Hierarchical
Classification of Real Life
Documents

Ke Wang*, Sengiang Zhou', Yu He'

1 Introduction

Two features have successfully made on-line information comprehensible and ac-
cessible to people: hierarchically structured classes where topics are organized into
a hierarchy of increasing specificity, and multi-classed documents where a docu-
ment is classified into all relevant classes. One such information source is Ya-
hoo! where a document on Dance, for example, could be reached from both
Arts @ Performing_Arts and Recreation topics in the topic hierarchy. The hi-
erarchical feature of classes allows information to be examined and browsed at
various topic specificities, and the multi-class feature allows information to be ac-
cessed from all related topics. However, most document classification techniques
assume that there is a flat class space and each document has one class. The doc-
uments classified by such techniques are difficult to browse and access by people,
especially when there are many classes such as in Yahoo!. In this paper, we propose
a new technique for automatic classification of documents to address these real life
requirements. This raises several research issues. We use Yahoo! for explanation.

1. Misclassification is non-symmetric. Misclassifying an ads on topic Travel into
topic Outdoors is less erroneous than misclassifying it into topic Software.
Indeed, the fact that many ads belong to both Travel and Outdoors, but few
belong to both Travel and Software suggests that Travel is more similar
to Outdoor than to Software. This feature becomes more prevailing in a
hierarchical class space where some classes are more general than others.

*Simon Fraser University
tSimon Fraser University
fNational University of Singapore

2. Documents are multi-classed. A document is typically classified into all rel-
evant classes. Traditional classification fails to do so because each training
document is allowed to be associated with only one class. One solution to
multi-classification is to build a classifier for each possible class and classify
a new document by going through every classifier. In a sparsed class space
where a document belongs to a small number of classes from a large class
space, this approach will construct too many classifiers. Further, such an in-
dependent classification for each class does not take into account the similarity
and hierarchical structure of classes as discussed above.

3. The sparse class space. For k classes, a document could be associated poten-
tially with any one of the 2 — 1 subsets of classes. Even not so large k will
create a very sparse class space in multi-class classification. This sparseness
makes the learning task of automatic classification difficult because there may
not be enough training documents. However, unlike traditional classification,
classes share similarities as discussed above. Exploring such similarities opens
up new channels to deal with the sparsity problem of the class space.

In summary, classes of documents interact by being a generalization of one
another and classifying common documents. Traditional classification techniques
fail to recognize such interactions. In this paper, we regard classes as objects whose
similarity can be measured, and the goal of classification is to determine the set of
“relevant” classes under this measure. We consider training documents of the form
{t1,...,tn|C1,...,Ck}, where t1,...,t, are terms (keywords or phrases) from a
given universe and C1, ..., Cy are classes from a given class hierarchy. {C1,...,Cy}
is called a classset. Given a collection of training documents, our task is to construct
a classifier, consisting of rules of the form {t;,...,t;,} — {Ci,...,C;,}, that
assigns a “good” classset {C},,...,C;, } to a given new document. There are two
contributions:

1. We define a new notion of similarity between two classsets using the similarity
of the documents belonging to these classsets. The intuition is that two class-
sets are similar exactly when their classified documents are similar. Indeed,
if two classsets classify many documents in common, the chance that they
are similar topics is high, and misclassification from one to the other is less
erroneous. We believe that this notion captures the essence of class similarity.

2. We construct a classifier using the proposed class similarity. A major challenge
is the search of classification rules of the form {t;,,...,t;,} — {Ci,,...,Cy, },
where t;, are terms and C}; are classes, because there are many terms and
classes. Our approach is to apply the association rule mining [1, 2] to generate
such rules. We present an algorithm for selecting association rules to construct
a classifier.

We evaluate this method using the documents in ACM Digital Library and
Yahoo!.

