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1 Introduction and problem statement

The problem this paper focuses on is the unsupervised clustering of a data-set. The data-

set is given by the matrix [ ] Np

NxxxM ×ℜ∈= ,...,, 21 , where each column of M, p

ix ℜ∈ ,

is a single data-point. This is one of the more basic and common problems in fields like

pattern analysis, data mining, document retrieval, image segmentation, decision making,

etc. ([12, 13]). The specific problem we want to solve herein is the partition of M into two

sub-matrices (or sub-clusters) LNp

LM
×ℜ∈  and  RNp

RM
×ℜ∈ , NNN RL =+ . This

problem is known as bisecting divisive clustering.

Note that by recursively using a divisive bisecting clustering procedure, the data-

set can be partitioned into any given number of clusters. Interestingly enough, the clusters

so-obtained are structured as a hierarchical binary tree (or a binary taxonomy). This is the

reason why the bisecting divisive approach is very attractive in many applications (e.g. in

document-retrieval/indexing problems – see e.g. [17] and references cited therein).

Among the divisive clustering algorithms which have been proposed in the

literature in the last two decades ([13]), in this paper we will focus on two techniques:

• the bisecting K-means algorithm;

• the Principal Direction Divisive Partitioning (PDDP) algorithm.
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K-means is probably the most celebrated and widely used clustering technique;

hence it is the best representative of the class of iterative centroid-based divisive

algorithms. On the other hand, PDDP is a recently proposed technique ([4-7]). It is

representative of the non-iterative techniques based upon the Singular Value

Decomposition (SVD) of a matrix built from the data-set.

The objective of this paper is twofold:

• compare the clustering performance of bisecting K-means and PDDP;

• analyze the dynamic behavior of the K-means iterative algorithm.

In the existing literature, both these issues have been considered only empirically.

The performance of PDDP and K-means have been recently studied, and have been

reported to be somehow similar, on the basis of a few application examples ([4-7]). As

for K-means behavior, the main theoretical result known so far is [16], where it is shown

that the K-means iterative procedure is guaranteed to converge; however, nothing is said

about “where” and “how” it converges.

The main contribution of this work is to provide a simple mathematical

explanation of some features of K-means and PDDP. This is done under the restrictive

assumption that the data are uniformly distributed within a 2-dimensional ellipsoid. The

main results here obtained can be summarized as follows:

• when the number of data-points tends to infinity, K-means and PDDP converge to

the same solution;

• when the number of data-points tends to infinity, the iterative bisecting K-means

algorithm is characterized by 2 stationary-points: one is an unstable equilibrium, one

is a stable equilibrium point;

The paper is organized as follows: in Section 2 K-means and PDDP are concisely

recalled and discussed; in Section 3 they are analyzed when the number of data-points

tends to infinity, whereas in Section 4 an empirical analysis in the case of finite data sets

is proposed. Some concluding remarks end the paper.

2 Bisecting K-means and PDDP

As already stated in the Introduction, this paper focuses on two bisecting divisive

partitioning algorithms, which belong to different classes of methods: K-means is the

most popular iterative centroid-based divisive algorithm; PDDP is the latest development

of SVD-based partitioning techniques. The specific algorithms considered herein are now

recalled and briefly commented. In such algorithms the definition of centroid will be used

extensively; specifically, the centroid of M, say w , is given by
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where jM  is the j-th columns of M . Similarly, the centroids of the sub-clusters LM  and

RM , say  Lw  and Rw , are given by:
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where jLM ,  and jRM ,  are the j-th columns of LM  and RM , respectively.
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Bisecting K-means.

Step 1. (Initialization). Randomly select a point, say p

Lc ℜ∈ ; then compute the

centroid w of M (see (1)), and compute p

Rc ℜ∈  as )( wcwc LR −−= .

Step 2. Divide [ ]NxxxM ,...,, 21=  into two sub-clusters LM  and RM , according to the

following rule:







−>−∈

−≤−∈

RiLiRi

RiLiLi

cxcxifMx

cxcxifMx

Step 3. Compute the centroids of LM  and RM , Lw  and Rw , as in (2).

