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 Abstract 
 

In this paper, we study the ill-effects of bridge-

nodes, which causes many dissimilar objects to be 

placed together in the same cluster by existing 

clustering algorithms. We offer two new metrics for 

measuring how well a clustering algorithm handles the 

presence of bridge-nodes. We also illustrate how 

algorithms that produce overlapping clusters help to 

alleviate the effect of bridge-nodes and form more 

meaningful clusters. However, if there is too much 

overlap, the clusters become less informative. To 

address this problem, we present a novel clustering 

algorithm called MIN-CUT. Our experimental results 

with real data sets show that the MIN-CUT algorithm 

leads to purer clusters that have very little overlap. 

 

1. Introduction 
Clustering is a broad field of practice and study.  The 
data set used for clustering can often be represented as 
a graph, where the nodes are objects to be clustered 
and the edges represent relationships among the 
objects. In this paper, we investigate a phenomenon 
known as bridge-nodes, which can pose significant 
problems for clustering algorithms. A bridge-node is a 
node that is very similar to two or more other nodes, 
which are not very similar to each other.  Bridge-nodes 
appear often as in the following examples:   
• In social networks one person may be close friends 

with two other people who hardly know or dislike 
each other.   

• In a bibliographic database there are many prolific 
authors who have co-authored papers with other 
authors who have no common interests. 

• In text documents, homonyms such as mint can be 
associated with disparate words such as candy and 
treasury.   

• In a database of movie ratings, two reviewers may 
not share the same interest in movies but may have 
common interest with a third reviewer. 

 

Figure 1 shows a portion of a graph of words 
extracted from news stories that appeared in the Daily 
Mirror newspaper between 2001 and 2003. A solid line 
represents strong similarity between a pair of words 
and a dotted line represents strong dissimilarity. The 
figure suggests that there is a strong association be-
tween the word pairs (X-Ray, camp), (training, camp), 
(training, target), and (X-Ray, briton), but a very weak 
connection between (training, X-Ray). (Many other 
words are, of course, connected to these five words but 
we only show these for the sake of simplicity.)  

The relationships observed in the graph can be 
explained in the following way. During 2002, there 
were numerous articles about British citizens detained 
at Camp X-Ray, a prisoner of war camp in Guantanamo 
Bay, Cuba.  There were also many stories about the 
terrorist training camps that were potential military 
targets.  However, the articles about Camp X-Ray do 
not mention the word training, which explains the lack 
of association between the two words.  The word camp 
in this case acts as a bridge-node between training and 
X-ray.     

Clustering algorithms differ in terms of how they 
handle bridge-nodes. Most clustering algorithms would 
either put camp, X-ray, and training all in the same 
cluster or put X-ray and training in two separate 

Figure 1: Bridge-node example. 
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clusters and then place camp in one of those two 
clusters. The obvious problem with grouping them 
altogether is that the cluster combines words from two 
distinct stories.  On the other hand, putting camp in one 
of the two clusters leads to incomplete description of 
clusters. For example, suppose the word camp is placed 
in the cluster with training.  Analysts looking at the 
resulting clusters might mistakenly conclude that there 
was a story about a British citizen given an X-ray. 
Whenever a clustering algorithm must place a bridge-
node in one of many deserving clusters the ones not 
chosen will be less descriptive. 

In this paper we will: 
1. define and discuss the phenomenon of bridge-

nodes, 
2. introduce some new metrics helpful in examining 

the effect of bridge-nodes on existing clustering 
algorithms, and  

3. present a new algorithm that specifically address 
the problems inherent with bridge-nodes. 

 
The remainder of the paper is organized as follows. 

In Section 2 we define the concept of bridge-nodes. 
Section 3 examines the effect of bridge-nodes on 
existing clustering algorithms, while Section 4 lays the 
groundwork for a new algorithm. Section 5 discusses 
our proposed algorithm and Section 6 shows the results 
of our experiments. A summary of the related work is 
given in Section 7. Section 8 concludes with a 
discussion of future work. 

 

2. Preliminaries 
This section presents our graphical representation of 
data and introduces the concept of bridge-node. 
 
2.1 Graph Representation 
Let G = {V, E} be a graph, where V is the set of 
vertices (nodes) and E is the set of edges.  Note that all 
of the graphs discussed in this paper are assumed to be 
undirected.  A data set can be transformed into a graph 
representation, where the vertices correspond to objects 
and the edges correspond to relationships among 
objects.  The edges can have weights to represent the 
similarity (distance) between two data objects.  

A weighted graph can be transformed into an 
unweighted graph – based on thresholds or constraints 
imposed by users.  The example below demonstrates 
the transformation process using thresholds.  During 
the transformation, edges whose weights are above the 
upper threshold are converted into must-link or ML 
edges (solid lines); those below the lower threshold are 
transformed into cannot-link or CL edges (dotted 
lines).  The weights that fall between the two thresholds 

are can-link edges and are represented by no line 
between the nodes. 
 
 
EXAMPLE 1.  Figure 2(a) shows an example of a 

weighted graph. The graph on the right is transformed 

from the graph on the left by using an upper threshold 

of 8 and a lower threshold of 2.  The solid lines are the 

must-links (above 8) and the dotted line is a cannot-

link (below 2).  The diagonal edges that were removed 

are can-links. Nodes connected by a must-link should 

be clustered together while the ones connected by a 

cannot-link must not be clustered together. 
 
