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Abstract

Dimension reduction in today’s vector space based infdonagtrieval system is essential for improving
computational efficiency in handling massive data. In oewjmus work we proposed a mathematical frame-
work for lower dimensional representations of text datagoter space based information retrieval, and a
couple of dimension reduction methods using minimizatiod aatrix rank reduction formula. One of our
proposed methods is CentroidQR method which utilizes gahal transformation on centroids, and the test
results showed that its classification results were ex#éitfysame as those of classification with full dimen-
sion when a certain classification algorithm is applied. his paper we discuss in detail the CentroidQR
method, and prove mathematically its classification prigekvith two different similarity measures éf,

and cosine.
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Introduction

To handle today’s massive high dimensional data efficiedityension or feature reduction of data is essen-
tial in a information retrieval system. Grouping similatal@nto one category through clustering presents
more related output for user’'s query without much overhdg. [Classification is the process of assigning
new data to predefined proper group called class or catedonythe other hand, clustering is grouping
the data without any predefined categories, which is uspaitformed to build categories for classification
task. The classification problem may be complicated by ifegéclass definitions, overlapping categories,
random variations in the new data [1], and nonlinearity asslfier. A common classification system is com-
posed of data collection, feature generation, featuresete classifier design, and finally system evaluation
and feedback [6, 13, 17]. Among them, feature selection gre&t importance for the quality of classifi-
cation and computational cost of the classifier. Severaingkes of available classification methods are
k-nearest neighbor, perceptron, and decision tree [9,ATdther simple and fast method we can consider
is the one based on centroids of classes which provideslimefkground for a couple of dimension method

such as discriminant analysis, in addition to Centroid 4,15] , CentroidQR methods we proposed in [15].

The dimension reduction method that we will discuss in tlapgy is based on the vector subspace
computation in linear algebra [5]. Unlike other probakiland frequency based methods where a set of
representative words are chosen, the vector subspace tatimpwvill give reduction in the dimension of
term space where for each dimension in the reduced spacenmetcaasily attach corresponding words
or a meaning. The dimension reduction by the optimal lowek i@pproximation from the SVD has been
successfully applied in numerous applications, e.g. inaigrocessing. In these applications, often what
the dimension reduction achieves is the effect of removiigein the data. In case of information retrieval
or data mining, often the data matrix has either full ranklose-to full rank. Also the meaning obise
in the data collection is not well understood, unlike in othpplications such as signal processing [16] or
image processing. In addition, in information retrievak tower rank approximation is not only a tool for
rephrasing a given problem into another one which is easigolve, but the data representation in the lower

dimension space itself is important [8] in further procegsif data.

Several dimension reduction methods have been proposeatduiiering and classification of high di-

mensional data, but most of them provide just approximatibariginal data. One attractive and simple



algorithm is one based on the centroids of classes and nzaiion [4, 11, 15]. In [15] we proposed a
dimension reduction method named CentroidQR and testtsestubwed it gives exactly identical classifi-
cation results in full dimensional space and reduced diinaakspace when classification is determined by
comparing the new data to the centroids of the clusters.idrptiper, we revisit the CentroidQR method, and
prove mathematically its surprisingly good classificatoperties with two different similarity measures
of Ly and cosine. Before CentroidQR method is investigated iaildéiwer dimensional representation of

term-document matrix and representation of each clustébgiiscussed in the following sections.

Lower Dimensional Representation of Term-Document Matrix

To mathematically understand the problem of lower dimaraicepresentation of the given document sets,
we will first assume that the reduced dimension, which wedehote ag (k << min(m,n)), is given or
determined in advance. Term-document mattixx R™*" is defined as the matrix whose column vector
represents each document and each component of the colwton dees a word of the document. Then
given a term-document matrig € R”™*", and an integek, the problem is to find a linear transformation
GT e RE*™ that maps each column of A in them dimensional space to a vectgrin the k& dimensional

space :
G a; e R Sy e RN 1< <. 1)

This can be rephrased as an approximation problem whereibie gpatrix A has to be decomposed into

two matricesB andY as
A=~ BY 2

where bothB € R™** with rank(B) = k andY € R¥*" with rank(Y") = k are to be found. This lower rank

approximate factorization is not unique since for any nomsiar matrixZ € RF<%
A= BY = (BZ)(Z7'Y),

andrank(BZ) = k andrank(Z~'Y) = k. The solution for problem (2) can be found by findifge

R™*k with rank(B) = k andY € RF¥*" with rank(Y) = & in the minimization problem

min |4 — BY|[r. ®3)



