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Abstract

Co-location patterns are subsets of spatial features (e.g.
freeways, frontage roads) usually located together in geo-
graphic space. Recent literature has provided a transaction-
free approach to discover co-location patterns over spatial
point data sets to avoid potential loss of proximity rela-
tionship information in partitioning continuous geographic
space into transactions. This paper provides a more gen-
eral transaction-free approach to mine data sets with ex-
tended spatial objects, e.g. line-strings and polygons. Key
challenges include modeling of neighborhood and relation-
ships among extended spatial objects as well as controlling
of related geometric computation costs. Based on a buffer-
based definition of neighborhoods, a new model of finding
co-location patterns over extended spatial objects has been
proposed. Furthermore, this paper presents two pruning ap-
proaches, namely a prevalence-based pruning approach and
a geometric filter-and-refine approach. Experimental eval-
uation with a real data set (the roadmap of Minneapolis
and St. Paul metropolitan area) shows that the geometric
filter-and-refine approach can speed up the prevalence-based
pruning approach by a factor of 30 to 40. Finally, the ex-
tended co-location mining algorithm proposed in this paper
has been used to select most challenging field test routes for
a novel GPS-based approach to accessing road user charges.

Keywords
Spatial Data Mining, Co-location Patterns, Buffer, Spa-
tial Association Rules

1 Introduction

Co-location patterns represent subsets of Boolean spa-
tial features whose instances are often located in close
geographic proximity. For example, E-services are grow-
ing along with mobile computing infrastructures such
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as PDAs and cellular phones. Finding E-services fre-
quently located together is of interest to providing
location-awareness market promotions. In ecology, sci-
entists are interested in finding frequent co-occurrence
among Boolean spatial features, e.g., drought, El Nino,
substantial increase in vegetation, substantial drop in
vegetation, extremely high precipitation, etc. Effec-
tive tools for extracting information from geo-spatial
data, the focus of this work, are crucial to organizations
which make decisions based on large spatial datasets.
These organizations are spread across many domains
including ecology and environmental management, pub-
lic safety, transportation, public health, business, and
tourism [3, 12, 14, 10, 21, 24].
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Figure 1: Point Spatial Co-location Patterns Illustra-
tion. Shapes represent different spatial feature types.
Spatial features in sets {*+’, ‘x’} and {‘0’, “*’} tend to
be located together.

In real world, many spatial datasets consist of
instances of a collection of instances of boolean spatial
features (e.g., drought, needle leaf vegetation). Figure 1
shows the frequent co-occurrences of some point spatial
feature types represented by different shapes. As can
be seen, instances of spatial features in sets {‘+’, ‘x’}
and {‘o’, “*’} tend to be located together. Figure
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Figure 2: Line String Co-location Patterns Illustration

2 shows an instance of co-location patterns among
extended spatial features, namely road-types, on an
urban road map. Highways often have frontage roads
nearby in large metropolitan area, e.g. Minneapolis.
Identification of such co-locations is useful in selecting
test-sites for evaluating in-vehicle navigation technology
[25]. While Boolean spatial features can be thought of
as item types, there may not be an explicit finite set
of transactions due to the continuity of the underlying
space. As a result, the classic association rule mining
[1, 2, 11, 16, 19, 20, 23] is hard to be applied directly
to spatial context. This shows the gap between the
association rule analysis and the co-location pattern
mining problem.

Related Work: Approaches to discovering co-
location rules in the literature can be categorized into
two classes, namely spatial statistics and data min-
ing approaches. Spatial statistics-based approaches use
measures of spatial correlation to characterize the re-
lationship between different types of spatial features.
Measures of spatial correlation include the cross- K func-
tion with Monte Carlo simulation [5], mean nearest-
neighbor distance, and spatial regression models [4].
Computing spatial correlation measures for all possi-
ble co-location patterns can be computationally expen-
sive due to the exponential number of candidate subsets
given a large collection of spatial Boolean features.

Data mining approaches can be further divided into
a clustering-based map overlay approach and associ-
ation rule-based approaches. A clustering-based map
overlay approach [9, 8] treats every spatial attribute as
a map layer and considers spatial clusters (regions) of

point-data in each layer as candidates for mining asso-
ciations. Given X and Y as sets of layers, a clustered
spatial association rule is defined as X = Y (CS, CC%),
for X (Y = 0, where CS is the clustered support, de-
fined as the ratio of the area of the cluster (region) that
satisfies both X and Y to the total area of the study
region S, and CC% is the clustered confidence, which
can be interpreted as CC% of areas of clusters (regions)
of X intersect with areas of clusters(regions) of Y.