Step 4. If LL cw =   and RR cw = , stop, else, let LL wc = , RR wc =  and go to Step 2.

The algorithm above presented is the bisecting version of the general K-means

algorithm. This bisecting algorithm has been recently discussed and emphasized in [17]

and [19]. In these works it is claimed to be very effective in document-processing

problems. It is here worth noting that the algorithm above recalled is the very classical

and basic version of K-means, also known (see [10, 12]) as Forgy’s algorithm (with a

slight modification of the initialization step). Many variations of this basic version of the

algorithm have been proposed, aiming to reduce the computational demand, at the price

of (hopefully little) sub-optimality. Since the goal of this paper is to analyze convergence

properties and clustering performance, this original version of the K-means algorithm is

the most interesting and meaningful.

PDDP
Step 1. Compute the centroid w of M  as in (1).

Step 2. Compute the auxiliary matrix M
~

 as weMM −=~
, where e is a N-dimensional

row vector of ones, namely [ ]1,...1,1,1,1,1=e .

Step 3. Compute the Singular Value Decompositions (SVD) of  M
~

, TVUM Σ=~
,

where Σ  is a diagonal Np×  matrix, and U and V are ortonormal unitary square matrices

having dimension pp×  and  NN × , respectively (see [11] for an exhaustive description

of SVD).

Step 4. Take the first column vector of U, say 1Uu = , and divide [ ]NxxxM ,...,, 21=
into two sub-clusters LM  and RM , according to the following rule:







>−∈

≤−∈

0)(

0)(

wxuifMx

wxuifMx

i

T

Ri

i

T

Li
.

The PDDP algorithm, recently proposed in [5], belongs to the class of SVD-based

data-processing algorithms ([2, 3]); among them, the most popular and widely known are

the Latent Semantic Indexing algorithm (LSI – see [1, 9]), and the LSI-related Linear

Least Square Fit (LLSF) algorithm ([8]). PDDP and LSI mainly differ in the fact that the

PDDP splits the matrix with hyperplane passing through its centroid; LSI through the

origin. Another major feature of PDDP is that the SVD of M
~

 (Step 3.) can be stopped at

the first singular value/vector. This makes PDDP significantly less computationally

demanding than LSI, especially if the data-matrix is sparse and the principal singular

vector is calculated by resorting to the Lanczos technique ( [11, 14]).
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Fig.1a. Partitioning line (bold) of

bisecting K-means algorithm. The bullets

are the centroids of the data-set and of the

two sub-clusters.

Fig.1b.  Partitioning line (bold) of PDDP

algorithm. The bullet is the centroid of the

data set. The two arrows show the

principal direction of M
~

.

The main difference between K-means and PDDP is that K-means is based upon

an iterative procedure, which, in general, provides different results for different

initializations, whereas PDDP is a “one-shot” algorithm, which provides a unique

solution. In order to understand better how K-means and PDDP work, in Fig.1a and

Fig.1b the partition of a generic matrix of dimension 20002×  provided by K-means and

PDDP, respectively, is displayed. From Fig.1, it is easy to see how K-means and PDDP

work:

• the bisecting K-means algorithm splits M with an hyperplane which passes through

the centroid w  of M, and is perpendicular to the line passing through the centroids

Lw  and Rw  of the sub-clusters LM  and RM . This is due to the fact that the stopping

condition for K-means iterations is that each element of a cluster must be closer to

the centroid of that cluster than the centroid of any other cluster.

• PDDP splits M with an hyperplane which passes through the centroid w of M, and is

perpendicular to the principal direction of the “unbiased” matrix M
~

 (note that M
~

 is

the translated version of M, having the origin as centroid). The principal direction of

M
~

 is its direction of maximum variance (see [11]).

