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Abstract

Dimension reduction in today’s vector space based information retrieval system is essential for improving

computational efficiency in handling massive data. In our previous work we proposed a mathematical frame-

work for lower dimensional representations of text data in vector space based information retrieval, and a

couple of dimension reduction methods using minimization and matrix rank reduction formula. One of our

proposed methods is CentroidQR method which utilizes orthogonal transformation on centroids, and the test

results showed that its classification results were exactlythe same as those of classification with full dimen-

sion when a certain classification algorithm is applied. In this paper we discuss in detail the CentroidQR

method, and prove mathematically its classification properties with two different similarity measures ofL2
and cosine.�The work of all three authors was supported in part by the National Science Foundation grant CCR-9901992. Dept. of

Computer Science and Engineering, Univ. of Minnesota, Minneapolis, MN 55455, U.S.A., e-mail: jeon@cs.umn.edu.yDept. of Computer Science and Engineering, Univ. of Minnesota, Minneapolis, MN 55455, U.S.A., e-mail:
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and Engineering, Univ. of California, San Diego, La Jolla, CA 92093, U.S.A. e-mail: jbrosen@cs.ucsd.edu.
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Introduction

To handle today’s massive high dimensional data efficiently, dimension or feature reduction of data is essen-

tial in a information retrieval system. Grouping similar data into one category through clustering presents

more related output for user’s query without much overhead [12]. Classification is the process of assigning

new data to predefined proper group called class or category.On the other hand, clustering is grouping

the data without any predefined categories, which is usuallyperformed to build categories for classification

task. The classification problem may be complicated by imperfect class definitions, overlapping categories,

random variations in the new data [1], and nonlinearity of classifier. A common classification system is com-

posed of data collection, feature generation, feature selection, classifier design, and finally system evaluation

and feedback [6, 13, 17]. Among them, feature selection is ofgreat importance for the quality of classifi-

cation and computational cost of the classifier. Several examples of available classification methods are

k-nearest neighbor, perceptron, and decision tree [9, 17].Another simple and fast method we can consider

is the one based on centroids of classes which provides useful background for a couple of dimension method

such as discriminant analysis, in addition to Centroid [4, 11, 15] , CentroidQR methods we proposed in [15].

The dimension reduction method that we will discuss in this paper is based on the vector subspace

computation in linear algebra [5]. Unlike other probability and frequency based methods where a set of

representative words are chosen, the vector subspace computation will give reduction in the dimension of

term space where for each dimension in the reduced space we cannot easily attach corresponding words

or a meaning. The dimension reduction by the optimal lower rank approximation from the SVD has been

successfully applied in numerous applications, e.g. in signal processing. In these applications, often what

the dimension reduction achieves is the effect of removing noise in the data. In case of information retrieval

or data mining, often the data matrix has either full rank or close-to full rank. Also the meaning ofnoise

in the data collection is not well understood, unlike in other applications such as signal processing [16] or

image processing. In addition, in information retrieval, the lower rank approximation is not only a tool for

rephrasing a given problem into another one which is easier to solve, but the data representation in the lower

dimension space itself is important [8] in further processing of data.

Several dimension reduction methods have been proposed forclustering and classification of high di-

mensional data, but most of them provide just approximationof original data. One attractive and simple
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algorithm is one based on the centroids of classes and minimization [4, 11, 15]. In [15] we proposed a

dimension reduction method named CentroidQR and test results showed it gives exactly identical classifi-

cation results in full dimensional space and reduced dimensional space when classification is determined by

comparing the new data to the centroids of the clusters. In this paper, we revisit the CentroidQR method, and

prove mathematically its surprisingly good classificationproperties with two different similarity measures

of L2 and cosine. Before CentroidQR method is investigated in detail, lower dimensional representation of

term-document matrix and representation of each cluster will be discussed in the following sections.