Association rule-based approaches have two cate-
gories. One category of approaches focus on the cre-
ation of transactions over space so that an Apriori-like
algorithm [2] can be used. Transactions over space can
be defined a reference-feature centric model [13] or a
data-partition [15] approach.

The reference feature centric model [13] is
relevant to application domains focusing on a specific
Boolean spatial feature, e.g. cancer. Domain scientists
are interested in finding the co-locations of other task
relevant features (e.g. asbestos, other substances) to
the reference feature. This model enumerates proxim-
ity neighborhoods to “materialize” a set of transactions
around instances of the reference spatial feature. A spe-
cific example is provided by the spatial association rule
[13]. Transactions are created around instances of one
user-specified spatial feature. The association rules are
derived using the Apriori [2] algorithm. The rules found
are all related to the reference feature. Generalizing
this paradigm to the case where no reference feature is
specified is non-trivial. Defining transactions around lo-
cations of instances of all features may yield duplicate
counts for many candidate associations.

Defining transactions by a data-partition ap-
proach [15] attempts to measure the frequency of a co-
location pattern by grouping the spatial instances into
disjoint partitions. It may be useful in data exploration
when one is interested in exploring the sets of partitions
and identify regions that maximize co-location. Oc-
casionally, imposing artificial disjoint transactions via
space partitioning may undercount instances of tuples
intersecting the boundaries of artificial transactions or
double-count instances of tuples co-located together. In
addition, there may be multiple partitions yielding dis-
tinct sets of transactions, which in turn yields different
values of prevalence for co-location patterns.

Another category of association-rule based ap-
proaches are transaction-free. In other words, no ex-
plicit transactions are generated for the purpose of min-
ing co-location patterns. An event centric model [17]
follows into this category. The event centric model is
relevant to applications like ecology where many types
of Boolean spatial features exist. Ecologists are inter-
ested in finding subsets of features likely to occur in a



neighborhood around instances of given subsets of event
types. This model yields a definition of one prevalence
measure without the need for generating transactions.
However, event centric model is only for spatial point
objects, there is no natural extension of this model to ex-
tended spatial objects (e.g. polygons and line strings).

In this paper, we generalize the concept of co-
location patterns to extended spatial data objects and
provides a more general transaction-free co-location
mining model by using the notion of buffer, a zone of
specified distance around spatial objects. This buffer-
based model integrates the best features of the event
centric model and can identify co-location patterns
over extended spatial objects. Furthermore, this paper
presents two pruning approaches, namely a prevalence-
based pruning approach and a geometric filter-and-
refine approach. Experimental evaluation with a real
data set (the roadmap for Minneapolis and St. Paul
metropolitan area) shows that the geometric filter-
and-refine approach can speed up the prevalence-based
pruning approach by a factor of 30 to 40. Finally, we
introduce an application of the proposed extended co-
location mining algorithm for selecting most challenging
field test routes, which are required for a novel GPS-
based approach to accessing road user charges [18].

Outline: Section 2 describes the buffer-based
model and its associated measures of prevalence and
conditional probability. Section 3 presents a coarse-
level co-location mining framework and the geometric
challenge. Co-location mining algorithms and design
decisions are described in section 4. We provide the ex-
perimental results in section 5. Finally, section 6 gives
the conclusion and future work.

2 A Buffer-based Model
Pattern Discovery

for Co-location

In this section, we propose a buffer-based model for
mining co-location patterns. This model can deal with
point objects as well as extended spatial objects, such
as line strings and polygons.

2.1 Basic Concepts of the Buffer-based Model

DEFINITION 2.1. A co-location pattern is a set of
spatial features with the prevalence measure of this
set greater than a user-specified minimum prevalence
threshold. A co-location rule is of the form: C; —
Ca(s,cp) where Ci and Cy are co-locations, s is a
number representing the prevalence measure and cp is
a number measuring the interestingness of the rule.

Prevalence measures the statistical signifigance of a
co-location pattern while interestingness measures how
useful or actionable a co-location pattern is.
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Figure 3: A Buffer-based Neighborhood Illustration.

DEFINITION 2.2. N(p), the size-d Euclidean neighbor-
hood of a point location p, is a circle of side d with p as
its center.

DEFINITION 2.3. N(o0), the size-d neighborhood of an
extended spatial object (e.g. polygon, line-string), is
defined by the buffer operation as shown in Figure 3.

In GIS or or geographic information systems, buffer
is a zone of specified distance around spatial objects.
The boundary of the buffer is the isoline of equal
distance to the edge of the objects.

