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Abstract

Recent work in classification indicates that significant improvements in accu-
racy can be obtained by growing an ensemble of classifiers and having them vote
for the most popular class. Implicit in many of these techniques is the concept of
randomization that generates different classifiers. In this paper, we focus on en-
sembles of decision trees that are created using a randomized procedure based on
histograms. Techniques, such as histograms, that discretize continuous variables,
have long been used in classification to convert the data into a form suitable for
processing and to reduce the compute time. Our approach combines the ideas be-
hind discretization through histograms and randomization in ensembles to create
decision trees by randomly selecting a split point in an interval around the best
bin boundary in the histogram. Our experimental results with public domain data
show that ensembles generated using this approach are competitive in accuracy and
superior in computational cost to other ensemble techniques such as boosting and

bagging.
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Approximate Splitting for
Ensembles of Trees using
Histograms

Chandrika Kamath*, Erick Canti-Paz', David Lit-
taut

1 Introduction

Ensembles of classifiers have become an active topic of research in the data mining
community. They not only provide a simple way of improving the accuracy of
the classifier [3, 16, 24, 2], but also have the potential for on-line classification of
large databases that do not fit into memory [4]. In addition, some approaches
to the generation of ensembles can be easily parallelized, enabling a reduction in
the time taken to create the classifier on a multiprocessor system [17]. There are
several different ways in which ensembles can be generated and the resulting output
combined to classify new instances. Implicit in many of these ensembles is the
concept of randomness that is introduced either through the randomization of the
training set, or the randomization of the classifier itself.

In this paper, we discuss one particular approach to randomization, namely the
use of histograms to determine the split made at each node of a decision tree. The
idea of using histograms to approximate the split at a node has been around a long
time as a way of reducing the time to create a tree using a very large training set [8].
For each feature, instead of sorting the instances at a node, a histogram is created,
and the bin boundaries used as potential split points. The expectation is that the
best bin boundary will be close to the best value for a split point chosen using the
traditional sorting approach. As a result, the tree created using histograms would
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be close in accuracy to the tree created using sorting. However, since no sorting
is done, and fewer potential split points are evaluated, it is likely to take less time
to create the tree using histograms than the tree using sorting of the continuous
features.

To introduce randomization into this process, once we have found the best bin
boundary, we select a split point randomly in an interval around it. As a result of
this randomization, for a given training set, different trees are created each time,
and their results can therefore be combined through ensembles. Our experimental
studies with public domain datasets show that this simple approach reduces the time
to create ensembles of trees while leading to improved accuracy on large datasets.

The paper is organized as follows: In Section 2, we briefly discuss the various
ways in which we can generate ensembles of classifiers. Next, in Section 3 we describe
the ways in which continuous attributes can be discretized to make them more
suitable for use in classification. We show how one such discretization technique,
namely histograms, can be used to introduce randomization in the induction of
decision trees. We describe our experimental results in Section 4 and conclude in
Section 5 with a summary and ideas for future work.

2 Creating Ensembles of Classifiers

There are several ways in which ensembles of classifiers can be created [10]. Some
of the more popular approaches include:

e Changing the Instances Used for Training: In this approach, each clas-
sifier in the ensemble is generated using a different sample of the training
set. In the Bagging algorithm, a new sample of the training set is obtained
through bootstrapping with each instance weighted equally [3], and the results
of the ensemble obtained by using a simple voting scheme. In the Boosting
algorithm, a new sample of the training set is obtained using a distribution
based on previous results [16]. After each classifier is created, the weights
are adjusted to increase the weights of misclassified instances. The results of
the ensemble are obtained by weighting each classifier by the accuracy on the
training set used to build it. Thus, better classifiers have a greater contribu-
tion to the end result. There are several variants of boosting which differ in
the way the instances are weighted, the results are combined, and the algo-
rithm is terminated [5, 2, 16]. In the Pasting algorithm, the ensemble of trees
is grown using a sub-sample of the entire training set [4]. This technique is
useful when the entire training set is too large to fit into main memory.

e Changing the features used in training: In this approach, each new
classifier is created using a subset of the original features. This technique has
been used with decision trees in [19] and with neural networks in [9]. It tends
to work only when the features are redundant, as poor classifiers could result
if some important feature is left out.

