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Abstract

Training supportvector machinesnvolves a hugeoptimizationproblemand mary speciallydesignedalgorithms
have beenproposedIn this paper we proposedan algorithm called ClusterSVMthat accelerateshe training process
by exploiting the distributional propertiesof the training data,thatis, the naturalclusteringof the training dataandthe
overall layout of theseclustersrelative to the decisionboundaryof supportvectormachinesThe proposedalgorithm
first partitionsthe training datainto several pairwise disjoint clusters.Then, the representaties of theseclustersare
usedto train aninitial supportvectormachine basedon which we canapproximatelyidentify the supportvectorsand
non-supporvectors After replacingthe clustercontainingonly non-supportectorswith its representatie, the number
of training datacanbe significantly reduced therebyspeedingup the training processThe proposedClusterSVMhas
beentestedagainstthe populartraining algorithm SMO on both the artificial dataandthe real data,and a significant
speedupwvas obsened. The compleity of ClusterSVMscaleswith the squareof the numberof supportvectorsand,

after a further improvement, it is expectedthat it will scalewith squareof the numberof non-boundarysupport
vectors.

Keywords: supportvectormachine,PDDR clustering,optimization.

I. INTRODUCTION

SupportvectormachinegSVM) (Vapnik [1]) have beensuccessfullyappliedin a variety of domains,including
handwrittendigit recognition[2], text documentclassification[3] and microarraydataanalysis[4]. In training a
supportvectormachine pneneedgo maximizea corvex objective function subjectingto box constraintsThis kind
of optimizationproblemhasbeenextensvely studiedandmary software packagesave beendeveloped.However,
the off-the-shelfpackagesypically requirethe entire Grammatrix be storedin the main memoryand,knowing the
factthatthe size of the Grammatrix scaleswith the squareof the numberof training data,the memoryrequirement
of thesepackagegjuickly makesthemimpracticaleven for a moderateproblem[5]. Thus,mary speciallytailored
optimizationalgorithmshave beenproposedThefirst classof suchalgorithmstriesto solve the entireoptimization

problemby solving a seriesof small problems.The basictechniquesnclude chunkingand decompositionwhich



were discussedy Boseret al. [2], Osunaet al. [6], Kaufmanet al. [7] and Joachimg8]. Especiallynotevorthy
is the SMO (SequentiaMinimal Optimization)algorithmby Platt [9] that sequentiallyoptimizesover a subsetof
size two, for which we can performthe optimizationanalytically The succes®f thesealgorithmsdependn an
appropriatecriterion for the active setselectionandan efficient stratgyy to cachethe Gram matrix. A secondclass
of algorithmstries to approximatethe Gram matrix by a smallermatrix either using the low-rank representation
(Fine et al. [10]) or by sampling(Williams et al. [11], Achlioptaset al. [12]), therebyreducingthe size of the
optimization problemand speedingup the training process.Keerthi et al. [13] proposedan algorithm basedon
obsenationsaboutthe geometricalpropertiesof supportvectormachinesBasedon a hierarchicalmicro-clustering
algorithm,Yu etal. [14] proposeda scalablealgorithmto train supportvectormachineswith linearkernels.However,
their algorithmcurrentlyworksfor linearkernelsonly andusesthe factthatthe original spaceandthe featurespace
arethe sameundera linearkernel. Thus,dueto the geometricdifferencesdetweerthe original spaceandthe feature
spaceundera nonlinearkernel(e.g.[15]), it is quite hardto generalizetheir algorithmto nonlinearkernels,which
is more popularthanlinear kernels.