Lower Dimensional Representation of Term-Document Matrix

To mathematically understand the problem of lower dimensional representation of the given document sets,

we will first assume that the reduced dimension, which we willdenote ask (k << min(m;n)), is given or

determined in advance. Term-document matrixA 2 Rm�n is defined as the matrix whose column vector

represents each document and each component of the column vector does a word of the document. Then

given a term-document matrixA 2 Rm�n , and an integerk, the problem is to find a linear transformationGT 2 Rk�m that maps each columnai of A in them dimensional space to a vectoryi in thek dimensional

space : GT : ai 2 Rm�1 ! yi 2 Rk�1 ; 1 � i � n: (1)

This can be rephrased as an approximation problem where the given matrixA has to be decomposed into

two matricesB andY as A � BY (2)

where bothB 2 Rm�k with rank(B) = k andY 2 Rk�n with rank(Y ) = k are to be found. This lower rank

approximate factorization is not unique since for any nonsingular matrixZ 2 Rk�k ,A � BY = (BZ)(Z�1Y );
andrank(BZ) = k andrank(Z�1Y ) = k. The solution for problem (2) can be found by findingB 2Rm�k with rank(B) = k andY 2 Rk�n with rank(Y ) = k in the minimization problemminB;Y jjA�BY jjF : (3)
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For example, when we use centroid vectors forB, the solution vectorsY = (BTB)�1BTA will be the

reduced dimensional representation of data matrixA. When the matrixB has orthonormal columns, sinceBTB = I, we haveY = BTA which shows thatG = B. It is well known that the best approximation is

obtained from the singular value decomposition (SVD) ofA. The commonly used latent semantic indexing

[2] exploits the SVD of the term-document matrix. For successful rank reduction scheme, it is important to

exploit a priori knowledge. The incorporation of a priori knowledge can be translated to adding a constraint

in the minimization problem (3). However, mathematical formulation of a priori knowledge as a constraint

is not always easy or even possible. In this paper, we will concentrate on exploiting clustered structure for

dimension reduction.

Representation of Each Cluster

First we will assume that the data set is cluster structured [15] and already grouped into certain clusters.

This assumption is not a restriction since we can cluster thedata set if it is not already clustered using one of

the several existing clustering algorithms such as k-means[4, 9]. Also especially when the data set is huge,

we can assume that the data has a cluster structure and it is often necessary to cluster the data first to utilize

the tremendous amount of information, in an efficient way.

Suppose we are given a data matrixA whose columns are grouped intok clusters. Instead of treating

each column of the matrixA equally regardless of its membership in a specific cluster, which is what is

done in the SVD, we want to find the matricesB andY with k columns andk rows, respectively, so that thek clusters are represented well in the space with reduced dimension. For this purpose, we want to choose

each column ofB so that itrepresents the corresponding cluster. To answer the question of which vector

can represent each cluster well, we first consider an easier problem with scalar data. For any given scalar

data set�1; �2; � � � ; �n, themean value m� = 1n nXi=1 �i (4)

is often used to represent the data set. The use of mean value is justified since it is the expected value of the

data or the one that gives the minimum variancenXi=1(�i �m�)2 = min�2R nXi=1(�i � �)2 = min�2R k(�1 � � ��n)� �(1 � � � 1)k22: (5)
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The mean value is often extended to the data sets in a vector space as follows. Supposea1; a2; � � � ; an 2Rm�1 . Then itscentroid defined as ca = 1n nXi=1 ai = 1nAe (6)

whereA = [a1a2 � � � an] ande = (1; 1; � � � ; 1)T 2 Rn�1 , is used as a vector that represents the vector data

set. The centroid is the vector which achieves the minimum variance in the following sense:nXi=1 kai � cak22 = minx2Rn�1 nXi=1 kai � xk22 = minx2Rn�1 kA� xeT k2F : (7)

It is clear from (7) that the centroid vector gives the smallest distance in Frobenius norm between the matrixA and the rank one approximationxeT wherex is to be determined. Since one of the vectors in this rank

one approximation is fixed to bee, this distance cannot be smaller than the distance obtainedfrom rank

one approximation from the SVD: the rank one approximation from the SVD would choosetwo vectorsy 2 Rm�1 andz 2 Rn�1 such thatkA� yzT kF is minimized, andminy;z jjA� yzT jjF � minx jjA� xeT jjF :
However, the centroid vector has the advantage that for eachcluster, we can findone vector inRm�1 to

represent it instead oftwo vectors. For other alternatives for representatives, suchasmedoid, see [14].