e Changing the output targets: In this approach, called error correcting
output coding [12], a problem with many output classes is first reduced to
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several two-class problems by randomly partitioning the classes into two, with
labels 0 and 1. A classifier is created with this relabeled data. For each random
partitioning of the original set of classes, a new classifier is created. To classify
an unseen instance, each classifier assigns a label to the instance. If the label
assigned is 0 (1), each class that was relabeled as a 0 (1) for that classifier,
gets a vote. The class with the maximum number of votes is assigned to the
instance.

e Introducing randomness in the classifier: Instead of changing the input
or output to the classifier to generate the ensemble, we can change the classifier
itself. For example, in neural networks, the initial weights are set randomly,
creating a new network each time. In decision trees, we can randomly select
among the best few splits to create the ensemble [11]. Or, we can randomly
select the features used to determine the split at each node of the tree [6]. In
earlier work [20], we showed that we can randomize the split at a node of a
tree by using a sample of the instances at each node to obtain the potential
split points for each feature. We next describe a different way of introducing
randomization in the decision tree classifier through the use of histograms.

3 Randomizing the Split at a Node using Histograms

Histograms are a way of “discretizing” or “quantizing” continuous attributes in
classification algorithms. In addition to converting the input data into a form
suitable for classification, discretization techniques may also reduce the CPU time
required for training with very large datasets [8, 13, 1, 21]. They have also been
used to identify inconsistencies in the data, and select the relevant features while
discretizing the data [22].

There are several categories of discretization that can be used in classification
[8, 13, 28, 18]. In this paper, we consider the use of simple equal-width histograms
as the discretization approach for continuous attributes in decision tree induction.
However, instead of just using them to create a single decision tree, we use them
to introduce randomization in the split at each node of the tree, and create an
ensemble of trees.

We explain this idea by first describing how histogram-based discretization
works in the context of a single tree. In the traditional approach to tree induction,
for each feature, the instances at each node of the tree are sorted on that feature,
and potential split points considered mid-way between all these feature values. The
splitting criterion (e.g., Gini or Information Gain [23]) is evaluated at each poten-
tial split point. The split point and split feature that are selected are the ones
that optimize the splitting criterion [7]. In contrast, in the histogram approach,
a histogram is built for each feature and the candidate split points chosen at the
bin boundaries. This not only avoids the time consuming sort, but also results in
fewer split points being evaluated. However, on the negative side, it may lower the
accuracy of the resulting tree as the split is only an approximate split. In addition,
while the sorting is done only once at the beginning of the root node, the histograms
have to be created at each node of the tree.
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Note that when we build the histogram, we need to keep track of the class
of the instance that is assigned to each bin. This is because the class is required
to evaluate the splitting criterion at the bin boundaries. Also, we do not have to
restrict the optimum split point to be at a bin boundary. If the best boundary
point is at either of the extreme points of the histogram, we choose the median of
the corresponding bin as the split point. Further, to account for the fact that the
bins on either side of the boundary may have vastly different number of instances,
we select the split point as

median; x num; + median;_; * num;_1

splitpoint = 1
PP num; + num;_j ( )

where the best boundary point is between bins ¢ and ¢ — 1, num; is the number of
instances in bin ¢, and median; is the median of bin ¢. This ensures that the split
point is biased towards the bin with the larger number of instances. Note that if the
two bins on either side of the best boundary point have equal number of instances,
the boundary point is selected as the split point.

Once we have obtained an approximate split using histograms, we introduce
randomization into the split as follows. Selecting the best bin boundary, we choose
a random split point in an interval around this bin boundary. The bin boundary is
chosen as the center of the interval and the width of the interval is the the width of
a bin. In other words, we generate a uniformly distributed random number in the
interval [median;_;, median;]. As before, we could have weighted the interval by the
number of instances in the bins on either side of the best boundary point in order
to ensure that a random point selected in this interval has a higher likelihood of
being in the bin with the larger number of instances. However, for the experiments
reported in this work, we did not apply this weighting.

For the histogram-based ensembles, we combined the results of the ensemble
by a simple unweighted voting scheme. We could have also used weighted voting
to combine the results, or even bagging or boosting to select the instances used in
creating the trees in the ensemble.

Our goal in this paper is to show that this approach to generating ensembles
through approximate splits using histograms is a simple, but efficient way of im-
proving the accuracy of decision tree classifiers. On one hand, the use of histograms
reduces the CPU time, while potentially sacrificing accuracy. On the other, the use
of ensembles improves the accuracy of the resulting classifier.

