
Clustering in the Presence of Bridge-Nodes

Jerry Scripps
Computer Science and Engineering

Michigan State University

scripps@msu.edu

Pang-Ning Tan
Computer Science and Engineering

Michigan State University

ptan@msu.edu

 Abstract

In this paper, we study the ill-effects of bridge-

nodes, which causes many dissimilar objects to be

placed together in the same cluster by existing

clustering algorithms. We offer two new metrics for

measuring how well a clustering algorithm handles the

presence of bridge-nodes. We also illustrate how

algorithms that produce overlapping clusters help to

alleviate the effect of bridge-nodes and form more

meaningful clusters. However, if there is too much

overlap, the clusters become less informative. To

address this problem, we present a novel clustering

algorithm called MIN-CUT. Our experimental results

with real data sets show that the MIN-CUT algorithm

leads to purer clusters that have very little overlap.

1. Introduction
Clustering is a broad field of practice and study. The
data set used for clustering can often be represented as
a graph, where the nodes are objects to be clustered
and the edges represent relationships among the
objects. In this paper, we investigate a phenomenon
known as bridge-nodes, which can pose significant
problems for clustering algorithms. A bridge-node is a
node that is very similar to two or more other nodes,
which are not very similar to each other. Bridge-nodes
appear often as in the following examples:
• In social networks one person may be close friends

with two other people who hardly know or dislike
each other.

• In a bibliographic database there are many prolific
authors who have co-authored papers with other
authors who have no common interests.

• In text documents, homonyms such as mint can be
associated with disparate words such as candy and
treasury.

• In a database of movie ratings, two reviewers may
not share the same interest in movies but may have
common interest with a third reviewer.

Figure 1 shows a portion of a graph of words
extracted from news stories that appeared in the Daily
Mirror newspaper between 2001 and 2003. A solid line
represents strong similarity between a pair of words
and a dotted line represents strong dissimilarity. The
figure suggests that there is a strong association be-
tween the word pairs (X-Ray, camp), (training, camp),
(training, target), and (X-Ray, briton), but a very weak
connection between (training, X-Ray). (Many other
words are, of course, connected to these five words but
we only show these for the sake of simplicity.)

The relationships observed in the graph can be
explained in the following way. During 2002, there
were numerous articles about British citizens detained
at Camp X-Ray, a prisoner of war camp in Guantanamo
Bay, Cuba. There were also many stories about the
terrorist training camps that were potential military
targets. However, the articles about Camp X-Ray do
not mention the word training, which explains the lack
of association between the two words. The word camp
in this case acts as a bridge-node between training and
X-ray.

Clustering algorithms differ in terms of how they
handle bridge-nodes. Most clustering algorithms would
either put camp, X-ray, and training all in the same
cluster or put X-ray and training in two separate

Figure 1: Bridge-node example.

Camp

X-rayTraining

BritonTarget

268

clusters and then place camp in one of those two
clusters. The obvious problem with grouping them
altogether is that the cluster combines words from two
distinct stories. On the other hand, putting camp in one
of the two clusters leads to incomplete description of
clusters. For example, suppose the word camp is placed
in the cluster with training. Analysts looking at the
resulting clusters might mistakenly conclude that there
was a story about a British citizen given an X-ray.
Whenever a clustering algorithm must place a bridge-
node in one of many deserving clusters the ones not
chosen will be less descriptive.

In this paper we will:
1. define and discuss the phenomenon of bridge-

nodes,
2. introduce some new metrics helpful in examining

the effect of bridge-nodes on existing clustering
algorithms, and

3. present a new algorithm that specifically address
the problems inherent with bridge-nodes.

The remainder of the paper is organized as follows.

In Section 2 we define the concept of bridge-nodes.
Section 3 examines the effect of bridge-nodes on
existing clustering algorithms, while Section 4 lays the
groundwork for a new algorithm. Section 5 discusses
our proposed algorithm and Section 6 shows the results
of our experiments. A summary of the related work is
given in Section 7. Section 8 concludes with a
discussion of future work.

2. Preliminaries
This section presents our graphical representation of
data and introduces the concept of bridge-node.

2.1 Graph Representation
Let G = {V, E} be a graph, where V is the set of
vertices (nodes) and E is the set of edges. Note that all
of the graphs discussed in this paper are assumed to be
undirected. A data set can be transformed into a graph
representation, where the vertices correspond to objects
and the edges correspond to relationships among
objects. The edges can have weights to represent the
similarity (distance) between two data objects.

A weighted graph can be transformed into an
unweighted graph – based on thresholds or constraints
imposed by users. The example below demonstrates
the transformation process using thresholds. During
the transformation, edges whose weights are above the
upper threshold are converted into must-link or ML
edges (solid lines); those below the lower threshold are
transformed into cannot-link or CL edges (dotted
lines). The weights that fall between the two thresholds

are can-link edges and are represented by no line
between the nodes.