2 Related work

With few exceptions, most classification systems assume that all classes are at a flat
level and each document is labeled by one class [5, 6, 9]. Recently, hierarchically
structured classes were examined in [3, 4, 7] where classes are organized into a
hierarchy of increasing specificity and a document is labeled by one class in the
hierarchy. Though a document belonging to a child class is automatically considered
as belonging to a parent class, a document is not allowed to belong to two classes
not on a generalization path in the hierarchy, like Arts : Performing_Arts and
Recreation in Yahoo!.

Related to multi-classification of documents is the problem of transforming
source terms to target terms for a collection of documents [8]. Each training doc-
ument is a pair < s,t > where s is a set of source terms and ¢ is a set of target
terms. The goal of the transformation is finding the transformation matrix from
source terms to target terms that minimizes the total error for a collection of doc-
uments. In our terminology, target terms correspond to classes of a document and
the transformation matrix corresponds to a classifier. [8] solves this problem as
the Linear Least Squares Fit that performs the transformation using the standard
singular value decomposition. That approach does not address the similarity and
hierarchical nature of target terms. Also, the singular value decomposition is com-
putationally expensive, in order N2 x k3, where N is the number of terms and
documents and k is the number of terms. For ACM Digital Library, N and k could
be tens of thousands or even more.

The extended kNN [9] returns the set of classes of the k training documents
nearest to the given document as the relevant classes. We will compare our method
with kNN. Some classifiers such as decision tree [5] return a class distribution for
a given document, in the form of the probability of each class. However, these
classifiers do not consider the similarity of classes and the hierarchical structure of
the class space.

3 A new class similarity

We measure the similarity of two classsets by the similarity of the training doc-
uments belonging to them. Let us describe this idea formally. Consider a doc-
ument d belonging to k classes Cq,...,Ck, or simply belonging to the classset
CS ={C1,...,Ck}. Clearly, d also belongs to the classes that are more “general”
than C;, 1 < ¢ < k. These general classes are the ancestors of C; in the class
hierarchy. Let Anc(CS) denote the set of classes in C'S plus their ancestors.

Definition 1. Consider two classsets CS1 and C'Ss. We say that CSy is more
general than CSs if Anc(CS1) C Anc(CS3). We say that a document d is covered
by a classset CS if C'S is more general than the classset of d. The coverage of C'S,
denoted by Cover(CS), is the set of all documents covered by CS.

For example, if Dance is a parent of Fast_Dance, {Dance} is more general
than {Fast_Dance, Music} because Anc({Dance}) C Anc({Fast_Dance, Music}).

The following equivalence holds (we omit the straightforward proof):

Lemma 2. Consider a classset C'S and a document d with classset CSy. The
following are equivalent: (1) d € Cover(CS); (2) CS C Anc(CSy); (3) Anc(CS) C
Anc(CSy).

Lemma 3. Cover(CSy) N Cover(CSs) = Cover(CS; UCSs).

Proof: Let d € Cover(CSy)NCover(CSs). From Lemma 2, C'S; C Anc(CSy)
and CSy C Anc(CSy), where C'Sy denotes the classset of d, therefore, C'S;UC Sy C
Anc(CSy). From Lemma 2, this implies that d € Cover(CS; U CS3). This shows
that Cover(CSy) N Cover(CS3) C Cover(CS; U CSs). To show the other contain-
ment, let d € Cover(CS; U CSsy). From Lemma 2, C'S; UCSy C Anc(CSy), and
thus, C'S; C Anc(CSy), i = 1,2. Then, from Lemma 2, d is in Cover(CS;).

The dissimilarity of two classsets C'S; and C'S5 is defined as the normalized
difference of their coverages:

|Cover(CS3) — Cover(CSy)| + |Cover(CSy) — Cover(CSs)|
E = 1
(C51,C5) |Cover(CSy) U Cover(CSs)| (1)
|z| denotes the number of elements in a set . E(CSy,CSs) is in the range [0,1].
The similarity of C'S1 and CSy is defined as 1 — E(CSy,CSs). From Lemma 3, we
rewrite definition (1) as
_ |Cover(CS1)| + |Cover(CSs)| — 2|Cover(CS; U CS,)|

E = 2
(C51,C5,) |Cover(CSy)| + [Cover(CSy)| — |Cover(CS; UCSs)| @)

Therefore, to compute E(CS1,CSs2), we need only to compute the coverage of
C51,C8,,CS UCSs.

