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Abstract

Training supportvectormachinesinvolvesa hugeoptimizationproblemandmany speciallydesignedalgorithms

have beenproposed.In this paper, we proposedan algorithmcalledClusterSVMthat acceleratesthe training process

by exploiting thedistributionalpropertiesof thetrainingdata,that is, thenaturalclusteringof thetrainingdataandthe

overall layout of theseclustersrelative to the decisionboundaryof supportvectormachines.The proposedalgorithm

first partitionsthe training datainto several pair-wise disjoint clusters.Then,the representativesof theseclustersare

usedto train an initial supportvectormachine,basedon which we canapproximatelyidentify thesupportvectorsand

non-supportvectors.After replacingtheclustercontainingonly non-supportvectorswith its representative, thenumber

of trainingdatacanbesignificantlyreduced,therebyspeedingup the trainingprocess.TheproposedClusterSVMhas

beentestedagainstthe populartraining algorithmSMO on both the artificial dataandthe real data,anda significant

speedupwasobserved. The complexity of ClusterSVMscaleswith the squareof the numberof supportvectorsand,

after a further improvement,it is expectedthat it will scalewith squareof the numberof non-boundarysupport

vectors.

Keywords: supportvectormachine,PDDP, clustering,optimization.

I . INTRODUCTION

Supportvectormachines(SVM) (Vapnik [1]) have beensuccessfullyappliedin a variety of domains,including

handwrittendigit recognition[2], text documentclassification[3] and microarraydataanalysis[4]. In training a

supportvectormachine,oneneedsto maximizea convex objective functionsubjectingto box constraints.This kind

of optimizationproblemhasbeenextensively studiedandmany softwarepackageshave beendeveloped.However,

theoff-the-shelfpackagestypically requirethe entireGrammatrix bestoredin themainmemoryand,knowing the

fact that thesizeof theGrammatrix scaleswith thesquareof thenumberof trainingdata,thememoryrequirement

of thesepackagesquickly makesthemimpracticaleven for a moderateproblem[5]. Thus,many speciallytailored

optimizationalgorithmshave beenproposed.Thefirst classof suchalgorithmstries to solve theentireoptimization

problemby solving a seriesof small problems.The basictechniquesincludechunkinganddecomposition,which



were discussedby Boseret al. [2], Osunaet al. [6], Kaufmanet al. [7] and Joachims[8]. Especiallynoteworthy

is the SMO (SequentialMinimal Optimization)algorithmby Platt [9] that sequentiallyoptimizesover a subsetof

size two, for which we can performthe optimizationanalytically. The successof thesealgorithmsdependson an

appropriatecriterion for the active setselectionandan efficient strategy to cachethe Grammatrix. A secondclass

of algorithmstries to approximatethe Gram matrix by a smallermatrix either using the low-rank representation

(Fine et al. [10]) or by sampling(Williams et al. [11], Achlioptaset al. [12]), therebyreducingthe size of the

optimizationproblemand speedingup the training process.Keerthi et al. [13] proposedan algorithm basedon

observationsaboutthe geometricalpropertiesof supportvectormachines.Basedon a hierarchicalmicro-clustering

algorithm,Yu et al. [14] proposedascalablealgorithmto trainsupportvectormachineswith linearkernels.However,

their algorithmcurrentlyworksfor linearkernelsonly andusesthe fact that theoriginal spaceandthe featurespace

arethesameundera linearkernel.Thus,dueto thegeometricdifferencesbetweentheoriginal spaceandthefeature

spaceundera nonlinearkernel(e.g.[15]), it is quite hardto generalizetheir algorithmto nonlinearkernels,which

is morepopularthan linear kernels.