DEFINITION 2.4. The Euclidean neighborhood N(f;) of
a feature f; is the union of N(i;) for every instance i
of the feature f;.

DEFINITION 2.5. The FEuclidean neighborhood

N(fifz...fx) for a co-location C = {f1,...,fr}
is the intersection of N(f;) for every feature f; in C.

DEFINITION 2.6. I = {iy,42,... ,%k, B} is a row in-
stance of a co-location C = {f1,..., fr} if the feature
set of I contains C and no proper subset of I does so;
and B > 0 where B represents [); ¢y N(i;). The ta-
ble instance of a co-location C = {fi,..., fr} is the
collection of all row instance of the co-location C.

DEFINITION 2.7. The coverage ratio Pr(fifs... fx)
for a co-location C = {fi,---, fu}  is
N(f1fa...fr) N(fifo...fr) is

Thetotal area of the plane’ where :
the FEuclidean neighborhood of the co-location C.

The coverage ratio is served as the prevalence
measure in our buffer-based model. In other words,
for a spatial feature set F, if the coverage ratio Pr(F)
is greater than a user-specified minimum prevalence
threshold, the feature set F is a co-location pattern.
Intuitively, the coverage ratio measure fraction of the
total area of the spatial framework influenced or covered
by the instances of give spatial feature(s).

DEFINITION 2.8. The conditional probability
Pr(Cs|Cy) of a co-location rule C; — Cy is the
probability of finding the neighborhood of Cs in the
neighborhood of C1. It can be computed as %
using the neighborhoods of co-locations C; and Cy | Cs.



LEMMA 2.1. The coverage ratio for co-location patterns
is monotonically non-increasing with the size of the co-
location pattern increasing.

Proof. According to Definition 2.7, the coverage ra-
tio Pr(fifa2... fx) for a co-location C' = {f1,..., fx} is

The totz(l{;.eleouf:lzeplane’ where N(f1f2 e fk) is the Eu-
clidean neigh{)orhood of the co-location C. For any co-
location C' = C' U {f’}, where f' ¢ C, we need to prove
that Pr(fifo-..fx) < Pr(fife-..fef'). Also, consider

N !
that Pr(fl f2 e fk:fl) — The tota(lfal'r"f:a o{fkifh()a plane’ we Only

need to prove N(fifa...fx) < N(fifz...fef'). Since
the Euclidean neighborhood N(C) for a co-location C

is the intersection of N(f;) (V f; € C), we can get
N(fifa---fx) < N(fife--- fef')-

Lemma 2.1 ensures that the coverage ratio can be
used to efficiently discover co-location patterns with
high prevalence. The coverage ratio pruning in co-
location pattern mining is similar with the support-
based pruning in association-rule mining [1].
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Figure 4: An Illustration to show the inconsistency of
the definition of the conditional probability measure in
the event centric model with the multiplication rule.
(a) Table instances of co-locations {A}, {B}, and {C}.
(b) Table instances of co-locations {4, B}, {B,C}, and
{A, C}. (c) Table instance of co-location {A, B,C?}.
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Figure 5: An Illustration Example to show that the
event centric model is not good at incorporating spatial
context.

2.2 Model Discussions

The buffer-based model has three advantages over the
event centric model [17] as follows.

- First, the event centric model is only for point
objects, while the buffer-based model can deal with
point objects as well as extended spatial objects.

- Second, the conditional probability measure used

in event centric model does not satisfy the multi-
plication rule [7] in statistics.

To show this, we first recall the definition of the
conditional probability in event centric model. A
set of spatial intances [ is a row instance of a
subset of spatial features C, if any pair of ele-
ments from I are neighbors and the spatial fea-
ture set formed by spatial features of elements
of I contains C' and no proper subset of I does

so. The conditional probability of a co-location

rule C; — Cy is |distinct(ro, (r'ow instances of C1UC32))|
|row instancesof C1i|

where 7 is a relational projection operation. For

the illustration spatial dataset shown in Figure
4, the table t4 in Figure 4 (b) contains four row
instances: A;Bi, A1 By, A3B1 and A2 By of the co-
location {A, B} and the table t7 in Figure 4 (c) con-
tains one row instance A;B;C; of the co-location
{A,B,C}. Please note that A;, B;,Cy is not a
row instance of A, B because Ai, By is a subset
of Ay, By, (1, forms pairwise neighbors, and con-
tains all features in A, B. The conditional proba-

bility Pr(C|AB) of the co-location rule AB — C'is
|distinct(ma,p} (rowinstancesof {A,B,C}))| 1 . Also

|row instances of {A,B}| -
we get Pr(BC|A) = 1/2 and Pr(B|A) = 1. The
above results in Pr(BC|A) # Pr(C|AB)Pr(B|A).
However, by the multiplication rule for the condi-
tional probability, we know Pr(C|AB)Pr(B|A) =

Pr(ABC) Pr(AB
Pr((AB))' Pr((A)) = Pr(BC|A);

Although the defintion of conditional probability
measure proposed in the event centric model is not
satisfied with the multiplication rule in statistics,
our new conditional probability defintion does as
shown in below Theorem 2.1.