Minimization with an Orthogonal Basis of the Cluster Representatives

If the factorB has orthonormal columns in a rankk approximationA � BY , then the matrixY by itself

can give a good approximation forA in the sense that the correlation ofA can be well approximated with

the correlation ofY : ATA � Y TBTBY = Y TY; where BTB = I:
In addition, most of the common similarity measures can directly be inherited from the full dimensional

space to the reduced dimensional space, since for any vectory 2 Rk�1 ,kByk2 = kyk2;
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whereB has orthonormal columns. Accordingly, for any two vectorsa; q 2 Rm�1 and their projectionsâ; q̂ 2 Rk�1 viaB, jja� qjj2 � jjBâ�Bq̂jj2 = jjâ� q̂jj2;
and Cos(a; q) � Cos(Bâ;Bq̂) = Cos(â; q̂);
where for any two vectorsx andy in the space of same dimension,Cos(x; y) = xT ykxk2kyk2 :
Therefore, for comparing two vectors in the reduced space, the matrixB does not need to be involved.

No matter how the matricesB andY are chosen, this can be achieved by computing the reducedQR
decomposition of the matrixB if it does not already have orthonormal columns. In the following theorem,

we summarize the well known QR decomposition [3, 5] to establish our notations.

Theorem 1 (QR Decomposition)Let B 2 Rm�k ;m � k, be any given matrix. Then there is an orthogonal

matrix Q 2 Rm�m such that B = Q0@R01A ;
where R 2 Rk�k is upper triangular.

PartitioningQ as Q = (Qk; Qr); Qk 2 Rm�k ; Qr 2 Rm�(m�k) ;
we have B = (Qk; Qr)0@R01A = QkR: (8)

The right-hand side of Eqn. (8) is called the reducedQR decomposition ofB, where Range(B) = Range(Qk).

Premultiplying(Qk; Qr)T onto both sides of Eqn. (8) gives0@QTkQTr1AB = 0@QTkBQTr B1A = 0@R01A ; (9)
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Algorithm 1 CentroidQR

Given a data setA 2 Rm�n with k clusters, it computes ak dimensional representation̂q of a given vectorq 2 Rm�1 .

1. Compute the centroidbi of theith cluster,1 � i � k
2. SetB = hb1 b2 � � � bki
3. Compute the reduced QR decomposition ofB, which isB = QkR.

4. Solveminq̂ kQkq̂ � qk2 (in fact, q̂ = QTk q).
where we seeQTkB = R andQTr B = 0. With the reduced QR decomposition ofB shown in Eqn. (8),

whereQTkQk = Ik andR is upper triangular, thek-dimensional representation ofA is the solution forminz jjQkZ �AjjF : (10)

ThenZ = QTkA = RY whereY is the solution forminY jjBY �AjjF ; (11)

andB is the matrix whose columns are the centroids of classes. Eqn. (11) gives the Centroid method in our

previous work [15] which was also presented by others [4, 11], by which full dimensional data matrixA and

centroid matrixB are transformed toY andIk in the reduced dimensional matrices, respectively. By the

minimization problem (10) the data matrixA is transformed toZ, and the centroid matrixB is transformed

toR, as Z = QTkA and R = QTkB: (12)

Above steps are summarized in Algorithm CentroidQR.