In this paper, we proposeda fast training algorithm called ClusterSVMwhoseidea is to speedup the training

processby reducingthenumberof trainingdata.This is accomplishedby partitioningthetrainingdatainto pair-wise

disjoint clusters,eachof which consistsof eitheronly supportvectorsor only non-supportvectors,andreplacing

the clustercontainingonly non-supportvectorsby a representative. In order to identify the cluster that contains

only non-supportvectors,the training datais first partitionedinto several pair-wise disjoint clustersandan initial

supportvector machineis trainedusing the representatives of theseclusters.Basedon this initial SVM, we can

judgewhethera clustercontainsonly non-supportvectorsor not. For the clusterthat containsboth supportvectors

and non-supportvectors,basedon the decisionboundaryof the initial SVM, we can split it into two subclusters

that approximatelycontaineither only non-supportvectorsor only supportvectors.This processis then repeated

if oneof the subclusterscontainsboth supportvectorsandnon-supportvectors.The proposedalgorithmworks for

any typeof kernels.The training time of this strategy scaleswith the squareof the numberof supportvectorsand,

asshown by experiments,anapproximatesolutioncanbefoundevenfaster. Further, basedon thetheoryunderlying

ClusterSVM, it is expectedthat the training time will scalewith thenumberof boundarysupportvectorsaftersome

straightforward extensionsto the currentwork.

The restof the paperis organizedas follows. SectionII briefly introducesthe optimizationprobleminvolved in

training SVM, followed by the theoreticalresultsunderlyingClusterSVM. In sectionIII, the experimentalresults

were reportedon both the artificial data and the real data.Finally, sectionIV concludesthe paperwith further

researchtopics.
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II . CLUSTERSVM

A. Supportvectormachines

In a two-classclassificationproblem,given a training datasetD of sizen

D =
{

(xi, yi) | xi ∈ RN , yi ∈ {1,−1}
}

(1)

wherei = 1, 2, · · · , n andyi indicatesthe classmembershipof the object i representedby vectorxi, the support

vectorclassifierf(x) is definedas [1]

f(x) = sign (d(x)) =







1 : d(x) ≥ 0

−1 : d(x) < 0
(2)

whered(·) is call the functionalmargin andit is definedas

d(x) = 〈w, Φ(x)〉H + b (3)

where 〈·, ·〉H is the dot product of the reproducingkernel Hilbert spaceH generatedby a symmetricpositive

definite kernel K(·, ·) satisfying the Mercel condition,and Φ(·) is the mappingassociatedwith K(·, ·) [1]. The

optimalparameterw∗ andb∗ correspondingto theoptimalclassifierf∗(x) canbeobtainedby solvingthefollowing

optimizationproblem[1]

Minimize : g(w, ξ) =
1

2
||w||2 + C

n
∑

i=1

ξi (4a)

Subjectto : yi(〈w, Φ(xi)〉H + b) ≥ 1− ξi (4b)

ξi ≥ 0

With the help of Lagrangemultipliers, the Wolfe dual form of the above minimizationproblemis [1]

Maximize : W (α) = αT1− 1

2
αTHα (5a)

Subjectto : 0 ≤ α ≤ C (5b)

αTy = 0.

where αi ≥ 0 (i = 1, 2, ..., n) are the Lagrangemultipliers, 1 is a vector of onesand H is the Gram matrix

with componentHij = yiyjK(xi,xj). The necessaryandsufficient conditionfor a weight vectorw andLagrange

multiplier α to be optimal is the KKT condition[1], which arethe primal anddual feasibility constraintsplus the

following complementarity’s conditions

αi (yi (〈w, Φ(xi)〉H + b)− 1 + ξi) = 0 (6a)

ξi (αi − C) = 0 (6b)
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Basedon the optimal solutionα, the functionalmargin d(·) canalsobe written as

d(x) =
∑

xi∈DSV

αiyiK(xi, x) + b (7)

where DSV is the set of supportvectors,which are the subsetof training data that have nonzeroα’s, that is,

0 < α ≤ C. It is the set of supportvectorsthat determinesthe decisionboundaryandall the other training data,

that is, non-supportvectors,canbe removed without influencingthe decisionboundary.

B. ClusterSVM

x
2


x
1


D
pos, 2


Decision boundary


d
(x) = -1


: Negative class
: Positive class


d
(x) = 1


M

a


r
g

i
n


 
b

a
n


d


M

a


r
g

i
n


 
b

a
n


d



D
pos, 1


D
neg, 1


D
neg, 2


D
neg, 3


d
(x) < -1


d
(x) > 1

-1< d
(x)<1


Fig. 1. A toy example.The representative of a clusteris labeledwith a solid square/circle.The decisionboundaryof the initial SVM trained

using the representatives of5 initial clustersis shown.