EXAMPLE 1. Figure 2(a) shows an example of a

weighted graph. The graph on the right is transformed

from the graph on the left by using an upper threshold

of 8 and a lower threshold of 2. The solid lines are the

must-links (above 8) and the dotted line is a cannot-

link (below 2). The diagonal edges that were removed

are can-links. Nodes connected by a must-link should

be clustered together while the ones connected by a

cannot-link must not be clustered together.

2.2 Bridge-path and Bridge-node
A bridge-path is a simple path of ML edges between
two terminal nodes that are connected by a CL edge.
Figure 3(a) shows an example of a bridge-path between
two terminal nodes v1 and v3, while Figure 3(b) shows
another bridge-path connecting the terminal nodes v4
and v7.

All intermediate (non-terminal) nodes located

along the bridge-path can be considered as bridge-
nodes. For example, v2 is a bridge-node for the bridge-
path shown in Figure 3(a). The nodes v5 and v6 along
the bridge-path in Figure 3(b) are also considered to be
bridge-nodes. In general, a node might be considered a
bridge-node with respect to given CL edge but a non-
bridge-node with respect to another CL edge.

Figure 3: Bridge-node and Bridge-path

Figure 2: Transition from weights to
constraints

9

9

5

6

1

10

(a) (b)

269

3. Effect of Bridge-Nodes on Clustering
We will now use our definition of bridge-node to help
us evaluate some typical clustering algorithms.
Assume that we have a data set from which we create a
transformed graph G = (V, E), where E = ML ∪ CL.
Let C: V → {1, 2, …, k} be a clustering function that
maps each node u ∈ V into a positive integer that
represents the cluster id. To measure the effectiveness
of an algorithm in terms of handling bridge-nodes, we
first introduce the following terminology.

DEFINITION 1 [Incomplete Edge]: An edge (u,v) ∈ E

is incomplete if (u,v) ∈ ML and C(u) ≠ C(v).

DEFINITION 2 [Impure Edge]: An edge (u,v) ∈ E is

impure if (u,v) ∈ CL and C(u) = C(v).

3.1 Metrics for Evaluating Effects of Bridge-

Nodes
Our concern in this paper is bridge-nodes and the
effects that they have on the clustering process.
Bridge-nodes either bring together two dissimilar nodes
or place two highly similar nodes in different clusters.
We introduce the following two metrics to measure
these effects.

DEFINITION 3 [Incompleteness]: Incompleteness is a
cluster evaluation metric that measures the ratio of
incomplete edges to the total number of ML edges.

DEFINITION 4 [Impurity]: Impurity is a cluster
evaluation metric that measures the ratio of impure
edges to the total number of CL edges.

In a simplistic data set where we have k well-
separated groups of objects and we want k clusters, we
would expect to find a clustering with zero
incompleteness and zero impurity. Most data sets,
though, have boundaries that are not so well defined.

Davidson and Ravi [6] have recently shown that
determining whether a data set with CL constraints has
a feasible solution is an intractable problem. Building
upon their work, the metrics that we developed
explicitly measure the amount of ML and CL constraint
violations in the clustering produced by an algorithm.

In Figure 3(b), we see that if v5 and v6 cause v4 and
v7 to be in the same cluster the number of impure edges
increases by one. On the other hand if the CL link
between v4 and v7 leads to breaking the nodes into two
clusters then whichever ML edge is broken becomes an

incomplete edge. In either case either the impurity or
the incompleteness will increase.

In Section 3.2, we perform experiments using
standard clustering algorithms to show a trade-off in
cluster quality regarding incompleteness and impurity.
Algorithms that do well grouping highly similar nodes
together will probably fair poorly in keeping low-
similarity nodes separate and vice versa. Some may do
mediocre at both but we would not expect any to do
well at both.

3.2 Evaluating Clusters Produced By Current

Algorithms
To evaluate the effectiveness of existing algorithms, we
compiled a database of news stories downloaded from
the Daily Mirror newspaper using the Infotrac
database. For the results presented below we extracted
news articles about terror from July 2001 through June
of 2003. A total of 6,303 stories were used. In
addition to this data set, we also tested the algorithms
on the Reuters-21578 and the 20 Newsgroups data sets,
both available at the UCI KDD archive. For the
newsgroups data we used the alt.atheism newsgroup
rather than the entire set in order to get a more
homogenous data set. Homogenous data sets are
generally more difficult to cluster since they have
more similarities than differences.

For each of the data sets we extracted a subset of
500 words. First we stemmed the words and then
eliminated the common words. For the terror data set
we used a database of non-terror news stories to
identify the common words. We extracted the 500
words that occur most frequently in the terror stories
but not in the non-terror ones. For the other data sets
we simply took the top 500 most frequent, non-
common words. We then build a similarity matrix that
contains the number of times a pair of words occurred
together within the same document.

Our experiments were performed using k-means and
three agglomerative hierarchical clustering algorithms
(complete-link, single-link and group-average) [10].
The number of clusters was varied from 20 to 500. To
identify the ML and CL edges, we used thresholds
based on the top 1% and the bottom 1% of the
similarity values.