It is interesting to note that when the columns ofB are the centroids of the classes in the full dimensional

space, the corresponding centroids in the reduced space obtained by the CentroidQR method are the columns

of the upper triangular matrixR, while those reduced by Centroid method are the columns of the identity

matrix Ik [15].

There are many algorithms developed for classification [7, 15, 10]. In one of the simpler but effective

algorithms we simply compare the data with each centroid [7,15], which is summarized in Algorithm Cen-
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Algorithm 2 Centroid based Classification
Given a data setA with k clusters andk corresponding centroids,bi, 1 � i � k, it finds the indexj of the

cluster in which the new vectorq belongs.

1. Find the indexj such thatsim(q; bj), 1 � j � k, is minimum or maximum, wheresim(q; bj) is the

similarity measure betweenq andbj .
(For example, withL2 norm, sim(q; bj) = kq � bjk2 and the indexj which gives minimum value

is to be found, and with cosine,sim(q; bj) = cos(q; bj) = qT bjkqk2kbjk2 ) and the indexj which gives

maximum value is to be found.

troid based classification.

We will show that the dimension reduction by CentroidQR algorithm has a special property when it is

used in conjunction with Centroid based classification.

We now investigate the relationship between classificationresults from Algorithm Centroid based Clas-

sification in the full dimensional space and the reduced space obtained by CentroidQR method. It is well

known that norm is invariant under orthogonal transformation. That iskQT (ai � bj)k22 = (ai � bj)TQQT (ai � bj)
whereQTQ = QQT = I. Our transformation does not hold invariance of norm, sincewe useQk, andQkQTk 6= I. However we now show that the transformation byQk still has very interesting properties.

Definition 1 (Ordering) Let S(q,B) denote an ordering of column indices of B 2 Rm�k which is sorted in

an non increasing order of similarity between a vector q 2 Rm�1 and the k columns of B 2 Rm�k .

For example, supposeB = hb1 b2 b3i 2 Rm�3 and inL2 norm similarity,kq � b1k2 � kq � b3k2 �kq � b2k2. ThenS(q;B) = (1; 3; 2).
Theorem 2 (Order Preserving inL2) The ordering S(q;B) with L2 norm measure in the full dimensional

space is completely preserved in the reduced space obtained with transformations by (12), i.e. S(q;B) =S(q̂; B̂) when q̂ = QTk q and B̂ = QTkB, and the reduced QR decomposition of B is QkR.
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Proof:

Let’s start with norm preserving property of orthogonal transformation (13). SincekQTr bjk = 0 from (9),kq � bjk22 can be expressed askq � bjk22 = kQT (q � bj)k22 (13)= kQTk (q � bj)k22 + kQTr (q � bj)k22 (14)= kQTk (q � bj)k22 + kQTr qk22: (15)

Thus if kq � bjk2 � kq � blk2, then we havekQTk (q � bj)k2 � kQTk (q � bl)k2 since the term,kQTr qk22
of (15) does not involvebj nor bl and is a constant for any class. This means that our reductionmethod

preserves the order ofL2 norm similarity in full dimensional space after dimension reduction. �
Theorem 3 (Order Preserving in Cosine)The ordering S(q;B) with cosine measure in the full dimen-

sional space is completely preserved in the reduced space obtained with transformations by (12), i.e.S(q;B) = S(q̂; B̂) when q̂ = QTk q and B̂ = QTkB, and the reduced QR decomposition of B is QkR.