Third, the event centric model is not good at
incoporating spatial context. To illustrate this, let
us look at the example dataset shown in Figure
5. Assume that the size of square neighborhood
is fixed, under the event centric model, we will
identify the same co-location pattern {A, B} from
two different illustration datasets (a) and (b) with
the same significance. However, as we can see,
the distance between instances of A and B in
dataset (b) is more close than the distance between
instances of A and B in dataset (a). According
to Tobler’s first law of geography: everything is
related to everything else but nearby things are
more related than distant things [22], we can infer
that the co-location pattern {4, B} in dataset (b)
should be more significant. In spatial statistics,
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Figure 6: Neighborhood Illustration for Various Spatial Objects

an area within statistics devoted to the analysis
of spatial data, this called spatial autocorrelation
[5]. Knowledge discovery techniques which ignore
spatial autocorrelation typically perform poorly in
the presence of spatial data.

THEOREM 2.1. Suppose that f1, fo, ..., fn are n spa-
tial events and Pr(fifs... fn) is the coverage ratio of
the co-location C = {f1, f2, --., fn}. Then

(2.1) Pr(fifa...fn) = Pr(f1)Pr(f2lf1)... Pr(fnlfifz... fn_1).

where Pr(fn|fifa-.. fn_1) is the conditional probability
of the co-location rule {fn} = {f1, foy--- s fn-1}-

N(f1)

PTOOf. Since PT(fl) = The total area of the spatial framework
we know Pr(falf1) = NA(,{}f i), the product of probabili-

ties on the right side of Equation (2.1) is equal to

and

N(f1) N(f1f2) N(fifz--.fn)

Figure 7: Spatial dataset to illustrate the process of
mining coarse-level co-location patterns

3.1 Basic Concepts

DEFINITION 3.1. A coarse-level co-location pat-
tern is a set of spatial features with the prevalence mea-
sure of this set greater than a user-specified minimum

Thetotal area of the spatial framework N(f1)

Because Pr(fifa...fn—1) > 0, each of the de-
nominator in the above product must be positive.
All of the terms in the product cancel each other
except the final numerator N(fifz...f,) and the
first denominator Thetotal area of the plane, which is

N(f1fz:..fn) Also, the left side of Equation

Thetotal areaof the plane*
. N(fif2---fr) . .
(2.1) is equal to 7o o the plame’ which is the

right side of Equation (2.1).

3 A Coarse-level Co-location Pattern Mining
Framework

In this section, we present a coarse-level co-location pat-
tern mining framework. Once coarse-level co-location
patterns have been identified, we can conduct the exact
buffer test to find all co-location patterns. This ap-
proach follows a filter-and-refine paradigm and is mo-
tivated by the observation that spatial objects have
unique spatial characteristics, such as distance differ-
ence or density difference.

" N(fifz... fu_1) Prevalence threshold.

DEFINITION 3.2. BN(o), the bounding neighborhood of
a spatial object (e.g. point, polygon, line-string) o, is
defined as MBBR (Buffer(MOBR (Spatial Object O), d))
as shown in Figure 6, where MOBR is the minimum
object bounding box, Buffer is the buffer operation with
a buffer size as d, and MBBR is the minimum buffer
bounding boz.

For instance, for a line-string object O, we first get
the minimum bounding box of the object O, MOBR(O).
Then we construct a buffer for MOBR(O). Finally, the
bounding neighborhood of the object O is the minimum
bounding box for this buffer. This process is shown in
the second column of Figure 6.

DEFINITION 3.3. The Euclidean bounding neighborhood
BN(f;) of a spatial feature f; is the union of BN (i;)
for every instance i; of the spatial feature f;.

DEFINITION 3.4. The Euclidean bounding neighborhood
BN(fi1f2..-fr) for a coarse-level co-location pattern



CC = {f1,.-., fr} is the intersection of BN(f;) for
every spatial feature f; in CC.