While it is possible to define the ML and CL edges
based on other criteria beside the similarity measure
(e.g., using domain knowledge), the algorithms
considered in this section (k-means and hierarchical
clustering) do not utilize the information about ML and
CL edges when clustering the data. Instead they rely on
a similarity or distance measure to determine which
data points should be grouped together. Unless the ML

270

and CL edges are consistent with the similarity or
distance measure, we might not be able to draw any
definitive conclusions about the effectiveness of
different clustering algorithms. This explains the
rationale behind our approach for defining the ML and
CL edges in this section. It is not necessary to define
the ML and CL edges this way, though, for clustering
algorithms that work directly with the ML and CL
edges, such as the ones described in Section 5.

Our intention here is to show the tradeoff between
the impurity and incompleteness metrics for different
clustering algorithms when bridge-nodes are present in
the data. Figure 4 shows the results for the newsgroup
data. When the number of clusters is large the nodes
that participate in CL edges can be easily separated into
different clusters so all the algorithms have low
impurity. As the number of clusters decreases we see
that the impurity score for single-link increases
markedly. This is because single-link computes the

similarity between two clusters based on the similarity
of the two closest data points that are in different
clusters. As a result, it tends to place all the nodes that
participate in a bridge-path into the same cluster
including the endpoints that participate in the CL, thus
increasing its impurity score. k-Means also creates
impure clusters but not as many as single-link. This is
because as the number of clusters gets smaller it is
more likely to place an entire bridge-path including the
endpoints in the same cluster. In contrast, complete-
link and group-average still produce pure clusters even
at 20 clusters. Complete-link determines the similarity
between two clusters based on the similarity between
the two furthest data points, whereas group-average
uses the average similarities of all pairs of points from
different clusters. Both approaches are therefore less
likely to create impure CL edges than single-link.

Figure 4 also shows that with high numbers of
clusters all of the algorithms produce clusters with high

Figure 4: Impurity and Incompleteness for
Newsgroup data.

Impurity for Newsgroups

0

0.1

0.2

0.3

0.4

0.5

0.6

50
0

46
0

42
0

38
0

34
0

30
0

26
0

22
0

18
0

14
0

10
0 60

N umb er o f C lust ers

%

complete single

average kMeans

Incompleteness for Newsgroups

0

0.2

0.4

0.6

0.8

1

1.2

50
0

44
0

38
0

32
0

26
0

20
0

14
0 80

Number of Clusters

%

complete single

average kMeans

Figure 5: Impurity and Incompleteness for
Reuters data.

Impurity for Reuters

0

0.2

0.4

0.6

0.8

1

50
0

46
0

42
0

38
0

34
0

30
0

26
0

22
0

18
0

14
0

10
0 60

N umb er o f C lust ers

%

complete single

average kMeans

Incompleteness for Reuters

0

0.2

0.4

0.6

0.8

1

1.2

50
0

44
0

38
0

32
0

26
0

20
0

14
0 80

Number of Clusters

%

complete single

average kMeans

271

incompleteness scores. Again this was not unexpected
because with only 1 or 2 nodes per cluster many of the
highly similar nodes that participate in the ML edges
would not be found in the same cluster. As the number
of clusters decreases, complete-link and group-average
have considerably worse incompleteness scores than
single-link because they tend to break the bridge-paths
that are present in the data. For example, using
complete-link the following word pairs that should
have been clustered together were not (even when the
ML threshold was raised from top 1% to top 0.2%):
(afghan, taliban), (blair, minister), (iraq, war), and
(laden, saudi). All of these pairs participate in a bridge-
path triangle (Figure 3a). For example, minister is a
bridge-node between blair and sharon.

For the most part algorithms that had relatively pure
clusters also had high incompleteness scores, while
those that had relatively complete clusters tend to be

impure. This suggests a trade-off between the two
evaluation metrics. The results for the other data sets in
Figures 5 and 6 agree with our observations for the
newsgroup data. The only other observation we can
make besides the trade-off is that k-Means does not
perform as well as the others – that is it performs worse
than at least one other algorithm in both measures in all
three data sets. Finally note that while there exist
algorithms that explicitly deal with constraints
[2,4,6,7], even these algorithms will need to violate
some constraints in order to form clusters. Therefore
there will still be a tradeoff between impurity and
incompleteness scores among these algorithms.

4. Methodology for Handling Bridge-Nodes

In this section we explore how we can reduce the ill-
effects of bridge-nodes by node cloning to produce
overlapping clusters.

4.1 Cloning
Consider a graph G = (V, E) where each node u ∈ V
has a unique identifier. For example, in figure 7(a) v1,
v2, v3, are the identifiers. Let G’ = (V’, E) be a cloned
graph of G where V’ ⊃ V and the identifiers assigned to
the nodes in V’ may not be unique.

DEFINITION 5 [Cloned Node]: A node u ∈ V’ is a

cloned node if ∃ v ∈ V’ such that u and v have the

same identifiers and u ≠ v.