At a first glance, the two clusters provided by K-means and PDDP look almost

indistinguishable. A more careful analysis reveals that the two partitions differ by a few

points. Note that this is somewhat unexpected, since the two algorithms differ

substantially.

In the rest of the paper we will try to give a rational explanation to the fact that

PDDP and bisecting K-means may provide similar results. This will be done by analyzing

the dynamic behavior of K-means iteration. Moreover, we will try to clearly outline the

pros and cons of these two seemingly equivalent algorithms.

The analysis presented in the following two sections is based upon the restrictive

assumption that the points of the data-set are uniformly distributed within an ellipsoid.

This assumption deserves some comments:
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It is important pointing out that an answer to the question “where does K-means

converge?” can be found only if an assumption of the data-distribution is made. Note that

this is not mandatory if one only wants an answer to the question “does the K-means

iteration converge?” (as a matter of fact in [16] no assumptions on the data distribution

are made). Therefore, the sensible choice of the data distribution becomes the main issue.

Ellipsoid-shaped uniform distribution is the simplest distribution with compact

support that, from the clustering point of view, is equivalent to multi-dimensional

Gaussian distribution (which is the most typical distribution of experimental data).

Henceforth it can be considered the “default” distribution when no a-priori information

on the data is available.
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Fig.2a.  2000 data points uniformly

distributed within an ellipsoid.

Fig.2b.  Infinite data points uniformly

distributed within an ellipsoid.

3 Theoretical results for infinite data sets

In this section the asymptotic behavior of bisecting K-means and PDDP will be analyzed.

Asymptotic here means that the data set has an infinite number of points, namely

∞→N . In Fig.2 the difference between a finite and an infinite set of points is naively

depicted.

We will focus on the 2-dimensional case; specifically, it is assumed that each

point [ ]Txxx 21,=  of the data-set belongs to an ellipsoid centered in the origin and

referred to the axes:

[ ]Txxx 21,=  belongs to the data set if:      12

22

2

1 ≤+ x
a

x
;          (3)

the semi-axes lengths of the ellipsoid in (3) are a ( 10 ≤< a ) and 1, respectively.

Given these assumptions, the problem we wish now to solve is the mathematical

description of the dynamic behavior of the bisecting K-means algorithm. The solution of

this problem will be given in the following four items (a)-(d).

(a) Parametrization of the splitting line. First note that the splitting hyperplane (the

splitting line in 2-dimensions) is always a line passing through the origin. This property is

preserved even at the first step (see the initialization procedure used in Step 1. - Section
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2). Henceforth, the splitting line can be parameterized using one parameter only. The

natural choice for this parameter is the angle, say α, between the splitting line and the

positive x1 semi-axis. We shall use the subscript “t” to indicate the iteration number,

namely tα  is the value of α  at iteration t. With no loss of generality it is also assumed

that 2/0 πα ≤≤ t .

(b) Description of the basic idea. The basic idea used to compute the mathematical

model of the dynamic behavior of bisecting K-means is the following. Given tα , the next

angle 1+tα  can be calculated  by first computing the centroids, say )( tLw α  and )( tRw α ,

of the two semi-clusters induced by the splitting line with angle tα . The angle 1+tα  of the

next-iteration splitting line then can be easily computed: it is known to be perpendicular

to the line connecting )( tLw α  and )( tRw α . In this way we obtain a recursive relationship

)(1 tt f αα =+ , which provides a complete description of the dynamic behavior of

bisecting K-means.