For example, for the spatial dataset shown in Figure
7, we can see four instances A1, A2, A3, and A4 of the
feature A and only the bounding neighborhood of A3
has one-cell overlapping with the bounding neighbor-
hood of A4. If we set the area of a cell be one unit, the
Euclidean bounding neighborhood BN(A) of the feature
A is 4 x 9 - 1 = 35, which is the union of the bound-
ing neighborhoods of these four instances. In the above
calculation, the minus one is due to the fact that we
do not want to double count the overlapping area. In
addition, the bounding neighborhood of the coarse-level
co-location pattern {A, B}, BN(AB),is4 + 6 + 2 = 12,
which is the intersection of the bounding neighborhood
of the feature A and the feature B.

DEFINITION 3.5. CI = {i1,49,...,ix, BB} is a
coarse-level row instance of a coarse-level co-
location pattern CC = {fi1,...,fx} if the feature set
of CI contains CC and no proper subset of CI does
so; and BB > 0 where BB represents ﬂijel BN(ij).
The table instance of a coarse-level co-location pattern
CC = {f1,-..,fx} is the collection of all row instance
of the coarse-level co-location pattern CC.

In Figure 7, CI = {Al,B1,4} is a coarse-level
row instance of the coarse-level co-location pattern
CC = {A, B} since the intersection of the bounding
neighborhoods of instances A1 and B1 is 4. In addition,
the table instance of the coarse-level co-location pattern
CC = {A, B} is {{A1, B1,4},{A2, B2, 6}, { A3, B3, 2}}.

DEFINITION 3.6. The coarse-level coverage ratio

CPr(fifa...frx) for a coarse-level co-location pattern
_ , BN (f1fs...f

cC = {fla ter fk} & Thetotal éréazof t;cz)eplane ’ where

BN (fifa-..fr) is the Euclidean bounding neighborhood
of the coarse-level co-location pattern CC.

The coarse-level coverage ratio is served as the
prevalence measure in our coarse-level co-location min-
ing framework. In other words, for a spatial feature set
F, if the coarse coverage ratio CPr(F) is greater than
a user-specified minimum prevalence threshold, the fea-
ture set F is a coarse-level co-location pattern.

For the spatial dataset shown in Figure 7, the

coarse-level coverage ratio CPr(A) for the feature A

g BN(A) _ 35 _
18 Thetotal areaof theplane — 200 ~— 0.175.

the coarse-level coverage ratio C Pr(AB) for the coarse-

Furthermore,

. . BN(AB
level co-location CC = {A, B} is myo755a7 are(a Of)theplane
= 42 — 0.06

200 V0.

LEMMA 3.1. The coarse-level coverage ratio for
coarse-level co-location patterns is monotonically non-

increasing with the size of the coarse-level co-location
patlern increasing.

Since the proof of this lemma is similar to the proof
of lemma 2.1, we ommited the proof for this lemma.

LEMMA 3.2. For any spatial feasure set F =
{f1, f2,--- , fr}, the coarse-level coverage ratio CPr(F)
is greater than the coverage ratio Pr(F).

Proof. According to definition 2.7, the coverage ra-
tio Pr(F) for a feature set FF = {fi,...,fx} is

The totz(J;éf: .L;.ff:})ze plane’ where N(fl f2 e fk) is the Eu-
clidean neighborhood of the feature set F. Also, by def-

inition 3.6, the coarse-level coverage ratio CPr(F)
BN(f12::. i) where BN(f1fs ... fi) is the

is Thetotal areaof the plane’
Euclidean bounding neighborhood of the feature set F.
Since BN(f1fa ... fx) is greater than N(f1f2... fx) due
to the way that the bounding neighborhood is con-
structed, we know CPr(F) > Pr(F). Hence, this

lemma holds.

Lemma 3.2 allows us to design a filter-and-refine
approach to find co-location patterns. Since, for a
minimum coverage ratio threshold 6, we can first use
the coarse-level co-location mining framework as a filter
to find coarse-level co-location patterns. All co-location
patterns should be within the set of coarse-level co-
location patterns by Lemma 3.2. Then, we can use the
exact buffer test to find all co-location patterns from the
set of coarse-level co-location patterns. Note that the
computation cost of the exact buffer test is very high.

3.2 Geometric Challenges and Solutions

In this subsection, we present geometric challenges
arising in the coarse-level co-location mining framework
and provide the corresponding solutions.

In spatial data sets, it is common that the bounding
neighborhoods of instances can overlap with each other.
In order to correctly compute the bounding neighbor-
hoods for features or coarse-level co-location patterns,
we need to build a mechanism to prevent the overlap-
ping area from double counting. Otherwise, we may
overestimate the coarse-level coverage ratio of the can-
didate coarse-level co-location patterns. For this pur-
pose, an innovative and effective geometric mechanism
is provided as follows.