DEFINITION 6 [Cloned Set]: A cloned set for node w,

S(w), is defined as the set of all nodes (including w)

with the same identifier as w.

Cloning nodes, that is, creating multiple copies of a

node will be helpful for reducing impurity and
incompleteness. A simple example helps to illustrate.
Given three nodes v1, v2 and v3 (Figure 7), where there
is a ML between v1 and v2 and between v1 and v3 but a
CL between v2 and v3 is there any way to put them into
2 clusters without raising the impurity or

Figure 7: Node cloning

Figure 6: Impurity and Incompleteness for
Terror news data.

Impurity for Terror

0

0.2

0.4

0.6

0.8

50
0

46
0

42
0

38
0

34
0

30
0

26
0

22
0

18
0

14
0

10
0 60

N umb er o f C lust ers

%

complete single

average kMeans

Incompleteness for Terror

0

0.2

0.4

0.6

0.8

1

1.2

50
0

44
0

38
0

32
0

26
0

20
0

14
0 80

Number of Clusters

%

complete single

average kMeans

272

incompleteness? In the example above if we can clone
node v1 so that we create a cluster with v1 and v2 and
another with v1 and v3 our clusters would be pure
because v2 and v3 does not belong to the same cluster.
Our definition of impurity can remain intact.

Our old definition of incompleteness, though, no
longer applies. Because the vertex v2 in the first cluster
is linked to v1 in the same cluster, the cloned vertex v1
in the second cluster is not placed in the same cluster as
v2. We argue that the incompleteness score for this
situation is zero because the ML constraint is still
preserved in one of the clusters.

When cloning is allowed, we need to redefine an
incomplete edge as follows:

DEFINITION 1B [Incomplete Edge]: An edge (u,v) ∈

E is incomplete if (u,v) ∈ ML, ∀y ∈ S(u) , ∀w ∈ S(v):

C(y) ≠ C(w), where S(v) and S(u) are the cloned sets

for u and v respectively.

To support this definition we give the following
intuitive example. Suppose v1, v2 and v3 in Figure 7
correspond to the words union, soviet, credit,
respectively. Assume also that (soviet, union) and
(credit, union) are both ML edges and (soviet, credit) is
a CL edge, which means that union is a bridge-node. A
reasonable clustering will have soviet and union
together in the same cluster and credit and union
together in another cluster. This means that every
cluster that contains soviet must also contain union but
not the other way around – that union can belong to
some clusters that do not contain soviet. In terms of
Figure 7, v1 must appear in every cluster that contains
v2 and every cluster that contains v3 but v2 and v3 do
not have to belong to every cluster that contains v1
(since v1 is the cloned node).

The above definition suggests that if a node does not
have a clone, it must belong to the same cluster as other
nodes that have a ML relationship to it. If the node has
a clone, then it must appear at least once in a cluster
with every node with which it has a ML relationship.

4.2 Measure of Overlap
With cloning nodes, there is a danger of cloning too
much. Considering the bridge-node in Figure 7 it is
informative to clone the node v1 but if the other nodes
are cloned as well we could end up with clusters with
many overlapping nodes which would be disastrous.
So we could use another measure to help us determine
whether the overlap is acceptable. With the overlap
measure we are only concerned with nodes that appear
in more than one cluster.

DEFINITION 7 [Additional Nodes]: Let G’=(V’,E) be

a cloned graph of G=(V,E). The number of additional

nodes created by cloning is |S(w)|-1 for all w ∈ V

where S(w) is the cloned set of w in V’.

DEFINITION 8 [Overlap]: The overlap measure is

defined as the ratio of additional nodes to the total

number of nodes in the cloned graph.

Note that this measure is zero when there is no overlap
and approaches but never reaches one when there is
excessive overlap.

4.3 Measuring Effectiveness of Handling

Bridge-Nodes
Consider again the diagram shown in Figure 7(a). We
have three rational choices:

1. we can cluster v1 and v2 together or v1 and v3
together and put the other node in a separate
cluster,

2. we can cluster all three node together, or
3. we can clone v1 and put it in two clusters one

with v2 and the other with v3.

Depending on which choice was selected we
would add one to either the number of (1) incomplete
edges, (2) impure edges, or (3) additional (cloned)
nodes. While the trade-off among the choices may
seem the same, we argue that having an extra clone
node is still much better than having an incomplete or
impure edge since the clone node provides us with a
better interpretation of the clusters (unless the number
of clone nodes is too large). This argument holds only
if we do not make mistakes such as cloning irrelevant
nodes that are not part of a bridge-path.

A clustering algorithm that handles bridge-nodes
should minimize the following objective function:

 Q = λ1|Eincomplete| + λ2|Eimpure| + λ3|Vadditional|

where λ1, λ2, and λ3 are the cost of having an
incomplete edge, an impure edge or an additional node.
Based on our argument above the cost values are
assigned in such a way that λ1 >> λ3 and λ2 >> λ3.
Therefore in this paper we focus only on algorithms
that produce clusters with zero impurity, zero
incompleteness, and minimal amount of overlap.
Developing an algorithm that minimizes the objective
function for other costs is a subject for future work.