We say that a document d matches arule T — C'S, or vice versa, if d contains
all the terms in T'. Let Match(T — CS) denote the set of training documents that
match 7" — CS. The generalized confidence of T — CS' is defined as

Match(T — CS) — E4E(CSq,CS) 3)
Mateh(T — CS)

Confy (T — CS) =

where d ranges over the elements of Match(T — CS), and CSy is the classset of
d. Intuitively, Conf,(T" — CS) measures the average similarity between C'S and
the classsets of the documents that match 7' — CS. If E(CS;,CSs3) is binary,
ie, 1or 0, X3E(CSy,CS) degenerates to the number of training documents that
match T' — C'S but do not belong to C'S, and Conf,(T' — CS) degenerates to the
standard confidence [1]. In this sense, Confy(T — CS) is a generalization of the
standard confidence in the presence of class similarity.

Example 1. Consider the database of 6 documents dy,...,ds and the class hier-
archy in Figure 1. We write BC to mean classset {B,C}, and similarly for the
others. Cover(B) = {dy,d2,ds,dys,ds} because B is contained in Anc(CSy,) for
i =1,2,3,4,6 (from Lemma 2). Figure 1(c) lists the coverage of some classsets.
For example, E(B,C) is computed as follows:

/\

) Class hierarchy

id | items | classset CS [Cover(CS)
di | k1 B
B dlde,d3ad47d6
do | k1,ke | BC
BC | do,d3,dy, dg
ds | k1,ke | BC
C d27d37d4ad57d6
dyg | ko CD
CD | d4
ds | k3 C CE T d
de | k3 CE 6

(b) Documents (c) Coverage

Figure 1. An example
CO’U@T(B) — CO’UB’/’(C) = {dl,dg,d37d4,d6} — {dz,dg,d4,d5,d6} = {dl}

COUBT‘(C) — CO’UBT(B) = {dg,dg,d4,d5,d6} — {d17d2,d3,d47d6} = {d5}
Cover(B) U Cover(C) = {dy,da,ds,ds,ds,ds}

B |{d17 d27 d3a d47 d57 dﬁ}‘ N 6
Table 1 shows the dissimilarity between some classsets.

Confq(kw — B) is computed as follows. ki is found in di,ds,ds, 1 with no
error and 2 with error E(B, BC). So we have

3—-2x E(B,BC) 3-2x0.2

Confy(kn — B) = 3 = 3 = 0.87
Similarly,
— E(B D - 0.
2—-FE(CFE 2—0.

3—-2x E(BC,C)—E(CD,C) 3-2x02-0.8
3 B 3

Confy(ks — C) = =0.6

] [B [BC [C [CD [CE |
B 0 02 {03308 |08
BC |02 |0 0.2 | 075 0.75
C 033102 |0 0.8 |08
CD |08 |075]08 |0 1
CE |08 |075|08 |1 0

Table 1. E(CSl, CSQ)

4 Construction of classifiers

There are four steps in constructing a classifier. First, we generate association rules
of the form T" — CS, where T is a set of terms and CS is a classset, that satisfy
the user-specified minimum support and minimum confidence, as in [1, 2]. Second,
we rank rules to determine the classification rule of a document. Third, we remove
the rules that incorrectly classify many training documents. Fourth, we cut off the
ranked list to minimize the overall classification error. Let us explain each step in
details.

4.1 Step 1: Find association rules

We generate all association rules of the form T — C'S that satisfy some user-
specified minimum support and minimum confidence. The algorithm is basically
that of [2]. There are several differences.