Figure1 shows the training dataof a two-dimensionaltwo-classclassificationproblem.The training datain the

positive classare partitionedinto two disjoint clustersand thosein the negative classare partitionedinto three

clusters.The motivation of ClusterSVMis to reducethe numberof training databy replacinga clusterwith an

appropriatelydefinedrepresentative. However, not all clusterscanbe replacedwith a representative while yielding

the samethe SVM as the SVM that would be obtainedusingthe original trainingdatasetD. It follows from the

following Proposition1 that thereare two kinds of clustersthat canbe replacedwithout influencingthe solution,

including the cluster that containsonly non-supportvectors(α = 0) and the cluster that containsonly boundary

supportvectors(α = C).

Sinceeachtrainingdatumcorrespondsto onerow andcolumnin theGrammatrix H, replacingdatain a cluster

with a representative correspondsto replacingthe rows andcolumnsassociatedwith thesedatawith a single row

and column. Let D denotethe training data set consistingof two disjoint setsD1 andD2 and, without losing
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generality, assumeD1 is a subsetof the training datain class1. Let α1 andα2 be the Lagrangemultipliers of the

datain D1 andD2, respectively, thenthe optimizationproblem(5) is equivalent to

Maximize : W (α) =

(

α111 −
1

2
αT

1 H11α1

)

+

(

α212 −
1

2
αT

2 H22α2

)

− αT
1 H12α2 (8a)

Subjectto : 0 ≤ α1,i ≤ C, ∀i = 1, 2, ..., n1

0 ≤ α2,j ≤ C, ∀j = 1, 2, ..., n2

αT
1 y1 + αT

2 y2 = 0. (8b)

Let the index to the row andcolumnthat will replacethe rows andcolumnsassociatedwith D1 be 0 andthe label

y0 = 1, we have the following optimizationproblem

Maximize : W (α) =

(

α0 −
1

2
α0H00α0

)

+

(

α212 −
1

2
αT

2 H22α2

)

− α0H02α2 (9a)

Subjectto : 0 ≤ α0 ≤ n1C

0 ≤ α2,j ≤ C, ∀j = 1, 2, ..., n2

α0 + αT
2 y2 = 0. (9b)

whereα0 is the Lagrangemultiplier correspondingto the representingrow/column,H00 is definedas

H00 =
1

n2
1

n1
∑

i=1

n1
∑

j=1

Hij (10)

andH02 is a row vectorof lengthn2 with entriesdefinedas

H0j =
1

n1

n1
∑

i=1

Hij (11)

wherej = 1, 2, · · · , n2. Then,we have the following proposition.

Proposition1: Theoptimizationproblemdefinedby equations(9), (10) and(11) is equivalentto theoneobtained

by addinga constraintto (5) that requiresall Lagrangemultipliers correspondingto the datain D1 be equal.

Proof: Using equation(10), we have

α0H00α0 = α0α0

1

n2
1

n1
∑

i=1

n1
∑

j=1

Hij

=

n1
∑

i=1

n1
∑

j=1

α0

n1

α0

n1

Hij (12)

Let α∗
1 be a vectorof lengthn1 with all componentsbeingequalto α0/n1, equation(12) canbe written as

α0H00α0 =

n1
∑

i=1

n1
∑

j=1

α∗
1,iα

∗
1,jHij

= α∗T
1 H11α

∗
1 (13)
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Using the similar arguments,α0H02α2 canbe written as

α0H02α2 = α∗T
1 H12α2 (14)

After substitutingequations(13) and(14) into equation(9) andusingthe fact that
∑n1

i=1
α∗

1,i = α0, we arrive the

following optimizationproblem

Maximize : W (α∗
1, α2) =

(

α∗
11

∗
1 −

1

2
α∗T

1 H11α
∗
1

)

+

(

α212 −
1

2
αT

2 H22α2

)

− α∗T
1 H12α2 (15a)

Subjectto : 0 ≤ α2,j ≤ C, ∀j = 1, 2, ..., n2

0 ≤ α∗
1,1 ≤ C

α∗T
1

y1 + αT

2
y2 = 0.