LEMMA 3.3. For any n spatial events Ay, ..., Ay,

(3.2)

(U BN(A:) =) BN(A;) - > BN(A;4;) +
i=1 i<j
> BN(A:;A;Ag) -
i<j<k

+... 4+ (-1)"T'BN(A;A5... A,).

i=1

>~ BN(A;AjApA)
i<j<k<l



EXCOM ALGORITHM

Py a set of size-k co-location patterns.

The Geometric Filter

1. Initialization;
2. CC,= geometric_search(FT, I, d);
3. C P,= prevalence_prune(CCs, 0);

The Refinement and Combinatorial Search

Input: (a) A D1 x Dy Spatial Framework R
(b) FT = {A Set of Spatial Features, which can be represented as points, line strings, and polygons.}
(¢) I = {Instance-ID, Feature-Type, Location in Space} representing a set of instances of features
(d) A buffer size d.
(e) A minimum coverage ratio threshold 0
(f) A conditional probability threshold a for generating co-location rules.

Output: (1) A set of co-location patterns with coverage ratios greater than a user-specified minimum threshold 6.
(2) A set of co-location rules with the conditional probability greater than «

Variables: k: the co-location size

CC5: a set of candidate size-2 coarse level co-location patterns.
CPs: a set of size-2 coarse-level co-location patterns having coverage ratios > 6.
Ck: a set of candidate size-k co-location patterns.

Ry a set of co-location rules derived from size-k co-location patterns

4 Initialization;

5 P, = buffertest(C P, d); k=2;

6. while(not empty Pi) do {

7. Cr+1 = generate_candidate_colocation(P);
8 Py.+1 = prevalence_prune(Ci+1, 0);

9. Ry+1 = generate_colocation_rule(a);

10. k=k+1;

11. }

12. SAVE: union(Ps, ... , Pxt1);

13. SAVE: union(Rz, ... , Rkt1);

Figure 8: Overview of the EXCOM Algorithm

Proof. In probability theory, the probability of the
union |J;_, A; of n events Ay, Ay, ..., A, can be
computed as the following:

Pr(lJ 4:) =D Pr(4:) = > Pr(4:A;) +
i=1 i=1 i<j
(3.3) S Pr(AiA;Ax) —
i<j<k

+ . 4 (=) Pr(A 45, Ay).

ST Pr(AiA; Az A)
i<j<k<l

where Pr(A) indicates the probability that A will
occur. One detail proof of this equation can be found
in [7]. Instead, in our coarse-level co-location mining
framework, CPr(A) is defined as the coarse-level
coverage ratio of spatial event A. This definition is
similar to the conventional probability definition. As
a result, the coarse-level coverage ratio of the union of

a finite number of spatial events can be computed in

. N — BN (A;)
the same way. Since CPT(Al) ~ thetotal areaof the plane’
e - BN(A;A;)
CPT(AlAJ) - thetotal area of the plane’ and
. BN(A1As...Ap)
C"P,r(AlJ42 e A") - the total area of the plane’ the

right side of the above equation is equal to

i<j
BN(A1As... Ay)
the total area of the plane’

BN(A;)

= thetotal area of the plane

the total areaof the plane

+oo 4 (-

Also, the left side of the equation is equal to

=1 BN(As)
thetotal area of the plane’

The same denominator, the total area of the plane, can
be cancelled from the both side, so we get Equation 3.2.
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Figure 9: An overlapping example

THEOREM 3.1. Given any n spatial events
Ay, As, ... A, and the corresponding bound-
ing neighborhoods (116, y118) 5 (T2t Yirt)),

((xQIba y?lb)a (x2rt; y2rt)); R ((mnlba ynlb)a (mnrta ynrt));
where the bounding neighborhood of the event Aj;,

1 < i < n, is represented by the left bottom point
(z'ilba yilb) and the 'Mght t0p poznt ($irta yirt); Zf the
bounding neighborhoods of these n spatial events have
the common intersection area, then this intersection
area can be computed by Equation 8.4.

(3.4) BN(A1Ay...A,) = (Xa— X1)* (Yo — Y1)
where
X2 - min{ivlrt’ Torty « - axnrt};
X1 = maz{Tup, Tap, --- ,Tniv},
Y2 = min{ylrta Yorty -+ y‘nrt}7
Y1 = maz{yus, Yoips - - Ynib}-

Proof. Since the bounding neighborhoods of these n
spatial events have the common intersection area, we
can represent this intersection region as S, S C
BN(A;), forl < i < n. For any point (z,y) € S,
we claim that X; <z < Xy and Y7 < y < Y,5. This
claim can be proved by contradiction as follows.