4.4 Selecting Bridge Nodes for Cloning
Finding the minimum number of bridge nodes to clone
is not a trivial task. For the simple graph shown in

273

Figure 7(a), it is clear that the bridge node v1 must be
cloned to minimize the objective function. However,
when there are multiple bridge nodes or bridge paths
available, the situation becomes more complicated.

Consider the diagram shown in Figure 8(a). In this

case, there are two bridge paths between the nodes v1
and v2. It is sufficient to clone one of the nodes, v3 or
v4, to produce two clusters with zero impurity, zero
incompleteness, and minimal amount of overlap.
However, for the diagram shown in Figure 8(b), one
has to clone at least two nodes to ensure that the
impurity measure of the resulting clustering is zero.

It is also tempting to estimate the minimum
number of nodes to clone as the sum of bridge-paths
for each CL pair but some paths may have common
nodes. Looking at Figure 9 we see that there are 3 CL
links, GH, IJ and KL. Under the naïve assumption
above that would mean we would have to clone 3
nodes. We can tell though, by looking at the figure that
by cloning nodes D and B we could have 3 clusters
{G,A,B,I}, {B,C,H,D,E,F,L}, and {J,D,K} with zero
impurity, zero incompleteness, and two additional

nodes.
Therefore selecting the appropriate bridge nodes to

clone is not a trivial problem. We refer to this problem
as the node cloning problem. Theorem 1 shows that
finding the minimum number of nodes to clone is an
NP-Complete problem.

HITTING SET [9]
Instance: Collection C of subsets of a finite set S,
positive integer K ≤ |S|.
Question: Is there a subset S’⊆S with |S’| ≤ K such that
S’ contains at least one element from each subset of C?

THEOREM 1. Within a graph G formed by ML and

CL edges, finding the minimum number of nodes to

clone so that there are no ML paths connecting any

two nodes in a CL link is NP-Complete.

PROOF: It can be easily seen that given a non-

deterministic algorithm that found potential solutions

we could validate the solutions in polynomial time – so

the problem is in NP. To prove that it is NP-Complete

we will reduce HITTING SET to the node cloning

problem. Given an instance (C,S,K) of HITTING SET

we will transform it into a graph G in the following

way. For each subset c∈C we create an ML path in G

using the elements in c as the nodes along the path.

Each ML path is then converted into a bridge-path by

adding two terminal nodes at both ends of the ML path

with a CL link between them. Finding a number <= K

of nodes that when cloned (cut) will separate ML paths

between each CL pair in G is equivalent to finding an

S' that contains at least one element from each subset

of C. Note that the reduction from HITTING SET can

be done in polynomial time. From the reduction it is

clear that finding the minimum number of nodes to

clone is at least as hard as HITTING SET. ■

As an example of the transformation in the proof,

the collection C={ {A,B,C}, {B,C,D}, {D,E,F} } can
be transformed into the graph in Figure 9.

5. Toward a New Algorithm

In this section we examine several node cloning
strategies to handle the clustering with bridge-node
problem.

5.1 NAIVE
First we consider a naïve approach where every node is
cloned for each edge attached to it. The result is every
ML constraint defines a 2-node cluster and any node
not in a ML relationship is in a singleton cluster.

 Figure 8: Selecting the nodes to clone

(a) (b)

v1 v2

v5

v3 v4

v6

v1 v2

v4

v3

v5

 Figure 9: Graph with multiple CL edges.

274

Although this approach guarantees incompleteness and
impurity of zero it may result in an extremely large
number of clusters. For example, consider a 500 word
clustering where we use the top 5% of the links for the
must-link threshold. This would be approximately
6,275 ML constraints, which means there would be at
least that many initial clusters. We may consider using
an agglomerative clustering step to merge some of
these initial clusters as long as no CL constraints are
violated. During the agglomerative step, we will drop
extra copies of clones in merged clusters. Despite the
merging of clusters, the resulting clusters may still be
poor due to the over use of clones.

5.2 MIN-CUT
Our goal is to find an algorithm that uses cloning to
keep the ML nodes in the same cluster and separate the
CL nodes into different clusters. Another way to look
at the problem is that we need to ensure there are no
paths from any node in a CL link to the other node in
that link.

Before describing our algorithm we first describe a
min-cut. In a graph G=(V,E), a cut between two nodes

u and v are the edges which, when removed, separate
the graph so that u and v are in different sub-graphs. A
min-cut is a cut using the minimum number of edges.

Our MIN-CUT algorithm attempts to minimize the
number of clonings by finding the min-cut vertices for
each pair of CL nodes and then cloning those vertices.
We used the Ford-Fulkerson [6] algorithm to find the
min-cut for each pair of CL edges. Since the algorithm
returns min-cut edges, we have to choose one of the
two nodes in each min-cut edge for cloning.

