be a Cournot oligopolist [8] who supplies the quantity xi ¸
0 of a homogeneous, perfectly divisible good to a common market. Thereby he
receives sales revenues pxi and incurs (di¤erentiable) production costs ci (xi). The
price is determined by a smooth inverse demand curve which is subject to stochastic

1 In fact, if agent i were new to the kind of dynamic process in question, his optimal behavior
might entail experimentation to determine the said parameters. Most likely agents would learn from
each other and, if possible, imitate those who do well. Henceforth assume that each i has previous
experience, perhaps from similar processes, and has appropriately tuned his ai and bi.
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‡uctuations. Speci…cally, the realized price equals p = !P (Q) with E! = 1 and
Q =

P
i2I xi. Thus

E¦i (xi; x¡i; !) = P (Q) xi ¡ ci(xi) and EMi (xi; x¡i; !) = P (Q) + P 0 (Q) xi ¡ c0i(xi)
The …gures below depict individual supply xi over stages k with constant stepsize
s = 1, as generated by (8). There are ten players (jIj = 10), ! has a lognormal
distribution with standard deviation 0:3 , P (Q) = 10¡Q, ci (xi) = xi, x0i = 1, v0i = 0
and …nally, d0i = 0 for all i. The resulting Nash Equilibrium x is unique with all
xi = 0:818.

The resemblance with controller algorithms made us look for methods to determine
e¢cient values of ai and bi in the literature on Control Engineering. The wide spread
use of such algorithms not withstanding, there exists no generally accepted method
for how to tune these parameters. The empirical method developed by Ziegler and
Nichols (1942) [24] is still holds good ground and has the great advantage of requiring
very little information [23]. The said method gave the values of ai and bi that label
Figure 1 and are used by all agents. The scantly dotted line shows behavior in the
deterministic case (when ! , 1) while in the more solid curve ! is sampled anew for
each k.

Figure 2 brings out responses when all agents half the values ai and bi employed
in Figure 1. Absent uncertainty, the time needed to reach a steady level now becomes
longer. Present uncertainty, (using the same series !k as in Figure 1) it causes less
‡uctuations than before.

0 20 40 60 80 100
k

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

xi

ai=0.0286, bi=0.0254

NE

with uncertainty

deterministic

Figure 1 : Supply xi over stages k when all players employ parameters ai and bi determined by
Ziegler-Nichols Method.
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Figure 2 : Supply xi over stages k when all players employ parameters ai and bi with values half
of the size determined by Ziegler-Nichols Method.

Figure 3 illustrates what happens when parameters ai; bi di¤er across agents. The
…ve …rst players use values listed in Figure 1; the others use those mentioned in Figure
2. Members of the …rst group adapt fastest initially. Di¤erences across agents make
for slower convergence in the deterministic case.
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Figure 3 : Supply xi over stages k with di¤erent ai; bi. Group 1 uses parameters ai and bi
determined by Ziegler-Nichols method - while group 2 half these values. Members of the …rst

group adapt fastest initially.

6. Concluding Remarks
We have presented (4) as a tale about repeated play of noncooperative, constrained
games. A main motivation behind the heavy-ball philosophy was to reach beyond
instances where the solution set is connected. A supplementary aim - referred to
as equilibrium selection [21] - amounts to exploit uncertainty or blurred data so as
to arrive at particularly stable solutions. In fact, randomness - if not already a key
ingredient - could arti…cially be introduced to escape from unstable equilibria.

Clearly, when I is a singleton, this paper …ts the frames of single-agent optimiza-
tion under uncertainty. In that regard (4) has something to o¤er in three respects.
First, the heavy-ball method of Polyak [20] has, to our knowledge, not come fully
into stochastic programming. Second, process (7) is amenable to parallel computing
[7]. Third, following Attouch et al.[3], the same process is applicable for global opti-
mization - or the selection of ”good” stationary points; see also [1], [2], [4]. Approach
(8) may require, for its e¢cient operation, some auto-tuning of the parameters ai; bi:
Appropriate routines to that e¤ect are found in the engineering literature on control;
see for instance [5], [23].
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