In this paper we proposeda fast training algorithm called ClusterSVMwhoseidea s to speedup the training
procesdy reducingthe numberof trainingdata.Thisis accomplishedby partitioningthetraining datainto pairwise
disjoint clusters,eachof which consistsof eitheronly supportvectorsor only non-supportectors,andreplacing
the cluster containingonly non-supportvectorsby a representatie. In orderto identify the clusterthat contains
only non-supportvectors,the training datais first partitionedinto several pair-wise disjoint clustersand an initial
supportvector machineis trained using the representaties of theseclusters.Basedon this initial SVM, we can
judgewhethera clustercontainsonly non-supportectorsor not. For the clusterthat containsboth supportvectors
and non-supportvectors,basedon the decisionboundaryof the initial SVM, we can split it into two subclusters
that approximatelycontaineither only non-supportvectorsor only supportvectors.This processs thenrepeated
if oneof the subclustergontainsboth supportvectorsand non-supportectors.The proposedalgorithmworks for
ary type of kernels.The training time of this stratgyy scaleswith the squareof the numberof supportvectorsand,
asshawvn by experimentsan approximatesolutioncanbe found evenfaster Further basedon the theoryunderlying
ClusterSVMit is expectedthatthe training time will scalewith the numberof boundarysupportvectorsaftersome
straightforvard extensionsto the currentwork.

The restof the paperis organizedas follows. Sectionll briefly introducesthe optimizationprobleminvolvedin
training SVM, followed by the theoreticalresultsunderlying ClusterSVM In sectionlll, the experimentalresults
were reportedon both the artificial dataand the real data. Finally, sectionlV concludesthe paperwith further

researchopics.



Il. CLUSTERSVM
A. Supportvector madines
In a two-classclassificationproblem,given a training dataset D of sizen
D= {(thz) | X; € RN? Yi € {17_1}} (1)

wherei = 1,2,--- ,n andy; indicatesthe classmembershipof the objecti representedby vectorx;, the support

vectorclassifier f(x) is definedas[1]

_ 1 @ dx)>0
f(x) = sign (d(x)) = { )
-1 : d(x)<0
whered(+) is call the functionalmargin andit is definedas
d(x) = (W, ®(x))3, + b ©)

where (-, -),, is the dot productof the reproducingkernel Hilbert space’t generatedoy a symmetric positive
definite kernel K (-, -) satisfyingthe Mercel condition,and ®(-) is the mappingassociatedvith K(-,-) [1]. The
optimal parametew™ andb* correspondingo the optimal classifier f*(x) canbe obtainedby solvingthefollowing

optimizationproblem[1]

Minimize : g(w, &) = %||w||2 +CY & (4a)
i=1
Subjectto : y;((w, ®(x;)),, +0) > 1§ (4b)
& >0

With the help of Lagrangemultipliers, the Wolfe dual form of the abose minimization problemis [1]

- 1
Maximize: W(a) = a™1 — iaTHa (5a)
Subjectto: 0 < a < C (5b)
aTy =0.

wherea; > 0 (1 = 1,2,...,n) are the Lagrangemultipliers, 1 is a vector of onesand H is the Gram matrix
with componentd;; = y;y, K (x;,x;). The necessaryndsufiicient conditionfor a weight vectorw andLagrange
multiplier « to be optimalis the KKT condition[1], which arethe primal and dual feasibility constraintplus the

following complementaritys conditions
;i (yi (W, @(x:))g +0) —1+&) =0 (6a)

fi (ai — C) =0 (Gb)



Basedon the optimal solution «, the functionalmagin d(-) canalsobe written as

d(x) = Z oy K(x5,2) + b (7)

z;€Dsv

where Dgy is the set of supportvectors,which are the subsetof training datathat have nonzeroa’s, that is,
0 < a < C. It is the setof supportvectorsthat determineghe decisionboundaryand all the othertraining data,

thatis, non-supportvectors,can be remosed without influencingthe decisionboundary

B. ClusterSVM

d(x) =1  Decision boundary
/ | dw=-1
% IIX 1< d(x)<1

B < : Positive class @ O :Negative class

Fig. 1. A toy example.The representate of a clusteris labeledwith a solid square/circleThe decisionboundaryof the initial SVM trained

usingthe representaties of5 initial clustersis shavn.