First, each frequent k-itemset ([2]’s terminology), k > 1, contains at least one
term and at least one class. Fach such frequent itemset T'C'S represents a rule
T — CS, where T is a set of terms and CS is a classset. For k > 2, every frequent
k-itemset of this form can be constructed using two frequent (k — 1)-itemsets of
the same form, like in the Apriori [2], adding either one term in T or one class in
CS. This restricted form reduces substantially the number of itemsets generated.
Second, we use the generalized confidence of rule T' — C'S as in defined by Equation
3, not the standard confidence in [2]. E(C'S, C'Sy) in Equation 3 is not available from
frequent itemsets. We need two database scans to compute generalized confidence
of all rules.

1. In the first scan, we compute |Cover(CS)| for C'S, where C'S is either a classset
CS; appearing in some training documents, or a classset C'S, appearing in
some rules found, or C'SyUC'S,.. In particular, for each document d scanned,
we increment |Cover(CS)| for CS if CS C Anc(CSy), where CSy is the
classset of d. Then, we compute E(CSy,CS,) based on Equation (1) for
classset C'Sy of training documents d and classset C'S,. in rules r found.

2. In the second scan, we compute Confy(T — CS) for every rule T — CS
generated. In particular, for each training document d, we find all matching
rules T — CS, ie., T C d, increment Match(T — CS) and add E(CS4, CS)
to XgE(CSq,CS). At the end of the scan, Conf, (T — CS) is computed by
Equation (3).

4.2 Step 2: rank the rules

A document could match more than one rule, one of which is chosen to classify the
document. We propose the most-confident-first (MCF) principle to determine the
classification rule of each document: a document is classified by the matching rule
that has the highest generalized confidence (breaking a tie arbitrarily). If we rank
all rules by generalized confidence, the MCF principle says that the first matching
rule in the ranked list is chosen as the classification rule for a document. The
generalized confidence of a rule 7' — C'S measures the average similarity between
CS and the classsets of the documents matched by the rule. By choosing the
matching rule with highest generalized confidence, a document is assigned the most
similar classset among all the matching rules. Under the MCF principle, among all
the rules T' — C'S with the same LHS T, only the rule with the highest generalized
confidence will actually classify some documents, therefore, needs to be kept.

4.3 Step 3: remove rules of low accuracy
Let D be the set of training documents classified by rule 7" — C'S under the MCF
principle. If D is non-empty, the accuracy of T — CS is defined as

Accu(T — CS) = |D| — ETTG;(T — CS) @)

where Error(T — CS) is the error of T — CS defined as
Error(T — CS) = X4epE(CSy,CS) (5)

The accuracy of all rules can be computed by one scan of the documents, given that
all errors E(CSy, CS) were computed in Step 1. We remove all rules with accuracy
below a certain threshold because they contribute negatively to the overall accuracy.
Note that Confy(T — CS) is defined with respect to all documents that match the
rule, whereas Accu(T — CS) is defined with respect to the documents classified by
the rule under the MCF principle.

Example 2. Consider the database in Example 1 and the error in Table 1. Let
the minimum support be 2/6. In Step 1, the following rules above the minimum
support are generated (we do not specify minimum confidence), ranked by generalized
confidence:

r1: k1 — B (match dq,da,d3, confy =0.87)
re t ko — BC (match da,ds,ds, confy =0.75)
r3 : ks — C (match ds,dg, confq =0.60)

ry : ko — C (match da,ds,ds, confy =0.60)

let r1,..., 7 be the remaining rules after Step 3, sorted by Confy(r;)
recompute Error(r;) for 1 <i<m
/* compute the cutoff point */
PrefixError(r;) =0
foreach i =1 to m do
PrefixError(r;) = PrefixError(r;—1) + Error(r;)

let Unclassifed(r;) be the set of training documents not classified by r1, ...