4 Experimental Results

In this section, we describe the results of our experiments conducted on some of
the larger datasets available from the repository at the University of California at
Irvine [29]. The details of the five data sets used are summarized in Table 1. In
cases where the datasets included a test set, we performed our experiments 10 times
to account for the randomization and averaged the results. When no test set was
available, we used 10-fold cross-validation, and averaged the results over 10 runs.
We present results with both pruned and unpruned trees as the benefits of
pruning are very dependent on the dataset [11]. In the case of pruned trees, we use
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Table 1. Benchmark data sets used for studying the effect of histograms
on the generation of ensembles.

Data set # training (test) # # discrete # cont
instances classes | attributes | attributes
Breast Cancer 699 (-) 2 - 9
Pima Indian Diabetes 768 (-) 2 - 8
German 1000 (-) 2 13 7
Satellite Image 4435 (2000) 6 - 36
Letter Recognition 16000 (4000) 26 - 16

pessimistic error pruning described in [26]. We also tried a modified version of the
error-based pruning used in the C4.5 software [25], where each pruned subtree was
always replaced by a leaf. However, we found that this method (using confidence
levels of 10% and 5%) rarely gave better results than the pessimistic error pruning,.
In all experiments, we used the Gini splitting criterion [7] for all datasets, except
for letter recognition, for which we used information gain. This was because it has
a large number of classes, and Gini typically does not perform well in such cases, an
observation that was validated by our experimental results. For example, a single
tree, without pruning, gave test error of 39.57 with the Gini splitting criterion, but
27.35 with information gain. When pessimistic pruning was used, the corresponding
errors were 39.05 and 26.90 respectively.

There are several different ways in which we can determine the number of bins
in the histogram [8, 15, 21, 13, 14]. While this is an important issue, since our focus
is on ensembles, we chose a simple approach. We first used equal-width histograms,
with the number of bins equal to the square-root of the number of instances at a
node. In this case, we created histograms regardless of the number of instances at
a node of the tree. Then, suspecting that histograms were probably not a good
idea when the number of instances was small (in our case, equal to the number of
features), we stopped using the histograms and used the traditional sorting of all
instances. This was done simply by setting the number of bins equal to the number
of instances at the node instead of the square-root of the number of instances.

We also include comparisons with the more traditional ensemble techniques
such as AdaBoost [16], Bagging [3], and ArcX4 [5]. All experiments were con-
ducted using the Sapphire software [27] developed at Lawrence Livermore National
Laboratory.

Our first set of experiments (Tables 2 and 3) focused on a single tree to under-
stand how the accuracy changed when we replaced the exact split at a node (found
by sorting the instances in an axis-parallel implementation) by a split determined
by using the best bin boundary in the histogram. In this set of results, we did not
use ensembles. For the histogram-based tree, two sets of results are given; in the
first case, the histograms are used regardless of the number of instances at a node,
and in the second case, when the number of instances was less than the number of
features, we shifted to the traditional sorting-based technique. For the three smaller
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Table 2. Test error (standard error) percentages on the benchmark datasets
for a single tree. Histogram-tree (A) uses histograms regardless of the number of
instances, histogram-tree (B) uses histograms when the number of instances is larger
than the number of features at a node, and then shifts to simple sorting instead of
histograms. The lowest error rate in each column is in bold.

Method Cancer Diabetes Credit

Axis-parallel w/o pruning 5.97 (0.29) | 29.27 (0.30) | 32.10 (0.44)
Axis-parallel w/ pruning 5.69 (0.16) | 26.64 (0.49) | 27.79 (0.23)
Histogram-tree (a) w/o pruning | 5.22 (0.17) | 28.41 (0.24) | 29.56 (0.16)
Histogram-tree (a) w/ pruning | 5.00 (0.18) | 24.53 (0.37) | 27.37 (0.27)
Histogram-tree (b) w/o pruning | 5.16 (0.17) | 28.38 (0.24) | 29.40 (0.17)
Histogram-tree (b) w/ pruning 5.01 (0.18) | 24.71 (0.37) | 27.33 (0.26)

Table 3. Test error percentages on the benchmark datasets for a single tree.
Histogram-tree (a) uses histograms regardless of the number of instances, histogram-
tree (b) uses histograms when the number of instances is larger than the number of
features at a node, and then shifts to simple sorting instead of histograms. The
lowest error rate in each column is in bold.