Proof:

Let cos(q; bj) be cosine between vectorsq 2 A andbj 2 B. Thencos(q; bj) = cos(QT q;QT bj) = (QT q)TQT bjkQT qk2kQT bjk2= (qTQk qTQr)0@QTk bjQTr bj1A(kQTk qk22 + kQTr qk22) 12 kQTk bjk2= qTQkQTk bj(kQTk qk22 + kQTr qk22) 12 kQTk bjk2 : (16)

Thus whencos(q; bj) � cos(q; bl), we haveqTQkQTk bj(kQTk qk22 + kQTr qk22) 12 kQTk bjk2 � qTQkQTk bl(kQTk qk22 + kQTr qk22) 12 kQTk blk2 :
Accordingly, we have qTQkQTk bjkQTk qkkQTk bjk � qTQkQTk blkQTk qkkQTk blk : (17)
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In Eqn. (17), since the left term representscos(q̂; b̂j), and the right term representscos(q̂; b̂l), whereq̂ is a

reduced representation ofq andb̂i = QTk bi which is thekth dimensional representation ofbi, 1 � i � k, the

expression (17) is equivalent to cos(q̂; b̂j) � cos(q̂; b̂l):
Thus

if cos(q; bj) � cos(q; bl) then cos(q̂; b̂j) � cos(q̂; b̂l): �
The above two theorems show that we can completely recover the orders of bothL2 and cosine similarities

when original dimension is reduced to dimensionk, the number of categories by Algorithm CentroidQR,

and classification is achieved by Algorithm Centroid based Classification. In other words, we can pro-

duce exactly the same classification results with a reduced data as those with a full dimensional data, and

computational cost saving from dimension reduction is obvious especially for high dimensional data.

Note that the order preserving property of the dimension reduction obtained by Algorithm CentroidQR

holdsregardless of the cluster quality. This means that no matter how the clustering in the full dimensional

space is obtained, the ordering structure between any data and the centroids of the clusters is preserved after

dimension reduction via Algorithm CentroidQR. Next section gives some experimental results showing the

property of our algorithm numerically.

Experimental Results

In the first test we use some artificial clustered data which isgenerated by an algorithm which is a modi-

fied version of what is presented in [9] to examine the relationship between numerical values of similarity

measures in the full dimensional and the reduced dimensional space expressed in Eqns (15) and (16). In

generating data set using the program, we can optionally choose the dimension of the data, total number of

data and minimum number of data for each class. For a simplicity of presentation, we first choose the data

set which is composed of three classes with 20-dimensional data. Each class has 5, 5 and 3 items, and thus

total 13 number of data are selected. The matrix form of the test data is a dense matrix of size20 � 13 .

Since it has three classes, the data vectors are reduced to dimension 3 from 20 by the CentroidQR algorithm.

Then we compare classification in the full and reduced space.Detailed values are shown in the Table 1 and

Table 2.
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Table 1 shows classification in the full dimensional space and the reduced space withL2 measure,

and their numerical relationship. First column of the tablecontains the label of each data, the numer-

ical values in the next three columns are Euclidean distances between dataai and centroidsbj in full

dimensional space, the next three columns represent those in reduced space, and the last column showskQTr (ai � bj)k2 = kQTr aik2. From Eqn. (15) we know that Euclidean distance in full dimensional

space is decomposed into Euclidean distance in reduced space and constant value which is independent

of centroid vectors. For example, distances betweena5 and b1; b2 and b3 in full dimensional space are

3.39, 4.71 and 6.05 respectively, which are decomposed intothe constant 3.29 and 0.85, 3.38 and 5.08 of

distances in reduced space, respectively. That is,3:39 = p0:852 + 3:292; 4:71 = p3:382 + 3:292 and6:05 = p5:082 + 3:292. Those classification results exactly follow the Theorem 1.

Similarly, Table 2 shows the cosine values between data vectors and centroid vectors in full dimensional

space and reduced space. With the cosine measure, item 9 is misclassified in full dimensional space, and is

misclassified in reduced space too.

Another interesting fact is that with both similarity measures, the values determining the class of data

becomes more pronounced after reduction of dimension. In Table 1 for dataa1 the minimum distance is

2.90 tob1, and next shortest distance is 4.13 tob2. In the reduced dimensional space, they are 0.74 and 3.04,

respectively. With cosine measure in Table 2 correspondingvalues in the full dimensional space are 0.77

and 0.43, and 0.98 and 0.55 in the reduced dimensional space.Thus the dimension reduction by CentroirQR

makes class-deciding measure difference clearer.