Figure 1 shaws the training dataof a two-dimensionatwo-classclassificationproblem.The training datain the
positive classare partitionedinto two disjoint clustersand thosein the negative classare partitionedinto three
clusters.The motivation of ClusterSVMis to reducethe numberof training databy replacinga clusterwith an
appropriatelydefinedrepresentatie. However, not all clusterscanbe replacedwith a representatie while yielding
the samethe SVM asthe SVM that would be obtainedusingthe original trainingdatasetD. It follows from the
following Propositionl that thereare two kinds of clustersthat can be replacedwithout influencingthe solution,
including the clusterthat containsonly non-supportvectors(a. = 0) and the clusterthat containsonly boundary
supportvectors(a = C).

Sinceeachtraining datumcorresponds$o onerow andcolumnin the Grammatrix H, replacingdatain a cluster
with a representatie correspondso replacingthe rows and columnsassociatedvith thesedatawith a single row

and column. Let D denotethe training data set consistingof two disjoint setsD; and Dy and, without losing



generality assumeD; is a subsetof the training datain class1. Let «; andas be the Lagrangemultipliers of the
datain D; andD,, respectiely, thenthe optimizationproblem(5) is equivalentto

- 1 1
Maximize : W(Ot) = <04111 — 50[{1‘1110&1) + (06212 — 5042TH22042> — Oé?HuOQ

(8a)
Subjectto : 0 < oy, <C, Vi=1,2,...,m
0<ay; <C,Vj=1,2,..,n9
ajyr+a3ys2 =0. (8b)

Let theindex to the row andcolumnthatwill replacethe rows andcolumnsassociateavith D; be 0 andthe label
1o = 1, we have the following optimizationproblem

. 1 1
Maximize : W(Oé) (ao — 5(10H00040) + (04212 — iagHggag) — agHpoao (9a)

Subjectto : 0 < ag < m1C

0< Qa2 j < 07 V_j = 172, ey N2
ag +azyz = 0. (9b)
whereqy is the Lagrangemultiplier correspondingo the representingow/column, Hy, is definedas

ni ni

1

o= >3t 0
1 i=1j=1

andH; is a row vectorof lengthn. with entriesdefinedas

Hoj = P ZHU (11)
wherej = 1,2,--- ,no. Then,we have the following proposition.

Proposition1: Theoptimizationproblemdefinedby equationg9), (10) and(11)is equivalentto the oneobtained
by addinga constraintto (5) that requiresall Lagrangemultipliers correspondindo the datain D; be equal.
Proof: Using equation(10), we have

ni ni

aoHoppooy = QOQO%ZZHU

1i=1j=1
ny ny

(12)

Let o be avectorof lengthn; with all componentdbeingequalto ag/n1, equation(12) canbe written as

ni ni

* *
OfOHOOOfO = E E a17ia17jHij

i=1 j=1

*T *
aq H11a1

(13)



Using the similar algumentsagHgoz canbe written as
aoHozas = o Hyzas (14)

After substitutingequations(13) and (14) into equation(9) and usingthe factthat 3", aj,; = ap, we arrive the

following optimizationproblem

L 1 1
Maximize : W(Of{,ag) = (OéTlT — §QTTH11GT) + (04212 — iagHggag) — QTTngag (153.)

Subjectto : 0 < ; < C, Vj=1,2,...,n0
0< a*l"l <C
oﬂ{Tyl + ozgyz =0.
Al =af;, Vi=2,.,m (15b)

where 0 < aj; < C (i = 1,2,...,n7) follows from the factthat 0 < a9 < n;C. The propositionfollows by
comparingequation(8) and equation(15). [ ]

Theideaof Propositionl is illustratedin Figure2 for atoy problemthathastwo pointsin classl with Lagrange

multipliers «; and as, and onepoint in class —1 with Lagrangemultiplier «s. The cube pgst — ovwu is the
feasibleregion of the original optimizationproblem(8). After replacingtwo datain class1 by a representate,
the feasibleregion of the resultingoptimizationproblem(c.f. (15)) is the rectangleopsw. Thus,the feasibleregion
of the problem(15) is a subsetof that of the problem(8) and, by replacingclustersof training datawith their
representaties,the solutionof the resultingoptimizationproblemis anapproximatiorto the solutionof the original
optimizationproblem.Further it is not hardto shav thatthe optimal solutionof (15) is exactly the optimal solution
of (8) if D, satisfieseither of the following conditions.As in Propositionl, D is a subsetof the datain class1
to bereplacedby a representate.