α∗
1,1 = α∗

1,i, ∀i = 2, ..., n1 (15b)

where0 ≤ α∗
1,i ≤ C (i = 1, 2, ..., n1) follows from the fact that 0 ≤ α0 ≤ n1C. The propositionfollows by

comparingequation(8) andequation(15).

The ideaof Proposition1 is illustratedin Figure2 for a toy problemthathastwo pointsin class1 with Lagrange

multipliers α1 and α2, and onepoint in class−1 with Lagrangemultiplier α3. The cube pqst − ovwu is the

feasibleregion of the original optimizationproblem(8). After replacingtwo data in class1 by a representative,

the feasibleregion of the resultingoptimizationproblem(c.f. (15)) is the rectangleopsw. Thus,the feasibleregion

of the problem(15) is a subsetof that of the problem(8) and, by replacingclustersof training datawith their

representatives,thesolutionof theresultingoptimizationproblemis anapproximationto thesolutionof theoriginal

optimizationproblem.Further, it is not hardto show that theoptimalsolutionof (15) is exactly theoptimalsolution

of (8) if D1 satisfieseitherof the following conditions.As in Proposition1, D1 is a subsetof the datain class1

to be replacedby a representative.

• Condition 1 All data in D1 are non-supportvectors,which meansthe correspondingLagrangemultiplier

α1 = α2 = 0. With referenceto Figure 2, this meansthe feasibleregion of the problem(8) and that of the

problem(15) coincidesat line op.

• Condition 2 All datain D1 areboundarysupportvectors,which meansthe correspondingLagrangemulti-

pliers α1 = α2 = C. With referenceto Figure 2, this meansthat the feasibleregion of the problem(8) and

that of the problem(15) coincidesat line ws.

Thus, we can safely replaceclustersof above two types with a representative without influencing the solution

and suchreplacementwill reducethe size of the optimizationproblem.In addition, for the clusterDi satisfying

the above Condition 1, we canreplacethe correspondingrows andcolumnswith the row andcolumnassociated

with the pseudocenterof this clusterbecausethe Lagrangemultiplier of a non-supportvector is zero,wherethe
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Fig. 2. Illustration of Proposition1.

pseudocenterxp(Di) of the clusterDi is definedas

xp(Di) = argmin
x∈Di

∥

∥

∥

∥

∥

x− 1

ni

ni
∑

k=1

xk

∥

∥

∥

∥

∥

2

(16)

where‖ · ‖2 means2-norm andni is the numberof data in Di. As a pilot study, only the clustersatisfyingthe

Condition 1 is replacedby its representative in the currentalgorithm.

Thenext issueis to identify clustersthatcontainonly non-supportvectors.However, thereis a cycle herebecause

thesetof supportvectorsis unknown beforetrainingis finished.Thesolutionis to first partitionthetrainingdatainto

pair-wisedisjoint clusters,thentrain an initial SVM usingthe representativesof theseclusters.Basedon this initial

SVM, we canapproximatelytell thepositionof eachclusterrelative to thedecisionboundary, therebyapproximately

identifying the clusterscontainingonly non-supportvectors.For the clusterthat is believed to containbothsupport

vectorsandnon-supportvectors,it is split into two subclusters,oneof which is expectedto containonly support

vectorsand the other is expectedto containonly non-supportvectors.This idea is illustratedin Figure 1 and 3.

Figure 1 shows the training data of a two-classclassificationproblemand they are partitionedinto 5 pair-wise

disjoint clusters(Dpos,1, Dpos,2, Dneg,1, Dneg,2 andDneg,3). The representatives(that is, pseudocentersdefinedin

equation16) of theseclustersare labeledwith solid squaresand solid cycles.An initial SVM was trainedusing

theserepresentatives,and its decisionboundary(d(x) = 0) andsupportinghyper-planes(d(x) = ±1) wereshown

in Figure 1. For the clusterbelongingto the positive class,it is believed to containonly non-supportvectorsif

the functional margin (d(x)) of its dataare all larger than 1 (e.g.Dpos,2) and, hence,it can be replacedby its

pseudocenterwithout being split. However, a cluster belongingto the positive classis believed to containboth

supportvectorsand non-supportvectors if it containssomedata with functional margin d(x) ≤ 1, which are

likely to be supportvectors,andsomedatawith functionalmargin d(x) > 1, which arebelieved to be non-support
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vectors.This kind of clusteris partitionedinto two subclustersandit is believedthat thesubclusterhaving datawith

d(x) > 1 containsonly non-supportvectorsandcan be replacedwith its pseudocenter, while the othersubcluster