In the next test, a bigger and higher dimensional data set is tested for classification in the full and reduced

dimensional space. This data set consists of 5 categories, which are all from the MEDLINE1 database.

Each category has 500 documents, and total number of terms are 22095 after preprocessing with stopping

and stemming algorithms [12]. The categories have many common words related to cancer. By Algorithm

CentroidQR the dimension 22095 is dramatically reduced to 5, the number of classes, and classification of

the full dimensional data is completely preserved in this 5 dimensional space. Table 3 shows that as expected

from Eqns. (15) and (16), the classification results are identical in the full and reduced dimensional space

for both measures. Classification results of each data are not shown in the table, but they are completely

1http://www.ncbi.nlm.nih.gov/PubMed
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Table 1:L2 norm similarity between data and centroidskai � bjk kQTk (ai � bj)k kQTr aik
data b1 b2 b3 b1 b2 b3a1 2.90 4.13 5.45 0.74 3.04 4.68 2.80a2 4.25 5.46 5.68 0.83 3.54 3.87 4.16a3 3.61 4.85 5.93 0.49 3.28 4.74 3.57a4 3.42 4.66 4.93 0.85 3.28 3.65 3.31a5 3.39 4.71 6.05 0.85 3.38 5.08 3.29a6 5.10 3.72 5.78 3.84 1.61 4.70 3.36a7 5.26 4.10 5.39 3.60 1.43 3.77 3.84a8 6.48 4.88 6.14 4.66 1.90 4.18 4.50a9 5.57 5.01 5.13 3.72 2.82 3.02 4.15a10 4.52 3.98 6.44 2.98 2.06 5.47 3.40a11 4.55 4.49 3.29 3.33 3.25 1.10 3.10a12 5.23 4.60 2.63 4.71 4.00 1.30 2.28a13 6.87 6.33 4.50 5.50 4.81 1.83 4.11
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Table 2: cosine similarity between data and centroidscos(ai; bj) cos(QTk ai; QTk bj)
data b1 b2 b3 b1 b2 b3a1 0.77 0.43 0.23 0.98 0.55 0.29a2 0.64 0.24 0.34 0.97 0.36 0.52a3 0.66 0.23 0.14 0.99 0.35 0.21a4 0.70 0.29 0.40 0.97 0.41 0.56a5 0.69 0.23 0.07 0.97 0.33 0.10a6 0.34 0.75 0.25 0.45 0.99 0.33a7 0.01 0.26 0.15 0.03 0.88 0.49a8 0.16 0.66 0.34 0.24 0.98 0.50a9 0.01 0.01 0.29 0.03 0.02 0.86a10 0.44 0.59 0.00 0.62 0.82 0.00a11 0.39 0.31 0.73 0.52 0.42 0.98a12 0.10 0.17 0.81 0.12 0.20 0.95a13 0.31 0.48 0.80 0.38 0.59 0.98
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identical.

Table 3: Misclassification Rate

Data from MEDLINE

class category no. of data

1 heart attack 500

2 colon cancer 500

3 diabetes 500

4 oral cancer 500

5 tooth decay 500

Misclassification Rate (in %)

Full CentroidQR

Dimension 22095 � 2500 5� 2500L2 11.76 11.76

Cosine 7.80 7.80

Concluding Remarks

In this paper we presented mathematical proof of what we observed in the experimental results of our pre-

vious research [15] regarding Algorithm CentroidQR. For the centroid based classification, Algorithm Cen-

troidQR gives a dramatic reduction of dimension without losing any information on the class structure.What

is also remarkable is that the ordering structure between any data and the centroids based on cosine orL2
norm similarity measures is completely preserved after dimension reduction through our CentroidQR algo-

rithm regardless of the cluster quality. Currently, we are studying relationship between classifications in the

full dimensional and reduced space using criteria such as traces of scatter matrices .
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