« Condition 1 All datain D; are non-supportvectors,which meansthe correspondind.agrangemultiplier
a1 = ag = 0. With referenceto Figure 2, this meansthe feasibleregion of the problem(8) andthat of the
problem(15) coincidesat line op.

« Condition 2 All datain D; are boundarysupportvectors,which meansthe correspondind.agrangemulti-
pliers a; = as = C. With referenceto Figure 2, this meansthat the feasibleregion of the problem(8) and

that of the problem(15) coincidesat line ws.

Thus, we can safely replaceclustersof above two typeswith a representatie without influencingthe solution
and suchreplacementvill reducethe size of the optimizationproblem.In addition, for the clusterD; satisfying
the above Condition 1, we canreplacethe correspondingows and columnswith the row and columnassociated

with the pseudocenteof this clusterbecausehe Lagrangemultiplier of a non-supporivectoris zero, wherethe
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Fig. 2. lllustration of Propositionl.

pseudocentex?(D;) of the clusterD; is definedas

xP(D;) = argmin (16)

x€D;

1 &
X — — X

v k=1

2
where|| - || means2-norm andn; is the numberof datain D;. As a pilot study only the clustersatisfyingthe

Condition 1 is replacedby its representatie in the currentalgorithm.

Thenext issueis to identify clustersthat containonly non-supporvectors.However, thereis a ¢ycle herebecause
the setof supportvectorsis unknavn beforetrainingis finished.The solutionis to first partitionthetrainingdatainto
pair-wise disjoint clustersthentrain aninitial SVM usingthe representatiesof theseclusters.Basedon this initial
SVM, we canapproximatelytell the positionof eachclusterrelative to the decisionboundarytherebyapproximately
identifying the clusterscontainingonly non-supporvectors.For the clusterthatis believedto containboth support
vectorsand non-supportectors,it is split into two subclusterspne of which is expectedto containonly support
vectorsand the otheris expectedto containonly non-supportvectors.This ideais illustratedin Figure1 and 3.
Figure 1 shaws the training data of a two-classclassificationproblemand they are partitionedinto 5 pairwise
disjoint clusters(Dpos, 1, Dpos,2: Dneg.1» Dneg,2 aNd D,y 3). Therepresentadies (thatis, pseudocenterdefinedin
equation16) of theseclustersare labeledwith solid squaresand solid cycles. An initial SVM was trained using
theserepresentaties,andits decisionboundary(d(x) = 0) and supportinghyperplanes(d(x) = +1) were shavn
in Figure 1. For the clusterbelongingto the positive class,it is believed to containonly non-supportvectorsif
the functional mamin (d(x)) of its dataare all larger than1 (e.g. D,.s2) and, hence,it can be replacedby its
pseudocentewithout being split. However, a cluster belongingto the positive classis believed to contain both
supportvectorsand non-supportvectorsif it containssomedatawith functional mamgin d(x) < 1, which are

likely to be supportvectors,and somedatawith functionalmamgin d(x) > 1, which are believed to be non-support



vectors.This kind of clusteris partitionedinto two subclusterandit is believedthatthe subclustehaving datawith
d(x) > 1 containsonly non-supportvectorsand can be replacedwith its pseudocentemwhile the other subcluster
(dx < 1) is believed to containonly supportvectors.An exampleof suchclusteris D,,,1 in Figure 1, which is
partitionedinto two subclustersalongd(x) = 1. Similar agumentsapply to the clusterbelongingto the negative
class.A clusteris believed to containonly non-supportvectorsif its dataall satisfy d(x) < —1, anda clusteris
believed to containboth non-supportvectorsand supportvectorsif someof its datasatisfy d(x) < —1 andthe
otherdatasatisfy d(x) > —1. Using this criterion, clusterD,,., 3 needsnot to be split, while clustersD,,., 1 and
D42 Needto be split into two subclustersAfter splitting someclustersandreplacingthe clustersandsubclusters
containingonly non-supportvectorswith a representatie, the resulting training data set D,.cguceq 1S Shovn in

Figure 3, from which we can seea significantreductionon the numberof training data.
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Fig. 3. Thereducedtraining datasetD,..4.ccq after splitting someclustersandreplacingclustersand subclustersontainingonly non-support
vectorswith their representaties. The representaties are labled with solid squaresand solid cycles. For clarity purposethe decisionboundary
shawvn in Figure 1 is kept here.