(c) Computation of the centroids. Due to the infinite number of uniformly distributed

points in the data-set, the centroids of the two sub-clusters induced by the splitting line

with angle tα  must be computed using integral calculus. Using 2x  as integration

variable, the computation of the position of Lw  (which is the centroid of the “Left”

cluster, bordered with a dashed line in Fig.3) must be split into the computation of the

centroids of two sub-pieces of the Left cluster (which are separated by the dashed-dotted

line in Fig.3). The position of Lw  hence is given by:
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where S is the 2x -coordinate of the intersection between the splitting line and the

ellipsoid in the first quadrant (see Fig.3); its expression is given by:

)()(cos

)(

222
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sina
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αα
α

+

⋅= .                         (5)

Both (4) and (5) hold for 10 ≤< a  and 2/0 πα ≤≤ t . Fortunately, (4) can be explicitly

computed and significantly simplified. After some cumbersome manipulations it can be

shown that Lw  is given by:
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, 10 ≤< a , 2/0 πα ≤≤ t ;

it is trivial to see that Rw  is given by LR ww −= .
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(d) The dynamic model of bisecting K-means. Once )( tLw α  and )( tRw α  have been

found, it is easy to compute the recursive function )(1 tt f αα =+  which models the

transition from tα  to the angle 1+tα  of the next-iteration splitting line. Indeed, this line

must be perpendicular to the line passing through Lw  and Rw , namely:

=+1tα  atan [ ])tan(2

ta α , 10 ≤< a , 2/0 πα ≤≤ t .                     (6)

Equation (6) is one of the major results of this work, since it provides a rigorous

closed-form explicit expression of the dynamic behavior of bisecting K-means in the

limiting case. Note that (6) represents a first order autonomous (i.e. without forcing

inputs) non-linear dynamic discrete-time system. As such, it can be analyzed using non-

linear systems theory (see e.g. [15, 18]). The analysis of (6) reveals that:

• By solving the steady-state equation =α  atan [ ])tan(2 αa , it is easy to see that the

iterative K-means procedure can only have two stationary-points, at 0=α  and

2/πα = . In correspondence to these points the ellipsoid is divided by its shorter

axis ( 0=α ), and by its longer axis ( 2/πα = ), respectively.

• By locally linearizing the dynamic system (6) about the admissible equilibrium

points (namely by computing the tangent model ( )( ) tttt
t

f δαααδα αα =+ ∂∂= )(1 ,

where ααδα −= tt : ), we obtain the following two linear dynamic discrete-time

systems:

local dynamic behavior about 0=α : tt a δαδα )( 2

1 =+ , 0: −= tt αδα ;

local dynamic behavior about 2/πα = : tt a δαδα )/1( 2

1 =+ , 2/: παδα −= tt .

From linear discrete-time dynamic system theory we know that, if 10 << a , the

linear system about 0=α  is asymptotically stable, and the linear system about

2/πα =  is unstable (indeed they have poles in 2a  and in 2/1 a , respectively). This

means that bisecting K-means always converges towards 0=α , unless the

algorithm is exactly initialized with 2/0 πα =  (namely the initial point Lc  exactly

belongs to the 1x -axis). In Fig.4 the function (6) is displayed, when a=0.6, and a

simulated movement of system (6) is illustrated. Note that, whatever 0α  is (except in

the case 2/0 πα = ) the dynamic system )(1 tt f αα =+  always converges in 0=α .

• The value of a strongly affects the number of iterations taken by the algorithm to

converge. Thanks to equation (6) this number can be given an approximate but

quantitative estimate, using dynamic systems theory. First note that the linear system

described by the recursive equation tt a δαδα )( 2

1 =+  only asymptotically converges

at its equilibrium point. A measure of the “speed” at which the system converges

towards the equilibrium is given by the so-called time-constant τ. τ is defined as the

number of steps that tδα  takes to decrease its distance from 0 by a factor e/1 , and it

is related to a by the following relationship:









−=

)log(

1
2
a

τ .

Due to the discrete nature of the distribution, the  bisecting K-means algorithm

converges in a finite number of steps, say T. T is a function of the number of the
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data-points N (namely it depends on how densely the data are distributed), which is

expected to be proportional to τ, namely:









−⋅=

)log(

1
)(

2
a

NT γ .                         (7)

The exact value of )(Nγ  is hard to be predicted exactly. A rule-of-thumb typically

used by the control systems practitioner can be used to have an idea of )(Nγ : this

rule says that, when tδα  has reached the 98% of the distance between the initial

value and the equilibrium, the system can be considered, in practice, at steady-state.