Method Satellite | Letter Recognition
Axis-parallel w/o pruning 15.85 27.35
Axis-parallel w/ pruning 14.80 26.90
Histogram-tree (a) w/o pruning 15.70 16.37
Histogram-tree (a) w/ pruning 15.20 16.27
Histogram-tree (b) w/o pruning 15.75 16.42
Histogram-tree (b) w/ pruning 15.20 16.375

datasets, we report both the test error and the standard error as a result of cross
validation. For the larger datasets, since we have separate training and testing data,
and no randomization is used in this set of experiments, we report only the test
error.

Based on the results presented in Tables 2 and 3, we observe that pruning
is helpful in some data sets (e.g., Pima Indian Diabetes and German Credit), but
doesn’t significantly affect the accuracy in other data sets (e.g., breast cancer and
letter recognition). This supports the observation made in [11] that pruning makes
a difference in some cases, but not in others. We also observe that using the
histogram-based tree, where the splits are made on bin boundaries, does not result
in a degradation in the accuracy, but may even improve the accuracy substantially
in some cases, such as the letter recognition data set. This observation has also
been made by other authors [8, 13]. In addition, we observe that the two variants
of the histogram-based tree do not differ significantly in accuracy.
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Table 4. Test error (standard error) percentages on the benchmark datasets
for histogram-based ensembles. Histogram-tree (A) uses histograms regardless of
the number of instances, histogram-tree (B) uses histograms when the number of
instances is larger than the number of features at a node, and then shifts to simple
sorting instead of histograms. The lowest error rate in each column is in bold.

Method 7 trees Cancer Diabetes Credit
Histogram-tree (a) 10 4.73 (0.17) | 25.50 (0.31) | 28.95 (0.18)
w/0 pruning 20 4.53 (0.13) | 24.96 (0.18) | 29.19 (0.31)
50 | 4.76 (0.17) | 24.76 (0.33) | 29.04 (0.22)
100 | 4.56 (0.15) | 24.04 (0.18) | 29.62 (0.18)
Histogram-tree (a) 10 5.09 (0.10) | 23.74 (0.25) | 26.96 (0.14)
w/ pruning 20 5.09 (0.13) | 23.95 (0.24) | 27.01 (0.19)
50 4.88 (0.11) | 23.60 (0.12) | 26.81 (0.19)
100 | 5.03 (0.13) | 23.26 (0.13) | 27.09 (0.19)
Histogram-tree (b) 10 4.62 (0.16) | 25.57 (0.28) | 25.66 (0.44)
w/0 pruning 20 | 4.51 (0.13) | 25.05 (0.16) | 29.10 (0.33)
50 | 4.78 (0.18) | 24.74 (0.30) | 28.96 (0.25)
100 4.56 (0.15) 24.18 (0.14) 29.57 (0.18)
Histogram-tree (b) 10 5.01 (0.18) | 23.66 (0.27) | 27.33 (0.26)
w/ pruning 20 5.06 (0.13) | 23.66 (0.22) | 27.00 (0.19)
50 | 4.79 (0.12) | 23.41 (0.19) | 26.82 (0.17)
100 4.98 (0.12) | 23.26 (0.15) | 27.10 (0.19)

4.1 Accuracy for Histogram-based Ensembles

We next present the results of ensembles of trees, where each tree is created using
a split randomly chosen in an interval around the best bin boundary. The results
are presented in Tables 4 and 5 as the number of trees in the ensemble is varied.
As before, we report the test error and standard error for 10 runs of 10-fold cross-
validation for the smaller data sets. For the larger data sets with the training
and test data, since the algorithm is randomized, we report the test error and
standard error of 10 runs. Unlike the case of a single tree reported in Table 3, the
randomization in the ensemble gives a different result for each run. In addition, for
the larger datasets, we did not run the experiments with 100 trees in the ensemble
as it took too much time.

Based on these results, we observe that the use of the ensembles does improve
the accuracy of the histogram-based classifier, though the improvement is dependent
on the dataset. For example, comparing the best error rate in the columns of Table
2 and Table 4, we find that the error rate for the Pima Indian Diabetes dataset
reduces from 24.53 to 23.26, while for the German Credit data set, it reduces from
27.33 to 25.66. A similar reduction can be observed in the larger data sets by
comparing Tables 3 and 5. The accuracy often improves as the number of trees
in the ensemble is increased, though in some cases, this improvement is small and
perhaps not worth the extra computation. We also observe that in the case of
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Table 5. Test error (standard error) percentages on the benchmark datasets
for an ensemble of histogram-based trees. Histogram-tree (A) uses histograms re-
gardless of the number of instances, histogram-tree (B) uses histograms when the
number of instances is larger than the number of features at a node, and then shifts

to simple sorting instead of histograms. The lowest error rate in each column is in
bold.