Figure 10 shows an example of a graph with ML
and CL edges. A min-cut for the CL edge Y could be
edges A, I and D, while the min-cut for the CL edge X
would need to be either L or N. For the min-cut edge I,
we may either clone node 5 or node 10 because they
are both part of the bridge-nodes for Y. On the other
hand, for the min-cut edges A, D, and L (or N), we
need to be careful about choosing which node to clone
because one of the two vertices in the min-cut edge is
part of the CL edge. In this example, the min-cut
vertices 0, 1, and 7 (or 9) should not be cloned because
they are not bridge-nodes (see the discussion in Section
4.1).

Table 1 summarizes the overall structure of the
MIN-CUT algorithm. The algorithm consists of 2
stages: (1) clone identification stage (Steps 2-5), and
(2) cluster generation stage (Steps 7-24). The clone
identification stage determines the set of edges π that
form the min-cut between the pair of nodes, (u, v),
associated with a given CL edge. For each min-cut
edge, (x,y) ∈ π, the second node y will be cloned
during the cluster generation stage. At the end of Step
5, the set of nodes to be cloned (with respect to a
particular edge) is stored in Ψ.

For this algorithm to work we need to ensure that
for an edge in Ψ we will clone only one of the nodes
(the second one). To do this we allow CL to contain

Table 1: MIN-CUT Algorithm

Input: Graph G = (V, ML, CL)
Output: Set of clusters, C

1. Ψ = {};
2. for each (u,v) ∈ CL
3. π = mincut(u, v);
4. Ψ = Ψ ∪ π;
5. end
6. C = {};
7. while ML is not empty
8. Select an edge (u,v) ∈ ML
9. D = {u}; D’ = {};

10. for each (x,y) ∈ ML where (x ∈ D and y ∉ D)
11. if (x,y) ∈ Ψ
12. D’ = D’ ∪ {y};
13. Remove (x,y) and (y,x) from ML
14. else if (y,x) ∈ Ψ
15. Remove (y,x) from ML
16. else

17. add y to D

18. Remove (x,y) and (y,x) from ML
19. end
20. end

21. D = D ∪ D’
22. Remove all edges (x,y) and (y,x) ∈ ML where x
 ∈ D and y ∈ D.
23. C = C ∪ D;
24. end

Figure 10: Finding the Min-Cut

N
L

A

M

J

E

Y

X

D

J

I

G

K

H
F

O

B

C

0 1

4

2

3

5

6

7

8

9

10

11

275

undirected edges but ML must contain directed edges.
For each must link edge that connects nodes x and y we
will place both (x,y) and (y,x) in ML. Ψ will also
contain directed edges but only one edge for each pair
– either (x,y) or (y,x) – depending on which node is to
be cloned.

The cluster generation stage forms an initial cluster
D from a pair of nodes (u,v) associated with one of the
must-links. The algorithm then grows the cluster D by
examining all the must-links involving one of the nodes
that belong to the current cluster (Steps 10-20). Given
an edge (x,y) ∈ ML, there are several possibilities to
consider:
1. Both x and y do not belong to D. In this case, the

edge (x,y) is ignored.
2. Both x and y belong to D. In this case, the edge

(x,y) is removed in Step 22.
3. Node x belongs to D but not node y and (x,y) ∈Ψ.

Then y is a cloned node to be added to the cluster
that contains x. Therefore, y is added to the cluster
D’. We do not append D’ to D until the entire
search is exhausted so that neighbors of the cloned
node y are not added to the cluster.

4. Node x belongs to D but not node y and (y,x) ∈Ψ.
Such an edge is ignored when processing node x.
Both x and y will be included when we process the
ML link (y,x).

5. Node x belongs to D but not node y and (x,y) ∉Ψ
and (y,x) ∉Ψ, then y is added to the current cluster
D without worrying about violating any CL
constraint.

When faced with several equally suitable nodes to

clone the algorithm choose one somewhat randomly.
Improvements could be made to break the paths in a
way that provides more cohesive clusters but our
concern is optimizing the clustering for impurity,
incompleteness and overlap.

PROOF OF CORRECTNESS:
Theorem 4 proves that the algorithm puts every ML
pair of nodes in at least one cluster together (so that
incompleteness = 0) and theorem 5 proves that no CL
pair is ever clustered together (so that impurity = 0).

THEOREM 4. All nodes in every ML will be clustered

together at least once.

PROOF: Every iteration of the loop that starts at step

7 assigns nodes to a new cluster D. Within the loop

the edges (x,y) and (y,x) are removed from ML only

when both x and y are in the same cluster (either D or

D'). A single edge (x,y) can be removed from ML if

(x,y) is also in Ψ but the other edge (y,x) remains. If Ψ

contains (x,y) it cannot contain (y,x) so that when the

ML edge (y,x) is processed both y and x will be added

to that cluster.■

THEOREM 5. All nodes in every CL will be placed in

separate clusters.

PROOF(by contradiction): Assume there is an edge

(x0, xn)∈CL such that x0∈D and xn∈D then there must

be at least one path x0,x1,… xn such that xi∈D for

0≤i≤n and (xi, xi+1)∈ML for 0≤i<n. For any on the

paths, the mincut step would ensure that for 0≤i<n one

of the edges (xi, xi+1) or (xi+1,xi,) would be in Ψ.