It is easy to see that this corresponds to 4)( ≈Nγ . In Section 4 a numerical

validation of this formula will be provided.

Finally note that T may take very different values. For instance (if 4)( ≈Nγ ), K-

means is expected to take only 10-15 iterations to converge if a=0.7, about 40

iterations are needed if a=0.9, whereas if a=0.95 the algorithm might need 80

iterations to converge. It is important to observe, however, that (7) is expected to

provide a reliable estimate of T only if the number of the points of the data-set is

large. For small data-sets the number of iterations required by K-means can be

considerably smaller than (7).

The analysis above presented is the main contribution of this Section. It can be

concisely summarized with the following two propositions.

Proposition 1. If the data-points of a data-set are uniformly distributed in a 2-

dimensional ellipsoid, the semi-axes of the hyper-ellipsoid have lengths equal to 1 and a,

(0<a<1), and ∞→N , then the dynamic discrete-time system which models the K-means

iterative algorithm is characterized by 2 equilibrium points; one is locally unstable, and

one is locally stable. In particular, the dynamic model has the form:

=+1tα atan ))tan(( 2

ta α , 2/0 πα ≤≤ t . The splitting hyperplanes corresponding to the

equilibrium points pass through the origin and are orthogonal to the main axes of the

ellipsoid. The splitting hyperplane corresponding to the stable equilibrium point is

orthogonal to the largest axis of the ellipsoid.

Proof. The proof of this result is given in items (a)-(d) above. 
�

Proposition 2. If the data-points of a data-set are uniformly distributed in a 2-

dimensional ellipsoid, the semi-axes of the hyper-ellipsoid have lengths equal to 1 and a,

(0<a<1), and ∞→N , then the PDDP algorithm splits the ellipsoid with an hyperplane

passing through the origin and orthogonal to the largest axis of the ellipsoid.

Proof. This result is a direct implication of the properties of the SVD. Indeed the 2

singular vectors of a set of points uniformly distributed within an ellipsoid coincide with

the direction of the principal axes of the ellipsoid (see [11] for details).
�

Propositions 1 and 2 show that bisecting K-means and PDDP provide the same

solution, except in the case when the initialization of K-means exactly corresponds to an

unstable equilibrium point of the K-means dynamic model. However, if the initialization

is made randomly, this event occurs with probability zero.

These asymptotic results are useful to gain a deep insight into the bisecting K-

means algorithm, and to explain why, in many cases, K-means and PDDP show a very

similar clustering behavior. However, when the data set contains a finite number of data
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(namely when the number of points is comparatively small), bisecting K-means and

PDDP might provide solutions, which, sometimes, are remarkably different. The finite

data-set case will be analyzed and discussed in the next section, on the basis of numerical

results obtained by simulation.
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Fig.3. Parametrization of the splitting-line in K-means
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Fig.4. Function (6) (extended over the range [-π/4;3π/4]) when a=0.6. The bullets

are the equilibria. The thin line is a simulated movement of (6)
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4 Numerical results for finite data sets

In this section, the bisecting K-means and PDDP will be analyzed when the data-

set has a finite number of data-points. The analysis will be done empirically, using

simulated data.

The purpose of this section is twofold:

• validate the theoretical results obtained in the previous section, and see how they

change when the data-set is finite;

• understand the pros and cons of K-means and PDDP.

The analysis is structured as follows: first the dynamic model of K-means will be

numerically computed for finite data-sets, and the problem of local minima will be

discussed; then the formula (7) for the estimation of the number of iterations required by

K-means to converge will be validated.
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Fig.5. Recursive function )(1 tt f αα =+  estimated from data, when a=0.6. The dashed line is

the asymptotic function (6) computed in Section 4. (a): N=15; (b): N=30; (c): N=100; (d):

N=2000.
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The first problem we consider is the analysis of the K-means dynamic behavior

when the data-set has a finite number of data. As a first experiment, four sets of data have

been considered, characterized by 15, 30, 100 and 2000 data-points uniformly distributed

within a 2-dimensional ellipsoid with a=0.6. The recursive function )(1 tt f αα =+  has

been numerically computed for these four data-sets. The results are displayed in Fig.5.