The proposedtraining algorithm ClusterSVMis detailedin Algorithm 1 and its propertiesare summarizedn
Proposition2.

Proposition2: With referenceto Algorithm 1 (ClusterSVM andsetting N Py, = oo, we have

1) Algorithm 1 will corverge after a finite numberof passeshroughthe WHILE loop (line 5 through18).

2) The SV M, obtainedusingonly D,..q.ccq IS the sameasthe SVM that would be obtainedusingD when

Algorithm 1 terminatesthatis, whenthe following conditionis satisfied

Ud(X) > 17 Vx € Dunused (17)



whereD,,useq CONtainsdatathatarein D but notin D,.cquced-

Proof: Fromline 13 and14 in Algorithm 1, we canseethatthe size of the reducedrainingdataset D, cquced
is strictly increasingafter eachpassthroughthe WHILE loop. Sincethereis a finite numberof training datain
D, Dreduced Will be the sameas D after a finite numberof passeghroughthe WHILE loop, which meansthat
Algorithm 1 will corverge after a finite numberof passes.

For the secondpart of the proposition,we needonly to showv that, for the weight vectorw of SV M,,.,,, the
KKT conditionsare satisfiedfor all training datain D,,..scq4, thatis, the Lagrangemultiplier is zero. For a given
X; € Dunused, We have

yid(x;) > 1= y; ((w, ®(x)),, +b) > 1 (18)

Knowing the fact that §; > 0, this meansthat the constraintspecifiedby equation(4b) will not be active, thus
a; = 0. ]

It should be noted that the secondconclusionof Proposition2 doesnot dependon hav to partition D into
Dreduced aNADynuseqd- AS long asthe conditionspecifiedin equation(17) is satisfiedfor all datain B,,yscq, the

SVM obtainedusing D,.cquceq 1S the sameasthat would be obtainedusing D.

Il . EXPERIMENTS
A. Implementations

Dueto its popularity the training algorithm A we usein Algorithm 1 is Platt's SMO [9], andthe ClusterSVMis
comparedvith SMO. An implementatiorof SMO by Changet al. [16] andits Matlab® wrapperby Ma etal. [17]
wereusedin this paper However, it shouldbe pointedout that, beingusedas a meta-algorithmClusterSVMcould
accelerateany training algorithm. The clusteringalgorithm C usedhereis the PDDP (Principal Direction Divisive
Partition) by Boley [18] becausaét is onethe mostefficient clusteringalgorithms.

The numberof initial clustersk™ (k~) canbe ary numberbetweenone andthe numberof training datan™
(n™) in Dt (D). However, knawing the factthat the initial SVM will be trainedusingthe representaties of the
initial clustersandall subsequernpartitionswill dependon the initial SVM, the numberof initial clustersshouldbe
large enoughso that the initial SVM canapproximatethe true SVM reasonablywell. At the sametime, it should
not be too large sinceletting k™ = n™ andk~ = n~ would make D,.c4ucca = D, andtherewould be no speedup.
Anotherreasorfor preferringsmall k™ (k™) is thatboth clusteringthe training dataD andtrainingthe initial SVM

needsto be performedvery quickly. In this paper the following squareroot heuristicis suggested
kT = round(vVnT) and k= = round(vV'n~-) (19)

Thereare primarily two motivationsfor this heuristic.First, knowing the fact that the time for clusteringtypically
scaleslinearly with the numberof data[19], the squareroot heuristiccan make the total time to obtainthe initial