(dx ≤ 1) is believed to containonly supportvectors.An exampleof suchclusteris Dpos,1 in Figure 1, which is

partitionedinto two subclustersalongd(x) = 1. Similar argumentsapply to the clusterbelongingto the negative

class.A cluster is believed to containonly non-supportvectorsif its dataall satisfy d(x) < −1, and a cluster is

believed to containboth non-supportvectorsand supportvectorsif someof its datasatisfy d(x) < −1 and the

otherdatasatisfyd(x) ≥ −1. Using this criterion, clusterDneg,3 needsnot to be split, while clustersDneg,1 and

Dneg,2 needto besplit into two subclusters.After splitting someclustersandreplacingtheclustersandsubclusters

containingonly non-supportvectorswith a representative, the resulting training data set Dreduced is shown in

Figure3, from which we canseea significantreductionon the numberof training data.

x
2


x
1


: Negative class
: Positive class


Fig. 3. Thereducedtraining datasetDreduced after splitting someclustersandreplacingclustersandsubclusterscontainingonly non-support

vectorswith their representatives. The representatives are labledwith solid squaresandsolid cycles.For clarity purpose,the decisionboundary

shown in Figure 1 is kept here.

The proposedtraining algorithm ClusterSVMis detailedin Algorithm 1 and its propertiesare summarizedin

Proposition2.

Proposition2: With referenceto Algorithm 1 (ClusterSVM) andsettingNPmax =∞, we have

1) Algorithm 1 will convergeafter a finite numberof passesthroughthe WHILE loop (line 5 through18).

2) The SV Mnew obtainedusingonly Dreduced is the sameas the SVM that would be obtainedusingD when

Algorithm 1 terminates,that is, whenthe following conditionis satisfied

yd(x) > 1, ∀x ∈ Dunused (17)
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whereDunused containsdatathat are in D but not in Dreduced.

Proof: Fromline 13 and14 in Algorithm 1, we canseethat thesizeof the reducedtrainingdatasetDreduced

is strictly increasingafter eachpassthroughthe WHILE loop. Since there is a finite numberof training data in

D, Dreduced will be the sameasD after a finite numberof passesthroughthe WHILE loop, which meansthat

Algorithm 1 will convergeafter a finite numberof passes.

For the secondpart of the proposition,we needonly to show that, for the weight vectorw of SV Mnew, the

KKT conditionsare satisfiedfor all training datain Dunused, that is, the Lagrangemultiplier is zero.For a given

xi ∈ Dunused, we have

yid(xi) > 1 =⇒ yi (〈w, Φ(x)〉H + b) > 1 (18)

Knowing the fact that ξi ≥ 0, this meansthat the constraintspecifiedby equation(4b) will not be active, thus

αi = 0.

It should be noted that the secondconclusionof Proposition2 doesnot dependon how to partition D into

Dreduced andDunused. As long as the conditionspecifiedin equation(17) is satisfiedfor all datain Dunused, the

SVM obtainedusingDreduced is the sameas that would be obtainedusingD.

III . EXPERIMENTS

A. Implementations

Due to its popularity, the trainingalgorithmA we usein Algorithm 1 is Platt’s SMO [9], andthe ClusterSVMis

comparedwith SMO. An implementationof SMO by Changet al. [16] andits MatlabR© wrapperby Ma et al. [17]

wereusedin this paper. However, it shouldbe pointedout that,beingusedasa meta-algorithm,ClusterSVMcould

accelerateany training algorithm.The clusteringalgorithmC usedhereis the PDDP(PrincipalDirection Divisive

Partition) by Boley [18] becauseit is onethe mostefficient clusteringalgorithms.

The numberof initial clustersk+ (k−) can be any numberbetweenone andthe numberof training datan+

(n−) in D+ (D−). However, knowing the fact that the initial SVM will be trainedusingthe representativesof the

initial clustersandall subsequentpartitionswill dependon the initial SVM, thenumberof initial clustersshouldbe

large enoughso that the initial SVM canapproximatethe true SVM reasonablywell. At the sametime, it should

not be too large sinceletting k+ = n+ andk− = n− would makeDreduced = D, andtherewould be no speedup.