let DefaultClass(r;) be the classset C'S that minimizes
Zd€Unclassified(r,;)la(c(‘s’7 CSd)
DefaultError(r;) = Laevnciassified(r,) £ (De faultClass(ry), C'Sq)
find the smallest k& that minimizes PrefizError(ry) + Default Error(ry)
return prefix 71, ..., 7, and default class DefaultClass(ry)

y T

Table 2. Step 4

Confy is computed as in Example 1. In Step 2, we apply the MCF principle to
determine the classification rule for each training document:

r1: k1 — B (classify dq,ds,ds, Accu = 0.87)
ro : ko — BC (classify dy, Accu = 0.25)

rs3 : ks — C (classify ds,dg, Accu = 0.60)

T4 ky — C (classify no document)

In Step 8, we compute the accuracy of rules. Accu(ri) = Confy(r1) = 0.87. 1o
classifies only dy, so Accu(rs) = w = 0.25. r3 classifies all documents it
matches, so Accu(rs) = Confy(rs) = 0.60. r4 has no turn to classify any document.
Suppose that we set the threshold of accuracy at 0.5, ro is removed, and ry now

classifies dy.

4.4 Step 4: cut off the ranked list

Finally, we cut off the ranked list of remaining rules to minimize the cutoff error. Let
r1,...,Tm be the ranked list of remaining rules. Suppose that we cut off the list after
the first ¢ rules, r1,...,r;. The cutoff erroris PrefixError(r;)+ DefaultError(r;).
PrefizError(r;) is the sum of the rule error Error(r;) for all rules r;, 1 < j <i.
DefaultError(r;) is the error caused by assigning the default classset to all the
training documents not classified by any rule r;, 1 < j <. The default classset is
chosen to minimize Default Error(r;). Table 2 shows Step 4. Since the rule error
Error(r;) may have been changed by removing rules in Step 3, In Table 2, we first
compute the rule error as in Step 3.

Example 3. We continue with Example 2. After removing ro, the error of the
remaining rules is computed as follows

= E(B,CS4,) + E(B,CSa4,) + E(B,CSy,)
= E(B,B) + E(B,BC) + E(B, BC) = 0.4

= E(C,CSy,) + E(C,CSy,) = E(C,C) + E(C,CE) = 0.8
r4) = B(C,CSy,) = E(C,CD) = 0.8

In Step 4, we determine the cutoff point of the remaining rules < ri,7r3,74 >.
For the shortest prefix <>, the default classset is BC' (of dz2), which has the mini-
mum error of 1.9. This is shown in the first row of Table 8. For prefix < r1 >, the
cutoff error is the sum of Error(ry) and the default error for unclassified documents
dy,ds,ds. The default classset is C (of ds), which gives the minimum default error,
E(C,CD)+ E(C,CE) = 1.6. Thus, the cutoff error for <ry > is 0.4+ 1.6 = 2.0,
as shown in the second row of Table 3. For prefix < ri,r3 >, the cutoff error is
Error(r1) + Error(rs) plus the default error for unclassified dy. In this case the
default classset is the classset of dy, CD, with the default error of 0. So the cutoff
error for < ry,rs > is 1.2, shown in the third row of Table 3. At this point, since the
default error is 0, the cutoff error cannot be reduced by considering longer prefizes.
Therefore, < r1,r3 > is the shortest prefix that has the minimum cutoff error.

If we do not remove ro in Step 3. The error of each rule in < ry,r9,73,74 >
is

Error(r1) = E(B,CSy,) + E(B,CSy,) + E(B,CS4,) = 0.4
Error(rey) = E(BC,CS,,) = E(BC,CD) =0.75

Error(rs) = E(C,CSy,) + E(C,CSy4,) = E(C,C)+ E(C,CE)=0.8
Error(ry) =0

Table 4 shows the computation of cutoff errors. In this case, the empty prefix <>
with the default classset B gives the minimum cutoff error, 1.9. This is larger than
that of the classifier < r1,r3 > found earlier.