Without loss of generality lets assume that (xi, xi+1)

∈Ψ. This would make the condition in step 11 true so

that xi+1 is added to D’. Since xi+1 is not added to D

within the loop, it is impossible for xi+2 to be added to

D or D’ which is a contradiction.■

We illustrate the algorithm with the following example.

EXAMPLE 2: Consider the graph shown in Figure 10.

There are 12 vertices, 15 ML edges, and 2 CL edges in

the graph. During the clone identification stage, the

following edges are identified as min-cut edges:

 Ψ = {(0,4,A), (5,10,I), (1,11,D), (7,6,L)};

Suppose the ML edges are sorted in lexicographic

order. During the cluster generation stage, suppose

(0,4), is the first ML edge selected. Therefore, cluster

D = {0} and D’={} (at Step 9). The algorithm then

iteratively adds node 4 to D’, nodes 2, 11, 3 and 5 to D

and then 10 to D’. The first cluster is {0,2,3,4,5,10,11}.

Links F and G are removed after the loop. Next the

algorithm selects the edge (1,11) to create a new

cluster. The cluster sets D and D’ are initialized to {1}

and {}, respectively. The algorithm then iteratively

adds nodes 11, 10, 8, 6, 4 and 9 to D, so that the next

cluster found is {1,4,6,8,9 and 11}. The only remaining

edge is L, so the last cluster found by the algorithm is

{6,7}.

5.3 Bounds for number of clusters
The number of initial clusters for both the NAÏVE and
the MINCUT algorithm are bounded by the number of
ML and CL edges. The NAÏVE algorithm will create
|ML| + (n-|cloned nodes|) initial clusters with a
maximum cluster size of 2. ML is controlled by the
upper threshold. If the upper threshold is set lower
than any link then essentially all of the links are must-
link and ML=n*(n-1)/2. During the agglomeration the
number of clusters will monotonically decrease to 1
while the cluster sizes will increase to n.

276

The number of clusters in MINCUT is more
difficult to predict but will never get larger than n. In
the extreme case where both the upper and lower
thresholds are lower than the lowest link the algorithm
will produce n singleton clusters. When they are both
above the highest link it will produce one cluster of
size n.

6. Experimental Evaluation

The overlapping clustering algorithms that we will test
here should both be able to return clusters that are
complete and pure. Of concern though is the number
of clones that are generated by the two methods.

We compared the MIN-CUT and NAÏVE
algorithms to the agglomerative, hierarchical
algorithms using complete-link, single-link and group

average. Note that the number of clusters found by the
MIN-CUT algorithm depends only on the ML and CL
edges present in the graph. This is somewhat different
than standard clustering algorithms such as k-means in
which the users have to specify the number of clusters
they desire.

For our experiments we identified the ML and CL
edges using the thresholds of .5, 1, 1.5 and 2 percent of
the total links. This means that for the .5% the upper
threshold was set to include the top .5% of the links
and the lower threshold was set to include the bottom
.5%. Once we established the number of clusters
obtained by MIN-CUT we ran the other algorithms for
that specific number of clusters.

Table 2 summarizes the results of our experiment
for the terror data set. The number of clusters found by
the MIN-CUT algorithm (when the threshold is varied
from 0.5% to 2%) ranges from 6 to 42 clusters. The
results for agglomerative hierarchical clustering agree
with the analysis given in Section 3.2. Complete-link
produces clusters with low impurity and zero overlap
but may break some of the ML edges present in the
original graph. In contrast, single-link has zero
incompleteness and overlap scores, but it can produce
impure clusters especially when the number of clusters
is small.

As expected, the NAÏVE and MIN-CUT algorithms
produce clusters with zero impurity and incompleteness
scores. These algorithms are therefore more effective in
terms of handling bridge-nodes due to ML and CL
constraints. Furthermore, the MIN-CUT algorithm
produces far fewer clones than the NAÏVE method.
The number of clones also decreases with decreasing
number of clusters.

7. Related Work

Overlapping clustering methods are not new. Shepard
and Arabie[13] introduced Adclus in 1979. Their
algorithm is based on grouping objects together that
have common properties where an object can belong to
more than one cluster. The concept of bridge-nodes is
not really addressed by this algorithm since two objects
having properties in common with a third object might
get grouped together in spite of dissimilarities with
each other.

Fuzzy clustering[3] creates overlapping clusters
using the concept that every node belongs to every
cluster with a certain weight (the weight for each node
must sum to one). Because every node is in every
cluster bridge-nodes are treated the same as non-
bridge-nodes.