SVM scalelinearly with the numberof training data. The secondreasonis that this heuristichasbeensuggestedh



Algorithm 1 ClusterSVM:Two classSVM
Require: A SVM training algorithm A; A clusteringalgorithm C; Training datasetD = D+ U D, where D™

(D7) is the set of the training datain class1 (—1); The numberof initial clustersk* (¥~) into which D+
(D7) is partitioned; The maximumnumberof passesV P, throughthe W HILE loop.
1: Call the clusteringalgorithmC to partiton D™ (D~) into ¥+ (k™) clustersthatis

Et k™
Dt =)D} and D~ =JD;
=1 i=1
2: Definethe setG of clustersas

g(_{szr’ aD]Jgr+aD;a"' 7D];*}

3: Define thereducedtraining datasetD.cquceq as(c.f. (16))
Dreduced — {XP(D/)a D/ € g}

4: Flag«—1, NP —0

5: while Flag=1and NP < NP,,,, do

6. Flag— 0, NP— NP—+1

7 Train SV M,,e, USINGD;cqucea @ndthe training algorithm A
8 G —GandGg —0

9. for all D’ € g° do

10: if Ix € D’ suchthatyd(x) < 1 accordingto SV M,..,, wherey is the label of x then
11: Flag — 1
12: Split D’ into D, and D), ,,,

D, — {x|xeD and yd(x) <1}

Dpsy < {x[x € D" and yd(x) > 1}
13: Remae x?(D’) from Dy cduced
14: Dreduced < Dreduced U Dy, U{xP(Dy,5,)}
15: g —GU{D,}
16: end if
17:  end for

18: end while

19: Returnthe SV M,,c..

the study of clusteringalgorithms(e.g.[20]). The effectivenessof this heuristicwas demonstrate@xperimentally
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Sincethe initial SVM canapproximatehe true SVM quite well andeachpassthroughthe outerWHILE loop (line
5 to 18 in Algorithm 1) involvestraining a SVM, the next issueis how mary timesthe WHILE loop shouldbe
performed.Basedon the experimentsijt is enoughto carry out the WHILE loop once.

The lastimplementatiorissueis the strateyy for the multi-classclassificationproblem.Therearemary stratgies
for multi-classclassificationproblemand,in this paper the “one versusthe rest” stratgy is used.In this strateyy,
assumingherearem classesin classifiersaretrainedandeachof themdiscriminatesone classfrom all the other
classesA testdatais classifiedto the classthat hasthe maximumfunctionalmagin d(-). In orderto avoid repeated
clusteringsthe clusteringalgorithmis appliedto the dataof eachclassbeforeary classifieris trained.Then,to train
the classifierthat discriminateshe class: from the remainingm — 1 classesthe clusterscorrespondingdo class:
areusedasthe partition of the datain classi, andthe clusterscorrespondingo theremainingm — 1 classesareput
togetherand usedasthe partition for the datain thosem — 1 classesAll experimentswererun on a PC running
Windows 2000 Sener with one Pentium4 2.8GHzprocessoand 1GB RAM, andthe algorithmwasimplemented
using Matlab® [21].

B. Data sets

Therearethreedatasetsexaminedin this paper

\ Class 2 Class 3

Fig. 4. Artificial dataset.

« Artificial dataset As shavnin Figure4, thisis athree-clasglassificationproblemandeachclassconsists
of datadravn from a 2D normal distribution with covariancematrix being identity matrix. The centersof
threeclassesare (0,/3), (—1,0) and (1,0). The samenumberof training dataare drawn for eachclassand
the size of the training dataD variesfrom 300 to 6000. The testdatasetis of the samesize asthe training
datasetandis constructedn the sameway. All 3 classifiersare obtainedusingthe regularizationcoeficient

C = 10000 (c.f. equation(4a)) andthe linear kernel K (x;,x;) definedas

K(xi,%;) = x! x; (20)