5 Experiments

We evaluate the effectiveness of the proposed method using the IBM Patent data
and ACM Digital Library. For comparison, most traditional classification methods
deal with data in the form of a table or assumes that a document belongs to one
class. Such methods cannot work on the multi-classed documents here. We compare
our method, denoted Coverage, with two methods, Confidence and kNN. Confidence
is the same as Coverage except that it treats each classset as a new class in a flat
class space, thus, ignoring the similarity of classset. This method ranks rules by the
traditional confidence. Comparison with Confidence will reveal the effectiveness of
the proposed similarity of classsets. kNN is the KNN extended with feature selection,
which is highly competitive even compared with sophisiticated methods [9]. Given a
new document, kNN uses the classes of the k nearest training documents to predict
the classset of the new document. The distance of these documents is used as a
weight for their classes. One parameter of kNN is the feature threshold used by the
feature selection. Another parameter of kNN is the cutoff threshold of class list. The
kNN returns a list of ranked classes (by weight). We select the top classes that are

10

<rl,...,ri> | Error(ri) | unclassified doc. | default classset | default error | cutoff error
<> 0 di,...,ds BC 1.9 1.9
<ry> 0.4 dy,ds, dg C 1.6 2.0
<7ry,rs > 0.8 dy CD 0.0 1.2

Table 3. The cutoff error for each prefix of < ri,rs,rqe >

<rl,...,ri> | Error(ri) | unclassified doc. | default classset | default error | cutoff error
<> 0 di,...,ds BC 1.9 1.9

<ry> 0.4 dy,ds, dg C 1.6 2.0

<ry,re > 0.75 ds, dg C 0.8 1.95
<Try,Tre,r3 > 0.8 0 1.95

Table 4. The cutoff error for each prefix of < ry,ro,r3,74 >

within the p weight percentile. These are the classes on the top of the list whose
total weight is equal to p percentage of the total weight of the whole list. For all
methods, the error on a testing document is measured by Equation (1). All results
are the average of the 5-fold cross-validation.

5.1 The data sets

The IBM Patent data set (http://www.patents.ibm.com/patlist?xcl=0/). This
database contains patent documents categorized by branches and sub-branches. We
use branch 451 (Abrading) with 39 sub-branches, and branch 051 (Abrasive tool
making process, material, or composition) with 14 sub-branches. For each patent
document, we use terms only in Title, Inventor, Abstract and Current class. A
class has the form of branch/sub-branch. For example, 451/430 denotes the class
corresponding to branch 451 and sub-branch 430. Most documents are associated
with one class, and the rest are associated with two or more classes.

The ACM data set (http://www.acm.org/dl/toc.html). This data set main-
tains a 4-level hierarchical classification of computing related papers. We use level-1
and level-2 topics as the class hierarchy and add level-3 and level-4 topics as terms
to documents. Each document is associated with the set of level-1 and level-2 topics
of the document. We remove the documents whose classsets appear in less than 15
documents.

Table 5 shows some statistics of the two data sets after the above processing.
The partitioning of training documents and testing documents is determined by the
5-fold cross validation.

http://www.patents.ibm.com/patlist?xcl=0/
http://www.acm.org/dl/toc.html

11

ACM | IBM Patent

Documents 15981 4974
Classsets 288 191
classes 40 21
terms 9590 14991
level of class hierarchy 3 3
average size of documents | 10.80 45
average size of classsets 1.86 1.55
training documents 12784 3979
testing documents 3197 995

Table 5. The statistics of the processed data sets

5.2 The result on IBM Patent data set

Figure 2 shows the classification error over the 995 testing documents. For example,
the error of 220 means that the average error of classifying each of the 995 testing
documents is 220/995=0.22, which is the difference of the observed classset and the
predicted classset, or the difference of the documents belonging to these classsets.
On the left side is the error of Coverage and Confidence. The x-axis denotes the min-
imum support for mining association rules. Different figures correspond to different
accuracy thresholds for selecting rules in Step 3. On the right side is the error of
kNN. The x-axis denotes the parameter k. Different figures correspond to different
feature thresholds. Different curves correspond to different cutoff thresholds of class
list. Several observations follow.