Anotherreasonfor preferringsmallk+ (k−) is thatbothclusteringthe trainingdataD andtrainingthe initial SVM

needsto be performedvery quickly. In this paper, the following squareroot heuristicis suggested

k+ = round(
√

n+) and k− = round(
√

n−) (19)

Thereareprimarily two motivationsfor this heuristic.First, knowing the fact that the time for clusteringtypically

scaleslinearly with the numberof data[19], the squareroot heuristiccanmake the total time to obtain the initial

SVM scalelinearly with thenumberof trainingdata.Thesecondreasonis that this heuristichasbeensuggestedin
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Algorithm 1 ClusterSVM:Two classSVM

Require: A SVM training algorithm A; A clusteringalgorithm C; Training datasetD = D+ ∪ D−, whereD+

(D−) is the set of the training data in class1 (−1); The numberof initial clustersk+ (k−) into which D+

(D−) is partitioned;The maximumnumberof passesNPmax throughthe WHILE loop.

1: Call the clusteringalgorithmC to partitionD+ (D−) into k+ (k−) clusters,that is

D+ =

k+

⋃

i=1

D+

i and D− =

k−

⋃

i=1

D−
i

2: Define the setG of clustersas

G ← {D+

1 , · · · ,D+

k+ ,D−
1 , · · · ,D−

k−
}

3: Define the reducedtraining datasetDreduced as(c.f. (16))

Dreduced ← {xp(D′),D′ ∈ G}

4: Flag ← 1, NP ← 0

5: while Flag = 1 andNP < NPmax do

6: Flag ← 0, NP ← NP + 1

7: Train SV Mnew usingDreduced andthe training algorithmA

8: Gold ← G andG ← ∅
9: for all D′ ∈ Gold do

10: if ∃x ∈ D′ suchthat yd(x) ≤ 1 accordingto SV Mnew, wherey is the label of x then

11: Flag ← 1

12: Split D′ into D′
sv andD′

nsv

D′
sv ← {x|x ∈ D′ and yd(x) ≤ 1}

D′
nsv ← {x|x ∈ D′ and yd(x) > 1}

13: Remove xp(D′) from Dreduced

14: Dreduced ← Dreduced ∪ D′
sv ∪ {xp(D′

nsv)}
15: G ← G ∪ {D′

nsv}
16: end if

17: end for

18: end while

19: Returnthe SV Mnew.

the studyof clusteringalgorithms(e.g. [20]). The effectivenessof this heuristicwasdemonstratedexperimentally.
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Sincethe initial SVM canapproximatethe trueSVM quitewell andeachpassthroughthe outerWHILE loop (line

5 to 18 in Algorithm 1) involves training a SVM, the next issueis how many times the WHILE loop shouldbe

performed.Basedon the experiments,it is enoughto carry out the WHILE loop once.

The last implementationissueis thestrategy for themulti-classclassificationproblem.Therearemany strategies

for multi-classclassificationproblemand,in this paper, the “one versusthe rest” strategy is used.In this strategy,

assumingtherearem classes,m classifiersaretrainedandeachof themdiscriminatesoneclassfrom all the other

classes.A testdatais classifiedto theclassthathasthemaximumfunctionalmargin d(·). In orderto avoid repeated

clusterings,theclusteringalgorithmis appliedto thedataof eachclassbeforeany classifieris trained.Then,to train

the classifierthat discriminatesthe classi from the remainingm− 1 classes,the clusterscorrespondingto classi

areusedasthepartitionof thedatain classi, andtheclusterscorrespondingto theremainingm−1 classesareput

togetherandusedas the partition for the datain thosem− 1 classes.All experimentswere run on a PC running

Windows 2000Server with onePentium4 2.8GHzprocessorand1GB RAM, andthe algorithmwasimplemented

usingMatlabR© [21].

B. Data sets

Therearethreedatasetsexaminedin this paper.

Fig. 4. Artificial dataset.