For example, when we use centroid vectors Byrthe solution vectory” = (BT B)~!BT A will be the
reduced dimensional representation of data madrix¥hen the matrixB has orthonormal columns, since
BTB = I, we haveY = B’ A which shows that? = B. It is well known that the best approximation is
obtained from the singular value decomposition (SVDXofThe commonly used latent semantic indexing
[2] exploits the SVD of the term-document matrix. For sustelsrank reduction scheme, it is important to
exploit a priori knowledge. The incorporation of a prioridmledge can be translated to adding a constraint
in the minimization problem (3). However, mathematicahfiatation of a priori knowledge as a constraint
is not always easy or even possible. In this paper, we wilteatrate on exploiting clustered structure for

dimension reduction.

Representation of Each Cluster

First we will assume that the data set is cluster structut&dl 4nd already grouped into certain clusters.
This assumption is not a restriction since we can clusted#te set if it is not already clustered using one of
the several existing clustering algorithms such as k-mghr$y. Also especially when the data set is huge,
we can assume that the data has a cluster structure andtésr@fcessary to cluster the data first to utilize

the tremendous amount of information, in an efficient way.

Suppose we are given a data matdxvhose columns are grouped intaclusters. Instead of treating
each column of the matrid equally regardless of its membership in a specific clustéichvis what is
done in the SVD, we want to find the matricBsandY” with & columns and: rows, respectively, so that the
k clusters are represented well in the space with reducedndiome For this purpose, we want to choose
each column ofB so that itrepresents the corresponding cluster. To answer the question of whixitov
can represent each cluster well, we first consider an easiblgpn with scalar data. For any given scalar

data setv, g, - - - , a,, themean value
1
Mo = — Z «; (4)

is often used to represent the data set. The use of mean ggligified since it is the expected value of the

data or the one that gives the minimum variance

n n

O 2: 1 PO 2: ] — PP 2
> (o= ma)? = min 3o =0)" = i -+~ ) = 61+ D ©)



The mean value is often extended to the data sets in a ve@oe g3 follows. Supposg,as,--- ,a, €

R™>1 Then itscentroid defined as

1 1
Co=— ) a;=—Ae (6)
n mn
=1
whereA = [ajas - - - a,) ande = (1,1,--- ,1)7 € R**! is used as a vector that represents the vector data

set. The centroid is the vector which achieves the minimunaree in the following sense:

reERNX 1

n n
> llai = call3 = min > la; — zll5 = miglllA—weTII%- (7)
i=1 i=1 weR?

Itis clear from (7) that the centroid vector gives the snshltistance in Frobenius norm between the matrix
A and the rank one approximatiare” wherez is to be determined. Since one of the vectors in this rank
one approximation is fixed to be this distance cannot be smaller than the distance obtdinadrank
one approximation from the SVD: the rank one approximatiamfthe SVD would choosevo vectors

y € R™1 andz € R"*! such thal|A — yz"||» is minimized, and
rninHA—szHp < rninHA—xeTHp.
Y,z T

However, the centroid vector has the advantage that for elasher, we can finane vector inR™*! to

represent it instead @vo vectors. For other alternatives for representatives, asatiedoid, see [14].

Minimization with an Orthogonal Basis of the Cluster Representatives

If the factor B has orthonormal columns in a rakkapproximationA ~ BY’, then the matrixY” by itself
can give a good approximation far in the sense that the correlation 4fcan be well approximated with

the correlation oft:
ATA~Y"B"BY =Y'Y, where B'B=1.

In addition, most of the common similarity measures canctliyebe inherited from the full dimensional

space to the reduced dimensional space, since for any vyeet@®* >,

1Byll2 = llyll2,



where B has orthonormal columns. Accordingly, for any two vecterg € R™*! and their projections
a,q € RF*!via B,
lla —qlla = ||Ba — Bqll2 = [la — g2,
and
Cos(a,q) = Cos(Ba, BG) = Cos(a, q),
where for any two vectors andy in the space of same dimension,
.’I,‘Ty

Cos(z,y) = ———.
=9) = LT

Therefore, for comparing two vectors in the reduced spdeeatrix B does not need to be involved.
No matter how the matrice® andY are chosen, this can be achieved by computing the red@ded
decomposition of the matri® if it does not already have orthonormal columns. In the feifg theorem,

we summarize the well known QR decomposition [3, 5] to eihldur notations.

Theorem 1 (QR Decomposition)Let B € R™*% > k, beany given matrix. Then thereisan orthogonal

matrix Q € R™*™ guch that

where R € RF** jsupper triangular.