The error. Coverage performs significantly better than Confidence, i.e., reduc-
ing the error up to 67%. Two factors contribute to this difference. First, Coverage
searches for all rules determining a subset of the classset in a training document,
but Confidence does not because it treats each classset in the training documents
as a new class. As a result, Confidence generates few rules that satisfy the given
minimum support, which can be seen from Figure 3, and classification often is done
by the default rule. Another reason is that Confidence ignores the similarity of
classes, thus, makes no attempt to assign a document to a more similar class in the
case of misclassification. The experiment also shows that the error of Coverage is
sensitive to the minimum support, but not to the accuracy threshold. Using a small
minimum support, Coverage is about 10% to 30% better than the best kNN result.

The size of classifier. On the left side of Figure 3 is the size of the classifiers
constructed by Coverage and Confidence. For both methods, the minimum support
and the accuracy threshold affects the size. The experiment suggests that minimum
support of 1% and accuracy threshold of 2% give a classifier that is both accurate
and small.

The execution time. As shown on the right side of Figure 3, Coverage takes
longer time than Confidence due to computing the similarity between classsets. The
experiments shows that the minimum support of 1% is good for both accuracy and

12

speed.

5.3 The result on the ACM data set

The error on the ACM data set is shown in Figure 4. The error is measured over
3197 testing documents. The comparison is consistent with that using the IBM
Patent data. The best accuracy of Coverage is typically 30% to 50% higher than of
that of kNN.

6 Conclusion

In real life, the class space of documents is a specific-to-general hierarchy and a
document may belong to more than one class in the hierarchy. In this paper, an
automatic classification of documents with this feature was proposed. In this set-
ting, classes are no longer independent of each other in that they classify some
documents in common, and those that classify more documents in common should
be considered as more similar to each other than those that classify few documents
in common. A notion of similarity of classsets based on the similarity of the doc-
uments classified by classsets was proposed to capture this reality. An algorithm
for constructing a classifier based on this notion of class similarity was presented.
Experiments on real life datasets show that the proposed method achieves much
higher accuracy than traditional classifiers.

[1]

2]

Bibliography

R. AGRAWAL, T. IMIELINSKI, AND A. SWAMI, Mining Association Rules be-
tween Sets of Items in Large Databases, SIGMOD 1993

R. AGRAWAL AND R. SRIKANT, Fast Algorithms for Mining Association Rules,
VLDB 1994

S. CHAKRABARTI, D. DoM, R. AGRAWAL, AND P. RAGHAVAN, Using Taxon-

omy, Discriminants, and Signatures for Navigating in Text Databases, VLDB
1997.

D. KOLLER AND M. SAHAMI, Hierarchically Classifying Documents Using Very
Few Words, International Conference on Machine Learning, 1997

J.R. QUINLAN, C4.5: Programs for Machine Learning, Morgan Kaufmann,
1993

H. ScuuTzE, D.A. HULL, AND J.O. PEDERSON, A Comparison of Classifiers
and Document Representations for the Routing Problem, SIGIR 1995, 229-237

K. WaNg, S. Zuou, S.C. Liew, Building Hierarchical Classifiers Using Class
Proximity, VLDB 1999

Y. YaNG AND C.G. CHUTE, A Linear Least Squares Fit Mapping Method for
Information Retrieval from Natural Language Texts, COLING-92, 1992

Y. YANG AND J.O. PEDERSON, A Comparative Study on Feature Selection in
Text Categorization, International Conference on Machine Learning 1997.