• Artificial data set As shown in Figure4, this is a three-classclassificationproblemandeachclassconsists

of data drawn from a 2D normal distribution with covariancematrix being identity matrix. The centersof

threeclassesare (0,
√

3), (−1, 0) and (1, 0). The samenumberof training dataaredrawn for eachclassand

the size of the training dataD variesfrom 300 to 6000. The test dataset is of the samesize as the training

datasetand is constructedin the sameway. All 3 classifiersareobtainedusingthe regularizationcoefficient

C = 10000 (c.f. equation(4a)) andthe linear kernelK(xi,xj) definedas

K(xi,xj) = xT
i xj (20)
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• USPSdata set This is the US PostalService(USPS)handwrittenzip coderecognitiondatasetand there

are 7291 training dataand 2007 test data,all of which were collectedfrom mail envelopesin Buffalo [22].

Each digit is representedas a 16 × 16 matrix whoseentry rangesfrom −1 to 1. As suggestedby [23], a

smoothingoperationusing a Gaussiankernel with width 0.75 was applied to the imageas a preprocessing

step.The regularizationcoefficient C = 10 and the kernel is a homogeneouspolynomialkernelof degree3

definedas

K(xi,xj) =

(

xT
i xj

256

)3

(21)

• Isolet data set This dataset was downloadedfrom UCI machinelearningrepository[24] and the goal is

to recognize26 spoken letters.Thereare6238 trainingdataand1559 testdata.Eachdatumhas617 attributes

andeachattribute is a realnumberbetween−1 and1. All 26 classifierswereobtainedusingtheregularization

coefficient C = 0.02 andthe linear kerneldefinedas

K(xi,xj) = xT
i xj . (22)

C. Experimentalresults

The effect of the numberof initial clustersk wasstudiedthroughthe artificial dataset.There2000 trainingdata

in eachclass(6000 total) and the numberof initial clustersk variesfrom 1 to 81 with an interval of 2. For each

valueof k, 10 randomlygeneratedtraining datasetwere tried. Figure5 comparesthe relative differencebetween

the error rate of the initial SVM with that of the true SVM for differentvaluesof k. The relative differenceRD

is definedas

RD =
|ERinitial −ERtrue|

ERtrue

(23)

whereERinitial and ERtrue are the error rate of the initial SVM and the true SVM on the sametest dataset.

Figure6 shows the time to obtainthe initial SVM TInitial SV M asa function of k. TInitial SV M consistsof time

for clusteringand the time for training the initial SVM. From Figure 5 and Figure 6, we can seethat the square

root heuristic,correspondingto k = 45 in this experiment,givesa reasonablegoodtrade-off betweenthe accuracy

andthe complexity, althoughit is a rathergrossheuristic.

With thenumberof initial clustersbeingspecifiedby thesquareroot heuristic,theeffect of thenumberof passes

NP throughthe WHILE loop (line 5 to 18 in Algorithm 1) is shown in TableI for the artificial datasetwith 6000

trainingdata.TheSVM trainedafter3 passesis the trueSVM, which would beobtainedusingtheoriginal training

dataset,thusthe correspondingerror ratecanbe taken asthe reference.From TableI, it canbe seenthat onepass

throughthe WHILE loop is enoughto give agoodperformance.Thus,the maximumnumberof passesNPmax in

Algorithm 1 is set to 1. In addition, it can be seenfrom Table I that, with NP = 0, the initial SVM also gives

pretty goodresult.

Table II throughIV comparesthe performanceof ClusterSVMwith that of SMO, wherethe numberof initial

clustersis specifiedby the squareroot heuristic and the maximumnumberof passesthrough the WHILE loop
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Fig. 6. Time to obtain the initial SVM asa function of the numberof initial clustersk. Thereare2000 training datain eachclass(6000 in

total) and the squareroot heuristiccorrespondsto k = 45.

TABLE I

EFFECTS OF NP ON THE ARTIFICIAL DATA SET (6000 TRAINING DATA). NP IS THE NUMBER OF PASSES THROUGH THE WHILE LOOP IN

ALGORITHM 1.