Partitioning() as
Q=(QrQ), QeR™* Q, eRm™mk)
we have

R
B = (Q, Q) (0) = QiR. (8)

The right-hand side of Eqn. (8) is called the redu@ddl decomposition of3, where Rangdf) = Range();,).
Premultiplying(Q, Q)" onto both sides of Eqgn. (8) gives

T T
Q) (@B _ (8 o
Qr Qr B 0



Algorithm 1 CentroidQR
Given a data sett € R™*"™ with k clusters, it computes fadimensional representatignof a given vector

g € R™¥1,
1. Compute the centroit} of thesth cluster,1 <i < k
2. SetB= b, by --- by
3. Compute the reduced QR decompositiorBofvhich isB = Q. R.

4. Solveming |QxG — g||2 (in fact,§ = Q1 q).

where we se€)T B = R andQ!' B = 0. With the reduced QR decomposition Bfshown in Eqn. (8),

whereQ?! Q. = I and R is upper triangular, thé-dimensional representation dfis the solution for
min|[QxZ — Alls. (10)
ThenZ = Q] A = RY whereY is the solution for
win || BY — Al|, (11)

and B is the matrix whose columns are the centroids of classes. @dhgives the Centroid method in our
previous work [15] which was also presented by others [4,dyl{vhich full dimensional data matrit and
centroid matrixB are transformed td and I, in the reduced dimensional matrices, respectively. By the
minimization problem (10) the data matrikis transformed td&, and the centroid matri® is transformed

to R, as
Z=Ql'A and R=Q!B. (12)

Above steps are summarized in Algorithm CentroidQR.

It is interesting to note that when the columnsifre the centroids of the classes in the full dimensional
space, the corresponding centroids in the reduced spagieethby the CentroidQR method are the columns
of the upper triangular matri®, while those reduced by Centroid method are the columnseoidéntity

matrix I, [15].

There are many algorithms developed for classification $7,10]. In one of the simpler but effective

algorithms we simply compare the data with each centroid %Y, which is summarized in Algorithm Cen-
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Algorithm 2 Centroid based Classification
Given a data setl with k clusters and: corresponding centroids;, 1 < i < k, it finds the index; of the

cluster in which the new vectarbelongs.

1. Find the index such thatsim(q, b;), 1 < j < k, is minimum or maximum, whergim(q, b;) is the
similarity measure betweenandb;.
(For example, withl; norm, sim(q,b;) = [|g — bjl|2 and the index which gives minimum value
is to be found, and with cosine;m(q,b;) = cos(q,b;) = qutlljﬁ) and the indexj which gives

maximum value is to be found.

troid based classification.

We will show that the dimension reduction by CentroidQR &thm has a special property when it is

used in conjunction with Centroid based classification.

We now investigate the relationship between classificatsnlts from Algorithm Centroid based Clas-
sification in the full dimensional space and the reducedespétained by CentroidQR method. It is well

known that norm is invariant under orthogonal transfororatiThat is

1Q" (ai — bj)[13 = (a; — b;)" QQ" (a; — b))

whereQ”Q = QQ" = I. Our transformation does not hold invariance of norm, siweeuse(),,, and

QrQT # 1. However we now show that the transformation(y still has very interesting properties.

Definition 1 (Ordering) Let Sq,B) denote an ordering of column indices of B € R™** which is sorted in

an non increasing order of similarity between a vector ¢ € R™*! and the k columns of B € R™*%,

For example, supposB = [171 by b3} € R™*3 and in L, norm similarity,

Hq - b2||2' ThenS(QaB) = (1’332)

q—bill2 < llg —bsll2 <

Theorem 2 (Order Preserving in Ly) Theordering S(q, B) with Ly norm measure in the full dimensional
space is completely preserved in the reduced space obtained with transformations by (12), i.e. S(q, B) =
S(g, B) when ¢ = Q1 g and B = Q7' B, and the reduced QR decomposition of B is Qy R.



Proof:
Let's start with norm preserving property of orthogonahstrmation (13). SincéQ?b;|| = 0 from (9),

lg — b;]/ can be expressed as

llg —bjll3 = 11Q" (a — b))I3 (13)
= 1QF (g — b)) 15 + 11Q) (q — ;)13 (14)
= 11Qk (g — b)ll5 + Q) qll3. (15)

Thus if{lg — bjll2 < [lg — b

2, then we have|Q] (¢ — bj)[2 < [|Qf (¢ — br)]|2 since the term||Q] q|I3
of (15) does not involveb; nor b; and is a constant for any class. This means that our reduct&hod

preserves the order @, norm similarity in full dimensional space after dimensieduction. [

Theorem 3 (Order Preserving in Cosine) The ordering S(gq, B) with cosine measure in the full dimen-
sional space is completely preserved in the reduced space obtained with transformations by (12), i.e.
S(g,B) = S(¢, B) when§ = QT q and B = Q7 B, and the reduced QR decomposition of B is Q. R.