11



o« USPSdata set Thisis the US PostalService(USPS)handwrittenzip coderecognitiondatasetandthere
are 7291 training dataand 2007 testdata,all of which were collectedfrom mail ervelopesin Buffalo [22].
Eachdigit is representedis a 16 x 16 matrix whoseentry rangesfrom —1 to 1. As suggestedy [23], a
smoothingoperationusing a Gaussiarkernel with width 0.75 was appliedto the image as a preprocessing
step. The regularizationcoeficient C' = 10 andthe kernelis a homogeneougolynomial kernel of degree3

definedas

256

« Isolet data set This datasetwas downloadedfrom UCI machinelearningrepository[24] andthe goal is

K (xi,%;) = (XiT"j)g (21)

to recognize26 spolenletters.Thereare 6238 training dataand 1559 testdata.Eachdatumhas617 attributes
andeachattributeis a realnumberbetween—1 and1. All 26 classifierswereobtainedusingthe regularization

coeficient C = 0.02 andthe linear kerneldefinedas
K(xi,x5) = xz-ij. (22)
C. Experimentakesults

The effect of the numberof initial clustersk wasstudiedthroughthe artificial dataset. There2000 training data
in eachclass(6000 total) andthe numberof initial clustersk variesfrom 1 to 81 with anintenal of 2. For each
valueof k, 10 randomlygeneratedraining datasetweretried. Figure 5 comparedhe relative differencebetween
the error rate of the initial SVM with that of the true SVM for differentvaluesof k. The relative differenceRD

is definedas
|ERinitial - ERtrue|

ERtrue
where ER;,itia; @and ERy .. arethe error rate of the initial SVM and the true SVM on the sametest dataset.

RD = (23)

Figure 6 shavs the time to obtainthe initial SVM Tr.i01 svar @safunctionof k. Trpiia svar cOnsistsof time
for clusteringandthe time for training the initial SVM. From Figure 5 and Figure 6, we can seethat the square
root heuristic,correspondingdo k£ = 45 in this experiment,givesa reasonablgoodtrade-of betweenthe accuray
andthe complity, althoughit is a rathergrossheuristic.

With the numberof initial clustersbeingspecifiedby the squareroot heuristic,the effect of the numberof passes
N P throughthe WHILE loop (line 5 to 18 in Algorithm 1) is shawvn in Tablel for the artificial datasetwith 6000
trainingdata.The SVM trainedafter 3 passess the true SVM, which would be obtainedusingthe original training
dataset,thusthe correspondingrror rate canbe taken asthe referenceFrom Tablel, it canbe seenthat onepass
throughthe WHILE loop is enoughto give agood performanceThus,the maximumnumberof passesV P, 4. in
Algorithm 1 is setto 1. In addition, it canbe seenfrom Table | that, with NP = 0, the initial SVM also gives
pretty goodresult.

Tablell throughlV compareghe performanceof ClusterSVMwith that of SMO, wherethe numberof initial

clustersis specifiedby the squareroot heuristicand the maximum numberof passeghroughthe WHILE loop

12
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Fig. 5. The performanceof the initial SVM comparedto that of true SVM as a function of the numberof initial clustersk. Thereare 2000

training datain eachclass (6000 in total) and the squareroot heuristic correspondgo k£ = 45. The seeminglygood performanceof £ = 1

comesfrom the symmetryof this problemandit hasno generalimplications.
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Fig. 6. Time to obtainthe initial SVM asa function of the numberof initial clustersk. Thereare 2000 training datain eachclass(6000 in

total) and the squareroot heuristic correspondgo

k = 45.

TABLE |

EFFECTS OF N P ON THE ARTIFICIAL DATA SET (6000 TRAINING DATA). N P IS THE NUMBER OF PASSES THROUGH THE WHILE LOOP IN

ALGORITHM 1.