NP 0 1 2 3

Error rate (%) 25.87 25.43 25.48 25.47

NPmax = 1. In thesetables,the speedup is definedas

Speedup =
TSMO

TClusterSV M

(24)
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whereTSMO is the training time of SMO and TClusterSV M is the training time of ClusterSVM. The clustering

time is the time usedfor theclusteringall trainingdata.Basedon thesetables,we have the following observations.

• Ntrain,i (i = 1, 2, · · · , m) is the actual numberof training datausedto train the i-th classifier. For SMO,

this numberis the numberof training dataof all classesand it is independentof which classifier is being

trained.For ClusterSVM, Ntrain,i is the numberof training dataafter replacingevery clustercontainingonly

non-supportvectorswith its representative. For the artificial data set shown in Table II, Ntrain,i is almost

the samefor all threeclassifierswhen ClusterSVMis used.This is within our expectationsbecauseof the

symmetryof the artificial dataset.However, for the USPSdataset shown in Table III, Ntrain,i variesfrom

oneclassifierto anotherwhenClusterSVMis used.This is reasonablebecauseall tenclassifiersareinherently

different.For example,discriminatingdigit 1 from theotherdigits is differentfrom discriminatingdigit 0 from

theotherdigits. Similarly, for the Isoletdatasetshown in TableIII, differentclassifierhasdifferentnumberof

training datawhenClusterSVMis used.Thus,the ClusterSVMreducesthe numberof training datain a task

dependentway.

• Ntrain is the averagenumberof training dataover all k classifiersand,comparingClusterSVMwith SMO,

it canbe seenthat ClusterSVMreducethe numberof training datasignificantly. It is this datareductionthat

help acceleratingthe training process.

• The speedup of ClusterSVMover SMO is 3.2 for the artificial dataset,1.5 for the USPSdatasetand1.9 for

the Isolet dataset.

• Comparingthe error rate of SMO and that of ClusterSVM, it can be seenthat the speedupof ClusterSVM

sacrificeslittle performance.This nicepropertyis attributedto thegoodinitial clusteringthatmakesthe initial

SVM approximatethe true SVM quite well. At the sametime, asshown in thesetables,the overheadinduced

by clusteringis only a small factionof total training time.

Finally, the scalingperformanceof ClusterSVMwasshown in Figure7 for the artificial dataset,which shows the

averagetraining time over 10 runs.It canbe seenthat ClusterSVMscalesbetterthanSMO.

IV. CONCLUSIONS

An efficient SVM trainingalgorithmClusterSVMwasproposedin this paperanda significantspeedupover SMO

was observed on both the artificial dataset and the real dataset.The possibleextensionsto ClusterSVMare the

follows.

• The secondsufficient condition mentionedafter the Proposition1 has not beenusedin ClusterSVM. It is

not hard to incorporatethis condition into ClusterSVMand this would make the training time scalewith the

numberof non-boundarysupportvectors.This would definitely speedup the SVM training further.

• With the help of a clusteringalgorithm, ClusterSVMeffectively incorporatethe distributional property of

the training data into the training process.It is expectedthat the similar idea can be usedto improve other

supervisedlearningalgorithmlike neuralnetworks.
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TABLE II

ARTIFICIAL DATA SET. Ntrain,i IS THE ACTUAL NUMBER OF TRAINING DATA TO TRAIN THE i-TH CLASSIFIER.

SMO ClusterSVM

Ntrain,1 6000 3260

Ntrain,2 6000 3026

Ntrain,3 6000 3022

Ntrain 6000 3103

Training time (sec.) 8344 2588

Clusteringtime (sec.) NA 3

Speedup 3.2

Error rate (%) 25.47 25.43

TABLE III

USPSDATA SET. Ntrain,i IS THE ACTUAL NUMBER OF TRAINING DATA TO TRAIN THE i-TH CLASSIFIER.

SMO ClusterSVM

Ntrain,1 7291 788

Ntrain,2 7291 2364

Ntrain,3 7291 1975

Ntrain,4 7291 1544

Ntrain,5 7291 2259

Ntrain,6 7291 1621

Ntrain,7 7291 1206

Ntrain,8 7291 2407

Ntrain,9 7291 1560

Ntrain,10 7291 2638

Ntrain 7291 1836

Training time (sec.) 105 68

Clusteringtime (sec.) NA 18

Speedup 1.5

Error rate (%) 5.43 5.28
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