Method # trees Satellite Letter Recognition
Histogram-tree (a) 10 13.70 (0.13) 12.03 (0.24)
w/o pruning 20 13.41 (0.12) 11.96 (0.16)
50 13.20 (0.08) 11.69 (0.11)
Histogram-tree (a) 10 14.55 (0.13) 13.36 (0.17)
w/ pruning 20 14.68 (0.07) 13.15 (0.17)
50 14.33 (0.08) 12.88 (0.11)
Histogram-tree (b) 10 13.72 (0.12) 11.94 (0.24)
w/o pruning 20 13.27 (0.07) 11.79 (0.16)
50 | 13.17 (0.08) 11.64 (0.14)
Histogram-tree (b) 10 14.56 (0.11) 13.22 (0.24)
w/ pruning 20 14.65 (0.06) 12.97 (0.14)
50 14.32 (0.08) 12.89 (0.11)

histogram-based ensembles, pruning can some times help improve the accuracy,
while in other data sets, it can lower the accuracy. In addition, the two different
options for using the histograms do not differ in accuracy.

To further experiment with the idea of creating an approximate split at a
node of the tree, we tried combining the idea of sampling the instances [20] with
the use of histograms. So, for each feature, we first randomly sample the instances,
and use these sampled instances to create the histogram. Randomization is now
introduced in two ways - first, due to the sampling and second, due to the random
split in the histogram. For the two larger datasets, the results of this experiment
are reported in Table 6. 10% of the instances at a node are sampled, unless the
number of instances is less than twice the number of features at a node, in which
case no sampling is done. This is done to ensure that there are enough instances
at a node to learn a hypothesis in a space of dimension equal to the number of
features. We also restrict the experiments to the case where histograms are used
regardless of the number of instances at a node, as our earlier results indicated that
this option had no influence on the accuracy.

Our experiments in Table 6 indicate that combining sampling with histograms
can result in additional reduction in the errors for large datasets.

4.2 Results for Other Ensemble Techniques

For comparison, we also include the results with other competitive techniques in
Table 7. These are result of 10 runs. For the smaller datasets, we use 10-fold
cross-validation; for the larger datasets (letter and satellite), it is just training and
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Table 6. Test error (standard error) percentages on the benchmark datasets
for an ensemble of trees combining sampling and histograms. The sampling is done
at 10%. Results are for histogram-based trees where histograms are used regardless
of the number of instances. The lowest error rate in each column is in bold.

Method # trees Satellite Letter Recognition
Histogram-tree (a) 10 11.18 (0.12) 7.85 (0.11)
w/o0 pruning 20 13.41 (0.12) 6.81 (0.06)

50 10.21 (0.08) 6.31 (0.04)
Histogram-tree (a) 10 12.16 (0.17) 9.25 (0.13)
w/ pruning 20 11.75 (0.07) 8.20 (0.08)

50 11.55 (0.08) 7.72 (0.06)

Table 7. Test error (Standard error) percentages on the benchmark
datasets for competitive techniques. All results are with pruning for 10 runs. The
lowest error rate in each column is in bold.

Method # trees | Cancer | Diabetes | Credit | Satellite | Letter

AdaBoost 10 4.69 25.26 26.20 12.65 22.55

(0.18) (0.47) (0.31) ) (-)
20 4.69 24.50 26.03 12.65 22.55
(0.18) (0.37) (0.50) (-) (-)
50 4.69 24.50 25.81 12.65 22.55
(0.18) (0.37) (0.53) -) (-)
Bagging 10 3.59 24.50 26.60 12.91 14.71
(0.11) | (0.32) | (0.19) | (0.13) | (0.36)
20 3.66 23.30 26.00 12.34 12.45
0.09) | (0.25) | (0.31) | (0.12) | (0.19)
50 3.37 23.79 26.21 11.99 11.18
(0.08) | (0.19) | (0.18) | (0.10) | (0.08)
ArcX4 10 3.96 25.77 27.92 11.75 17.60
(0.08) (0.44) (0.23) -) =)
20 3.87 26.05 27.86 11.05 15.50
(0.11) (0.40) (0.22) -) )
50 3.87 26.32 28.34 10.70 11.65
(0.20) (0.36) (0.26) ) )
testing, as a separate test set is available. Also, for the larger data sets, for the
AdaBoost and ArcX4 methods, we report only the test error. Since there is no
randomization in these techniques, we get the same accuracy for each of the 10
runs. However, since there is randomization in bagging, we get different results for
each run and therefore report both the test and standard error. In the case of the
satellite and letter datasets, AdaBoost stops after 8 and 7 trees, respectively [16].
As a result, there is no improvement in the accuracy by increasing the number of
—®