Assume that X; < z is not true, this assump-
tion means that at least one value from the set
{Z11b, T, - -- »Tnip} is greater than x. Without loss
of generality, say x;p > x, since x;; is the left edge of
the bounding neighborhood of the spatial event A;, we
can get (z,y) ¢ BN(A4;). Since (z,y) € S, we get
S ¢ BN(A4;), which contradicts the given condition
that S C BN(A4;). Hence X; < z is true. Similarly,
we can prove £ < X5 and Y7 < y < Y5 are true.

By Theorem 3.1 and Lemma 3.3, we can com-
pute the bounding neighborhoods of features and co-
locations without double counting the overlapping area.

For instance, in Figure 9, we can find three
instances of the feature A, so the bounding neigh-
borhood of the feature A is |J?_, BN(4;). Ac-
cording to Lemma 3.3, |J>_, BN(4;) = BN(4;) +
BN(A;) + BN(A3) — BN(AA;) — BN(A143) —
BN(AzA3) + BN(A1A43A3). In addition, we can get
BN(AlAQ), BN(A1A3), BN(A2A3),andBN(A1A2A3)
by Theorem 3.1, so we can compute the correct value
for U>_, BN(A;) by Equation 3.2.

4 Algorithm Descriptions

Figure 10 presents an overview of algorithm designs
for mining co-location patterns over extended spatial
objects. In the figure, we show two pruning ap-
proaches. One is prevalence-based pruning using the
anti-monotone property of the coverage ratio. This is
similar with the support-based pruning in association-
rule mining [2]. Another is a novel geometric filtering
approach, which makes use of unique spatial charac-
teristics of spatial objects and dramatically reduce the
pattern search from a global space to local spaces.
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Figure 10: The Algorithm Design Illustration.

DCS: Direct Combinatorial Search Algorithm:
One choice of co-location pattern mining is to use direct
combinatorial search - an Apriori-like algorithm [2], in
which we only apply prevalence-based pruning.

EXCOM: An Extended Co-location Mining Al-
gorithm: We also design a more sophisticated algo-
rithm, called an EXtended CO-location Mining algo-
rithm (EXCOM) for mining co-location patterns over
extended spatial objects. Figure 8 illustrates the pseu-
docode of the EXCOM algorithm, which follows a filter-
and-refine paradigm and can prune the search space
based on the following two criteria. 1) Pruning based
on the anti-monotone property of the coverage ratio
(Lemma 2.1). 2) Pruning based on a geometric filter
- a quad-tree [6]. The difference between the EXCOM
algorithm and Apriori-like approaches [2] is from the
unique characteristics of spatial features. Specifically,
in the EXCOM algorithm, we first apply the coarse-
level co-location mining framework to find size-2 coarse-
level co-location patterns and then conduct the exact
buffer test to find size-2 co-location pattern. Finally,



we generate co-location patterns with size greater than
two using Apriori-like approach starting from size-2 co-
location patterns.

5 Experimental Evaluation

In this section, we present extensive experiments on a
real digital roadmap data sets to evaluate the proposed
buffer-based model and the EXCOM algorithm for min-
ing co-location patterns over extended spatial objects.
Specifically, we demonstrate: (1) the geometric filtering
effect in the EXCOM algorithm. (2) the effectiveness of
the buffer-based model for dealing with extended spatial
data types, such as line strings. (3) the application of
line-string co-location patterns for test route selection.

Experimental Data Sets. We conducted experi-
ments on a real data set, which is the digital
roadmap of Minneapolis and St.Paul metropolitan
area. The raw data is from MN/DOT base map
(http://rocky.dot.state.mn.us/basemap) and is stored
in Shape File format that can be read and display by
GIS tools, such as Arc/View and Arc/Info. We trans-
formed all the data into text format which includes pro-
jected coordinates information and the road type infor-
mation for each road segment. There are total 511361
road segments in this dataset.

Experimental Design. Figure 11 shows the experi-
mental design for evaluating the filtering effect of the
geometric component in the EXCOM algorithm. As
can be seen, we compare the EXCOM algorithm, which
has a geometric filter, with a direct combinatorial search
(DCS) approach.
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Figure 11: The Experimental Design

Experimental Implementation Platform. All ex-
periments were performed on a Sun Ultra 10 worksta-
tion with a 440 MHz CPU and 128 Mbytes of memory
running the SunOS 5.7 operating system.