From the inspection of Fig.5, the following remarks can be done:

The main difference between the asymptotic function (6) and the recursive

functions corresponding to finite data-sets is that the latter are step-wise functions. A

major consequence of this function being step-like is that every equilibrium point

(namely every point where the function crosses the line tt αα =+1  - see Fig.5a) is locally

asymptotically stable, since the local slope of the function about the equilibrium is

smaller than 1. Note that this explains why K-means is affected by “local minima”

problems.
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Fig.6. Recursive function )(1 tt f αα =+  estimated from data, when a=0.9. The dashed line

is the asymptotic function (6) computed in Section 4. (a): N=15; (b): N=30; (c): N=100;

(d): N=2000.

When the number of data-point grows, the finite data-set function converges

towards the asymptotic function (see Fig.5d). This validates the theoretical model
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developed in the previous section. Moreover, notice that when the number of data-point

gets large, the number of equilibrium points decreases, and each step gets narrower (see

e.g. Fig.5c). This explains why, when the number of data is sufficiently large, it is the

common experience that the problem of local minima tends to vanish.

As a second experiment, the recursive function )(1 tt f αα =+  has been computed

for four sets of 15, 30, 100 and 2000 data-points uniformly distributed within a 2-

dimensional ellipsoid with a=0.9. The results are displayed in Fig.6. The main difference

in the results between the case a=0.6 and a=0.9 is that in the latter the problem of

multiple equilibrium points is more severe.

The above experiments suggest that the problem of local minima for bisecting K-

means is expected to:

• decrease when the number of data grows;

• increase when the size of the short semi-axis approaches the largest semi-axis.

In order to validate these conjectures, the bisecting K-means algorithm has been

extensively tested for different values of a (a=0.6,0.7,0.8,0.9) and for different sizes of

the data-set (N ranging from 10 to 5000). The average dispersion of the centroids we have

obtained (which is directly related to the problem of local minima) is displayed in Fig.7.

In particular, for each value of N, 20 different data-sets have been randomly generated;

for each data-set, 100 different runs of K-means have been done (starting from different

initial conditions), so obtaining 100 “dispersed” centroids. The dispersion of these 100

centroids has been computed for each of the 20 data-sets, and averaged. Note that the

conjectures above outlined are fully confirmed by the data: the centroids dispersion

increases with a, and decreases with N.
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Fig.7. Average dispersion of the centroids ML and MR computed via K-means, as a

function of the number of data-points. The four lines correspond to different values of a.

An interesting result proposed in Section 4, which must be validated, is the

prediction of the number of iterations which bisecting K-means needs to converge. Recall

that expression (7) is expected to hold approximately if the data set  is very large. For

small data-sets the convergence is expected to be faster.

To this end, the number of iterations required by K-means to converge has been

experimentally estimated for different values of a in the range [0.7,0.95], using data-sets
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of size N=20000. The results are in Fig.8. Notice the very good fit between the predicted

and the estimated results ( )(Nγ  used in Fig.8 to predict the number of iterations of K-

means is 4)( =Nγ , which is the “rule-of-thumb value" suggested in Section 3).
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Fig.8. Estimated number of iterations required by K-means to converge, as a function of

a. The dashed line is the number of iterations predicted by (7), with γ(N)=4.

5 Conclusions

In this paper the problem of clustering a data-set is considered. Two bisecting

divisive clustering techniques are considered: the K-means and the PDDP. The similarity

and the differences of these two algorithms are outlined by means of a theoretical and an

empirical analysis. In particular, the dynamic behavior of the recursive K-means

algorithm is studied, and, under some restrictive assumptions, a closed-form model is

developed.
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