13

14

Error

Error

Error

Error

1000
900
800
700
600
500
400
300
200

1000
900
800
700
600
500
400
300
200

1000
900
800
700
600
500
400
300
200

1000
900
800
700
600
500
400
300
200

Figure 2. Patent data set: Coverage and Confidence (left) and kNN (right)

Coverage

1000

900

800

700

1
Error

600

500

4 400

0 05 1 15 2 25 3 35 4 45
accuracy threshold=0.0

300

500

‘ Top‘ 10% classes
Top 20% classes

N

T
op 100 % classes

¢

1]

X

2 4 6

8

feature threshold=0.0

10 12 14 16 18 20

480
460
440
4 420
400
380
7 360
340
320
300

il
Error

0O 05 1 15 2 25 3 35 4 45
accuracy threshold=0.2

280

K
L

K
L L L L

700

2 4 6

8

10 12 14 16 18 20
feature threshold=0.2

b 650
b 600
b 550
500

il
Error

R 450
b 400
B 350

0 05 1

15 2 25 3 35 4 45
accuracy threshold=0.3

300

—

157]

x
L

—
157
zy

800

2 4 6

8

10

12 14 16 18

feature threshold=0.5

4 750
700
650
600
550
500
450
7 400

Il
Error

15 2 25 3 35 4 45
accuracy threshold=0.5

350

|

=
kg
K

=

1%7)

K
I

2 4 6

8

10

12 14 16 18

feature threshold=0.8

20

Size

Size

Size

Size

25000

20000

15000

10000

5000

0

" Confidence —s—
Coverage -—=--—-

Tiwﬁé‘--—-w ;;;;; e

0 05 1 15 2 25 3 35 4 45 5

accuracy threshold=0.0

.
o
o o
Z)@
3
|

B e S

15
accuracy threshold=0.2

2 25 3 35 4 45 5

800

accuracy threshold=0.3

700
600
500
400
300
200
100

0 X\WW .

15 2 25 3 35 4 45 5

i e T = :

0

05 1 15 2 25 3 35 4 45 5

accuracy threshold=0.5

Time (seconds) Time (seconds) Time (seconds)

Time (seconds)

300

250

200

150

100

50

60

15

R L L) I L

15 2 25 3 35 4 45 5
accuracy threshold=0.0

50

40

30

20

10

60

15 2 25 3 35 4 45 5
accuracy threshold=0.2

50

40

30

20

10

60

15 2 25 3 35 4 45 5
accuracy threshold=0.3

50

40

30 -

20

10

15 2 25 3 35 4 45 5
accuracy threshold=0.5

Figure 3. Patent data set: classifier size (left) and execution time

16

Error

Error

Error

Error

2500
2400

2300

2200
2100
2000
1900
1800
1700
1600
1500

2800
2600
2400
2200
2000
1800
1600
1400
1200

3000
2800
2600
2400
2200
2000
1800
1600
1400
1200

3200
3000
2800
2600
2400
2200
2000
1800
1600
1400
1200

Confidence —<—

K

Coverage --—-*---

0.1 0.2 0.3 04 0.
accuracy threshold=0.0

Il
506 0

.7 0.

Il
8 0.9

0.1

02 03 O

4 0.

506 0

.7 0.

accuracy threshold=0.2

8 0.9

0.1

02 03 0

4 0.

506 0

.7 0.

accuracy threshold=0.3

8 0.9

Il Il
02 03 0

4 0.

Il
506 0

.7 0.

accuracy threshold=0.5

Il
8 0.9

Error

Error

Error

Error

3200
3000
2800
2600
2400
2200
2000
1800
1600

3200

3000

2800

2600

2400

2200

2000

3200
3150
3100
3050
3000
2950
2900
2850
2800
2750

3200

3190

3180

3170

3160

3150

3140

3130

op 20% classes
Top 50% classes
Top 80% classes
Top 100 % classes

Il
2 4 6 8 10 12 14 1

feature threshold=0.0

Il Il
6 18 20

K X

2 4 6 8 10 12 14 16 18

feature threshold=0.2

20

2 4 6 8 10 12 14 1

6 18

20
feature threshold=0.5
i »
Il Il - Il Il /\'\ Il Il - Il Il
2 4 6 8 10 12 14 16 18 20

feature threshold=0.8

Figure 4. ACM data set: Coverage and Confidence (left) and kNN (right)