5.1 The Filtering Effect of the Geometric
Component in the EXCOM algorithm
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Figure 12: The Filtering Effect of the Geometric Com-
ponent in the EXCOM algorithm.
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Figure 13: Illustration of Line-String Co-location Ratio
for Different Road Types

In this experiment, we evaluate the filtering ef-
fect of the geometric component in the EXCOM
algorithm using the real digital roadmap data. Figure
12 shows the performance comparison between the
direct combinatorial search algorithm (DCS) and the
EXCOM algorithm. As can be seen, the execution time
of the EXCOM algorithm is significantly less than that
of the DCS algorithm. As described before, the DCS
algorithm only includes the prevalence-based pruning,
but the EXCOM algorithms includes both the geomet-
ric filter and prevalence-based pruning. In other words,
the geometric filter can speed up the prevalence-based
pruning approach by a factor of 30 - 40 as shown in
the figure. Also, we can see that the computation
performance of the DCS algorithm is not very sensitive
to the buffer size. However, the computation cost of
the EXCOM algorithm is increased with the increase of
the buffer size, since the performance of the geometric
filter in this algorithm replies on the buffer size.

5.2 Line-string Co-location Patterns

In this experiment, we find line-string co-location
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Figure 14: Field Test Route 1 in Twin Cities Area

patterns from digital roadmap data set and present
the co-location ratio for each road type using differ-
ent buffer sizes. The co-location ratio is computed as

routes in Minneapolis and St. Paul metropolitan area
for GPS data collection based on the identified line-
string co-location patterns. These five routes were
picked up around area having rich line string co-location
patterns. Figure 14 illustrates field test routes 1 in
the project. For this test route, the highway part
includes US 169, I-394, MN 100, MN 62, and I-35W
in Minneapolis and St. Paul metropolitan area.

6 Conclusion and Future Work

In this paper, we proposed a buffer-based model for
mining co-location patterns over extended spatial ob-
jects. This model integrates the best features of the
event centric model and applies a statistically consistent
definition for the conditional probability measure. Also,
we provided an extended co-location mining algorithm
(EXCOM), which follows a filter-and-refine paradigm
and can efficiently find co-location patterns. Finally, ex-
perimental results indicate that the geometric filter can
speed up the prevalence-based pruning approach by a

len(line—string co—locations within the neighborhoodof thebuf fer) factor of 30 - 40 and a case study of app]ying line—string

. Total Length of the Corresponding Road Type
Figure 13 shows co-location ratios of several different

road types in MN/DOT base map. Here, we observed
co-location ratios with different buffer size including
20, 30, 40, 50, 60, and 100 feet. As can be seen, the
co-location ratio goes up as the buffer sizes increase.
Another interesting observation is that the co-location
ratio for road type 22 is significantly higher than other
road types. In MN/DOT base map definition, road
type 22 is ramp (please refer to appendix C). It means
that the ramp is usually co-located with some other
types of roads.

5.3 The Application of Line-string Co-location
Patterns for Test Route Selection

In this experiment, we illustrate the application
of line-string co-location patterns for selecting most
challenging test routes, which are important for a novel
GPS-based approach to accessing road user charges
[18]. As we may know, to evaluate digital roadmap
accuracy, one common approach is to measure the
errors between a GPS track on a selected test route
with a digital roadmap track. However, it is usually
difficult to select a suitable test route for collecting
GPS data. Consider that it is very often that errors
happen near the dense road area among which the area
that includes dense roads with different road types is
the most important. Line-string co-location patterns
from digital road maps provide a guide for capturing
the above sensitive areas.

In the project of using GPS-based approach to
accessing road user charges[18], we selected five test

co-location for test route selection shows the value of
co-location patterns.

As for future work, with the definition of time
windows, it is possible to extend the concept of co-
location events into co-incidence events. Co-incidence
patterns are the events that are frequently occurred at
the same time period.
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Appendix
Type | Meaning

01 Interstate Trunk Highway
02 U. S. Trunk Highway
03 Minnesota Trunk Highway
04 County State-aid Highway
05 Municipal State-aid Street
07 County Road
08 Township Road
09 Unorganized Township Road
10 Municipal Street
11 National Park Road
12 National Forest Development Road
13 Indian Reservation Road
14 State Forest Road
15 State Park Road
16 Military Road
17 National Monument Road
18 National Wildlife Refuge Road
19 Frontage Road
20 State Game Preserve Road
22 Ramp
23 Private Jurisdiction Road

Table 1: Road Types For MN/DOT Digital Base Map
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