NP 0 1 2 3

Error rate (%) 25.87 | 25.43 | 25.48 | 25.47

N P,... = 1. In thesetables,the speedup is definedas

Tsno
Speedup = —————
Tciustersv M

13
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whereTsyr0 is the training time of SMO and Toustersv s IS the training time of ClusterSVM The clustering
time is the time usedfor the clusteringall training data.Basedon thesetables,we have the following obsenations.

o Nipgin,i (0 = 1,2,---,m) is the actual numberof training data usedto train the i-th classifier For SMO,
this numberis the numberof training dataof all classesandit is independenbf which classifieris being
trained.For ClusterSVM Ny,qin; iS the numberof training dataafter replacingevery clustercontainingonly
non-supporivectorswith its representatie. For the artificial datasetshavn in Table ll, N;yqip,; is almost
the samefor all three classifierswhen ClusterSVMis used.This is within our expectationsbecauseof the
symmetryof the artificial dataset. However, for the USPSdatasetshavn in Tablelll, N4, variesfrom
oneclassifierto anothemwhenClusterSVMis used.This is reasonabléecausall ten classifiersareinherently
different.For example,discriminatingdigit 1 from the otherdigits is differentfrom discriminatingdigit 0 from
the otherdigits. Similarly, for the Isoletdatasetshavn in Tablelll, differentclassifierhasdifferentnumberof
training datawhen ClusterSVMis used.Thus, the ClusterSVMreduceshe numberof training datain a task
dependentvay.

e Nyain is the averagenumberof training dataover all £ classifiersand, comparingClusterSVMwith SMO,
it canbe seenthat ClusterSVMreducethe numberof training datasignificantly It is this datareductionthat
help acceleratinghe training process.

o Thespeedup of ClusterSVMover SMO is 3.2 for the artificial dataset,1.5 for the USPSdatasetand1.9 for
the Isolet dataset.

« Comparingthe error rate of SMO and that of ClusterSVM it can be seenthat the speedupof ClusterSVM
sacrificedittle performanceThis nice propertyis attributedto the goodinitial clusteringthat makestheinitial
SVM approximatethe true SVM quite well. At the sametime, asshavn in thesetables,the overheadnduced
by clusteringis only a small faction of total training time.

Finally, the scalingperformanceof ClusterSVMwas shavn in Figure7 for the artificial dataset,which shows the

averagetraining time over 10 runs. It canbe seenthat ClusterSVMscalesbetterthan SMO.

IV. CONCLUSIONS

An efficient SVM training algorithmClusterSVMwasproposedn this paperanda significantspeedupver SMO
was obsened on both the artificial datasetand the real dataset. The possibleextensionsto ClusterSVMare the
follows.

« The secondsufiicient condition mentionedafter the Propositionl hasnot beenusedin ClusterSVM It is
not hardto incorporatethis conditioninto ClusterSVMand this would make the training time scalewith the
numberof non-boundarysupportvectors.This would definitely speedup the SVM training further

« With the help of a clusteringalgorithm, ClusterSVMeffectively incorporatethe distributional property of
the training datainto the training processlt is expectedthat the similar idea can be usedto improve other

supervisedearningalgorithmlike neuralnetworks.
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TABLE Il

ARTIFICIAL DATA SET. Ntrainn; ISTHE ACTUAL NUMBER OF TRAINING DATA TO TRAIN THE ¢-TH CLASSIFIER.

SMO | ClusterSVM

Nirain,1 6000 3260

Nirain,2 6000 3026

Ntrain,3 6000 3022

Nirain 6000 3103

Training time (sec.) 8344 2588

Clusteringtime (sec.) NA 3

Speedup 3.2

Error rate (%) 25.47 25.43

TABLE I

USPSDATA SET. Ntrain,i 1S THE ACTUAL NUMBER OF TRAINING DATA TO TRAIN THE 7-TH CLASSIFIER.

SMO | ClusterSVM
Nirain,1 7291 788
Nirain,2 7291 2364
Ntrain,3 7291 1975
Nirain,a 7291 1544
Nirain,s 7291 2259
Ntrain,s 7291 1621
Nirain,7 7291 1206
Nirain,s 7291 2407
Nirain,9 7291 1560
Nirain,10 7291 2638
Nirain 7291 1836
Training time (sec.) 105 68
Clusteringtime (sec.) NA 18
Speedup 1.5
Error rate (%) 5.43 5.28
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