 Impurity Incomplete Overlap
threshold of .5%, 6 clusters
Complete 0.016467 0.128411 0
Single 0.865269 0 0
Average 0.140719 0.727127 0
NAÏVE 0 0 0.753231
MINCUT 0 0 0.015842

threshold of 1%, 17 clusters
Complete 0 0.359262 0
Single 0.779433 0 0
Average 0 0.809944 0
NAÏVE 0 0 0.880859
MINCUT 0 0 0.06705

threshold of 1.5%, 28 clusters
Complete 0 0.451337 0
Single 0.735013 0 0
Average 0.02563 0.863102 0
NAÏVE 0 0 0.928768
MINCUT 0 0 0.108856

threshold of 2%, 42 clusters
Complete 0 0.502408 0
Single 0.656777 0 0
Average 0.000733 0.897673 0
NAÏVE 0 0 0.953023
MINCUT 0 0 0.164336

Table 2: Metrics for 5 algorithms at various
thresholds and number of clusters.

277

The advances in semi-supervised clustering[2, 4, 6,
7] in recent years have provided us with a good
framework to start our discussion about bridge-nodes.
This paper assumes a special case of ML and CL
constraints based on thresholding. A more general case
can be built for any ML and CL constraints provided
by the user.

Using the min-cut method to cluster data was
introduced by [8]. They applied min-cut repeatedly to
create a hierarchical clustering. Another
graph/clustering algorithm, Chameleon[11] uses the
concepts of closeness and inter-connectivity (which
have similarities to our concepts of impurity and
incompleteness) to form clusters.

Overlapping clustering has been proposed using a
mixture model by Banerjee, et al.[1]. Using a modified
probabilistic relational model they assign objects to
multiple clusters by using a threshold which is based on
a distance from a central point. Like adclus, this does
not directly address the bridge-node problem.

8. Conclusions and Future work

In this paper, we have studied the effect of bridge-
nodes on clustering and present two metrics, impurity
and incompleteness, to measure the effectiveness of a
clustering algorithm in terms of its ability to handle
bridge-nodes. We demonstrate how cloning helps to
produce clusters with zero impurity and incompleteness
scores, but such an approach may lead to an
overwhelming number of cloned nodes unless it is done
appropriately. We prove that finding the optimum
solution with minimum number of cloned nodes is
intractable and present an approximation algorithm
called MIN-CUT that produces a reasonably low
number of cloned nodes (with respect to the NAÏVE
approach) without degrading the impurity and
incompleteness scores.

The work presented in this paper assumes that the
cost for adding a cloned node is significantly lower
than the cost of having an impure or an incomplete
node. If the relative costs among the impure,
incomplete, and cloned nodes are known, an optimal
algorithm should minimize the objective function given
in Section 4.3. Designing such an optimization
algorithm for a general cost function is a subject for
future work.

Two other possible directions for future research
would be to modify MIN-CUT to use weighted graphs
and to run comparisons of the MIN-CUT algorithm to
other overlapping methods and the recent semi-
supervised algorithms. It would be interesting to
compare them by the measures introduced in this paper.

9. Acknowledgements
The authors wish to thank the reviewers for their

constructive and helpful comments.

10. References

[1] A. Banerjee, et al., Model Based Overlapping

Clustering International Conference on Knowledge
Discovery and Data Mining, 2005.

[2] S. Basu, M. Bilenko, R. Mooney, A

probabilistic framework for semi-supervised clustering
Conference on Knowledge Discovery in Data ., 2004.

[3] J. Bezdek, Pattern Recognition with Fuzzy

Objective Function Algorithms. Plenum Press, New
York, 1981

[4] M. Bilenko, S. Basu, R. Mooney, Integrating

constraints and metric learning in semi-supervised

clustering, Proceedings of the twenty-first international
conference on Machine learning, 2004.

[5] G. Chartrand, O. Oellermann, Applied and

Algorithmic Graph Theory ,McGraw Hill, Inc. 1992.

[6] I. Davidson, S. Ravi, Clustering with

Constraints: Feasibility Issues and the k-Means

Algorithm. Siam Data Mining Conference 2005.

[7] I. Davidson, S. Ravi, Towards Efficient and

Improved Hierarchical Clustering With Instance and

Cluster Level Constraints. Technical Report,
Department of Computer Science, University at
Albany.

[8] G. Flake, K. Tsioutsiouliklis, R. Tarjan, Graph
Clustering Techniques based on Minimum Cut Trees,
Technical Report 2002-06, NEC, Princeton, NJ, 2002.

[9] M. Garey and D. Johnson, Computers and

intractability. A guide to the theory of NP-

completeness, W.H. Freeman and Company, New
York-San Francisco, 1979

[10] A. Jain, R. Dubes. Algorithms for clustering

data., Prentice-Hall, Inc., 1988

[11] G. Karypis, E.-H. Han, and V. Kumar.
Chameleon: Hierarchical clustering using dynamic

modeling. IEEE Computer, 32(8):68--75, 1999.

278

[12] R. Shepard, P. Arabie, Additive Clustering:

Representation of Similarities as Combinations of

Discrete Overlapping Properties, Psychological
Review, March 1979

[13] P. Tan, M. Steinbach, V. Kumar. Introduction

to Data Mining., Addison Wesley, Inc., 2005.

279