Table 8. Timing results (in seconds) comparing 10 runs for different
ensemble-based techniques

Data set | # trees | AdaBoost | Bagging | ArcX4 | Histogram-based
Satellite 10 405 s 568 s 500 s 304 s

20 405 s 1134 s 1025 s 609 s

50 400 s 2892 s 2715 s 1522 s
Letter 10 4245 s 4785 s 6475 s 714 s

20 4250 s 9590 s | 13190 s 1442 s

50 4255 s 25528 s | 35730 s 5346 s

trees.

Comparing the data in Table 7 with the histogram-based ensembles in Ta-
bles 4 and 5, we observe that our techniques are competitive in accuracy to other
techniques for creating ensembles. In some cases (Pima Indian Diabetes, German
Credit, and letter), the accuracy of the histogram-based ensembles is the same as
the best of the other ensembles. For the other two data sets, the histogram-based
ensembles are not as accurate as the best of the other methods, but are still com-
petitive. When we combine our histogram-based ensembles with sampling for the
larger datasets, we tend to improve the performance beyond the traditional ways
of creating ensembles such as boosting and bagging. These accuracy results must
also be viewed in light of the computational cost of the various ensemble-based
techniques, an issue we discuss next.

4.3 Computational Costs

Our next set of experiments explores the reduction in compute time through the use
of histograms. The total computational cost for trees created using our approach
is determined by several competing factors. In the traditional axis-parallel tree, a
single sort of the instances is done at the beginning for each feature. While this
sort is replaced by a histogram, reducing the compute time, we now need to create
the histogram at each node of the tree, which increases the time. Also, the splitting
criterion needs to be evaulated only at the bin boundaries of the histograms instead
of between all the values for a feature.

Our initial timing results are presented in Table 8. We focus on the two
larger datasets, satellite and letter recognition. The times given are in seconds on
a 1.5GHz Pentium IIT system with 512MB of memory. The comparison is among
the average of 10 runs of various ensemble-based approaches, where each classifier
is created with pruning. The histogram-based ensembles use histograms regardless
of the number of instances at a node. For comparison, the time for a single axis-
parallel tree generated using the traditional approach with sorting, is 71 seconds for
the satellite dataset and 585 seconds for the letter recognition dataset.

Note that the timing increases proportionately for all ensembles as the number
of trees in the ensemble is increased. The exception is the AdaBoost algorithm,
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which in both datasets, converges early, after creating 8 trees for the satellite dataset
and 7 for the letter dataset. As a result, when the number of trees in the ensemble
is varied beyond this number, it has no effect on the accuracy (Table 7) or the time
(Table 8). Given the current implementation of the algorithms, the histogram-
based techniques are among the fastest on the larger datasets in our study. The
exception is the AdaBoost technique, which as we have observed, converges early.
If we combine our histogram-based technique with sampling (as reported in Table
6) the compute time reduces slightly.

5 Summary and Future Work

In this paper, we have introduced an approach to the generation of ensembles where
randomization is introduced in the decision tree induction through the use of his-
tograms. Once we have found the best bin boundary, we select the split point
randomly in an interval around this bin boundary. Our experiments with public-
domain data show that this simple approach is competitive in accuracy, but can
be superior in time to other ensembles-based approaches such as boosting and bag-
ging. We can improve the accuracy still further by combining sampling with the
histograms. In our work, we used simple equal-width histograms and a number of
bins equal to the square-root of the number of instances, though more sophisticated
techniques are certainly possible. In our future work, we plan to explore the use
of such techniques as well as other ways of combining the results of the ensembles.
We will also look into improving the compute time for all algorithms through code
optimizations such as generating the histogram at the root node only once for all
the trees in the ensembles.
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