Proof:

Let cos(q, b;) be cosine between vectayse A andb; € B. Then

N T oo (@) QD
cos(q,bj) = cos(Q" ¢, Q" bj) = 1QT qll2|QT b,]I2

Tb'
(4" Qs qTQ»( ;”)
Q7 b;

1
(lQF all3 + 1QFqlI3) 2 [1QLbjll2
q" QrQTb;

- T2 T,112)5 |0 ' (16)
Qg alz + Q7 all2) 2@ b;ll2
Thus wherros(g, b;) < cos(q,b;), we have
q" QrQLb; < q" QrQp by
1 = 1 :
(IQFalls + Q% qll5) 2 1QEb;ll2 — (1QF all3 + 11QFall3)[|QF b2
Accordingly, we have
T Tb' T Tb

q Qka i < q Qka l 17)

lQF alllQEbsIl — @k allllQ bl



In Egn. (17), since the left term represents|(q, 67-), and the right term represeniss(g, b;), whereg is a
reduced representation q)’andéi = Q;fbi which is thekth dimensional representationipf 1 < i < k, the

expression (17) is equivalent to
cos(q, I;J) < cos((j,él).
Thus
if  cos(q,bj) < cos(q,b;) then cos(cj,i)j) <cos(g,by). O

The above two theorems show that we can completely recogesrtters of botll, and cosine similarities

when original dimension is reduced to dimensigrthe number of categories by Algorithm CentroidQR,
and classification is achieved by Algorithm Centroid basdaks€ification. In other words, we can pro-
duce exactly the same classification results with a reduetal ak those with a full dimensional data, and

computational cost saving from dimension reduction is obsiespecially for high dimensional data.

Note that the order preserving property of the dimensionctdn obtained by Algorithm CentroidQR
holdsregardless of the cluster quality. This means that no matter how the clustering in the full dish@nal
space is obtained, the ordering structure between any ddtéha centroids of the clusters is preserved after
dimension reduction via Algorithm CentroidQR. Next seatgives some experimental results showing the

property of our algorithm numerically.

Experimental Results

In the first test we use some artificial clustered data whideiserated by an algorithm which is a modi-
fied version of what is presented in [9] to examine the retetigp between numerical values of similarity
measures in the full dimensional and the reduced dimerisgpae expressed in Egns (15) and (16). In
generating data set using the program, we can optionallgsehthe dimension of the data, total number of
data and minimum number of data for each class. For a simypbiipresentation, we first choose the data
set which is composed of three classes with 20-dimensiatal dEach class has 5, 5 and 3 items, and thus
total 13 number of data are selected. The matrix form of thedata is a dense matrix of si28 x 13 .
Since it has three classes, the data vectors are reducedeasion 3 from 20 by the CentroidQR algorithm.
Then we compare classification in the full and reduced sdaetailed values are shown in the Table 1 and

Table 2.
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Table 1 shows classification in the full dimensional space e reduced space with, measure,
and their numerical relationship. First column of the tatdmtains the label of each data, the numer-
ical values in the next three columns are Euclidean distabetween data; and centroidsh; in full
dimensional space, the next three columns represent thassliced space, and the last column shows
1QT (a; — bj)l2 = ||QFail2. From Egn. (15) we know that Euclidean distance in full disienal
space is decomposed into Euclidean distance in reduce@ spatcconstant value which is independent
of centroid vectors. For example, distances betweeand by, b, andbs in full dimensional space are
3.39, 4.71 and 6.05 respectively, which are decomposedhetoconstant 3.29 and 0.85, 3.38 and 5.08 of
distances in reduced space, respectively. That.# = 1/0.852 +3.292,4.71 = /3.382 + 3.292 and
6.05 = v/5.082 + 3.292. Those classification results exactly follow the Theorem 1.

Similarly, Table 2 shows the cosine values between dat@rseand centroid vectors in full dimensional
space and reduced space. With the cosine measure, item 8diassified in full dimensional space, and is

misclassified in reduced space too.

Another interesting fact is that with both similarity meees) the values determining the class of data
becomes more pronounced after reduction of dimension. beThfor datas; the minimum distance is
2.90 tob;, and next shortest distance is 4.1340ln the reduced dimensional space, they are 0.74 and 3.04,
respectively. With cosine measure in Table 2 correspondatges in the full dimensional space are 0.77
and 0.43, and 0.98 and 0.55 in the reduced dimensional sphauas.the dimension reduction by CentroirQR

makes class-deciding measure difference clearer.

In the next test, a bigger and higher dimensional data sestied for classification in the full and reduced
dimensional space. This data set consists of 5 categorigshware all from the MEDLINE' database.
Each category has 500 documents, and total number of tear22805 after preprocessing with stopping
and stemming algorithms [12]. The categories have many aomaords related to cancer. By Algorithm
CentroidQR the dimension 22095 is dramatically reduced thénumber of classes, and classification of
the full dimensional data is completely preserved in thisndathsional space. Table 3 shows that as expected
from Egns. (15) and (16), the classification results aretidainin the full and reduced dimensional space

for both measures. Classification results of each data drshowvn in the table, but they are completely

http://www.ncbi.nlm.nih.gov/PubMed
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Table 1: L, norm similarity between data and centroids

llai — bjll Q% (ai = o)l || Q7 aill
data by by b3 by by b3

a; || 2.90| 4.13| 5.45| 0.74| 3.04 | 4.68 2.80
as || 4.25| 5.46| 5.68| 0.83| 3.54 | 3.87 4.16
as || 3.61| 4.85| 5.93| 0.49| 3.28| 4.74| 3.57
as || 3.42| 4.66| 4.93| 0.85| 3.28| 3.65 3.31
a; || 3.39| 4.71| 6.05| 0.85| 3.38| 5.08 3.29

ag || 5.10| 3.72| 5.78| 3.84| 1.61| 4.70| 3.36
a; || 5.26|4.10|5.39| 3.60| 1.43| 3.77| 3.84
as | 6.48| 4.88| 6.14 || 4.66| 1.90 | 4.18| 4.50
ay || 5.57|5.01|5.13| 3.72| 2.82| 3.02| 4.15
aip | 4.52|3.98| 6.44| 2.98| 2.06| 5.47| 3.40

anr || 4.55| 4.49| 3.29| 3.33| 3.25| 1.10| 3.10
a» || 5.23| 4.60| 2.63|| 4.71| 4.00| 1.30| 2.28
a3 || 6.87| 6.33| 450 5.50| 4.81| 1.83| 4.11
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Table 2: cosine similarity between data and centroids

cos(ai, bj) cos(QF a;, QTbj)

data|| by ba b3 b bs bs

a; || 0.77] 0.43| 0.23 || 0.98| 0.55| 0.29
ay || 0.64| 0.24| 0.34| 0.97| 0.36| 0.52
a3 || 0.66| 0.23] 0.14 || 0.99| 0.35| 0.21
aqs || 0.70| 0.29| 0.40|| 0.97| 0.41| 0.56
as || 0.69| 0.23| 0.07 || 0.97| 0.33| 0.10
ag || 0.34| 0.75| 0.25| 0.45| 0.99| 0.33
a7 | 0.01| 0.26| 0.15|| 0.03| 0.88| 0.49
ag || 0.16| 0.66| 0.34 || 0.24| 0.98| 0.50
0.01| 0.29 || 0.03| 0.02| 0.86
ajg || 0.44| 0.59| 0.00 || 0.62| 0.82| 0.00
a;; || 0.39]0.31] 0.73 || 0.52| 0.42| 0.98
a2 || 0.10| 0.17| 0.81 || 0.12| 0.20| 0.95
a3 || 0.31| 0.48| 0.80|| 0.38| 0.59| 0.98

S

o
@)
=
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identical.

Table 3: Misclassification Rate

Data from MEDLINE

class category no. of data
1 heart attack 500
2 colon cancer 500
3 diabetes 500
4 oral cancer 500
5 tooth decay 500

Misclassification Rate (in %

Full CentroidQR
Dimension|| 22095 x 2500 | 5 x 2500
Lo 11.76 11.76
Cosine 7.80 7.80

Concluding Remarks

In this paper we presented mathematical proof of what werebdan the experimental results of our pre-
vious research [15] regarding Algorithm CentroidQR. Fer ¢tlentroid based classification, Algorithm Cen-
troidQR gives a dramatic reduction of dimension withouirigsany information on the class structure.What
is also remarkable is that the ordering structure betwegrdata and the centroids based on cosiné.pr

norm similarity measures is completely preserved afteredsion reduction through our CentroidQR algo-
rithm regardless of the cluster quality. Currently, we doglging relationship between classifications in the

full dimensional and reduced space using criteria sucheassrof scatter matrices .
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