2.2 Bridge-path and Bridge-node  
A bridge-path is a simple path of ML edges between 
two terminal nodes that are connected by a CL edge.  
Figure 3(a) shows an example of a bridge-path between 
two terminal nodes v1 and v3, while Figure 3(b) shows 
another bridge-path connecting the terminal nodes v4 
and v7. 
 

 
All intermediate (non-terminal) nodes located 

along the bridge-path can be considered as bridge-
nodes. For example, v2 is a bridge-node for the bridge-
path shown in Figure 3(a). The nodes v5 and v6 along 
the bridge-path in Figure 3(b) are also considered to be 
bridge-nodes. In general, a node might be considered a 
bridge-node with respect to given CL edge but a non-
bridge-node with respect to another CL edge.  

Figure 3: Bridge-node and Bridge-path 

Figure 2: Transition from weights to 
constraints 
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3. Effect of Bridge-Nodes on Clustering 
We will now use our definition of bridge-node to help 
us evaluate some typical clustering algorithms.  
Assume that we have a data set from which we create a 
transformed graph G = (V, E), where E = ML ∪ CL. 
Let C: V → {1, 2, …, k} be a clustering function that 
maps each node u ∈ V into a positive integer that 
represents the cluster id. To measure the effectiveness 
of an algorithm in terms of handling bridge-nodes, we 
first introduce the following terminology.  

 
DEFINITION 1 [Incomplete Edge]: An edge (u,v) ∈ E 

is incomplete if  (u,v) ∈ ML and C(u) ≠ C(v). 
  
DEFINITION 2 [Impure Edge]: An edge (u,v) ∈ E is 

impure if  (u,v) ∈ CL and C(u) = C(v). 
 
3.1 Metrics for Evaluating Effects of Bridge-

Nodes 
Our concern in this paper is bridge-nodes and the 
effects that they have on the clustering process.  
Bridge-nodes either bring together two dissimilar nodes 
or place two highly similar nodes in different clusters.  
We introduce the following two metrics to measure 
these effects. 
 
DEFINITION 3 [Incompleteness]: Incompleteness is a 
cluster evaluation metric that measures the ratio of 
incomplete edges to the total number of ML edges. 
 
DEFINITION 4 [Impurity]: Impurity is a cluster 
evaluation metric that measures the ratio of impure 
edges to the total number of CL edges. 
 

In a simplistic data set where we have k well-
separated groups of objects and we want k clusters, we 
would expect to find a clustering with zero 
incompleteness and zero impurity.  Most data sets, 
though, have boundaries that are not so well defined.  

Davidson and Ravi [6] have recently shown that 
determining whether a data set with CL constraints has 
a feasible solution is an intractable problem. Building 
upon their work, the metrics that we developed 
explicitly measure the amount of ML and CL constraint 
violations in the clustering produced by an algorithm.  

In Figure 3(b), we see that if v5 and v6 cause v4 and 
v7 to be in the same cluster the number of impure edges 
increases by one.  On the other hand if the CL link 
between v4 and v7 leads to breaking the nodes into two 
clusters then whichever ML edge is broken becomes an 

incomplete edge.  In either case either the impurity or 
the incompleteness will increase. 

In Section 3.2, we perform experiments using 
standard clustering algorithms to show a trade-off in 
cluster quality regarding incompleteness and impurity.  
Algorithms that do well grouping highly similar nodes 
together will probably fair poorly in keeping low-
similarity nodes separate and vice versa.  Some may do 
mediocre at both but we would not expect any to do 
well at both.   
 
3.2 Evaluating Clusters Produced By Current 

Algorithms 
To evaluate the effectiveness of existing algorithms, we 
compiled a database of news stories downloaded from 
the Daily Mirror newspaper using the Infotrac 
database.  For the results presented below we extracted 
news articles about terror from July 2001 through June 
of 2003.  A total of 6,303 stories were used.  In 
addition to this data set, we also tested the algorithms 
on the Reuters-21578 and the 20 Newsgroups data sets, 
both available at the UCI KDD archive. For the 
newsgroups data we used the alt.atheism newsgroup 
rather than the entire set in order to get a more 
homogenous data set.  Homogenous data sets are 
generally  more difficult to cluster since they have 
more similarities than differences. 

For each of the data sets we extracted a subset of 
500 words.  First we stemmed the words and then 
eliminated the common words.  For the terror data set 
we used a database of non-terror news stories to 
identify the common words. We extracted the 500 
words that occur most frequently in the terror stories 
but not in the non-terror ones.  For the other data sets 
we simply took the top 500 most frequent, non-
common words.  We then build a similarity matrix that 
contains the number of times a pair of words occurred 
together within the same document.  

Our experiments were performed using k-means and 
three agglomerative hierarchical clustering algorithms 
(complete-link, single-link and group-average) [10]. 
The number of clusters was varied from 20 to 500. To 
identify the ML and CL edges, we used thresholds 
based on the top 1% and the bottom 1% of the 
similarity values.  

While it is possible to define the ML and CL edges 
based on other criteria beside the similarity measure 
(e.g., using domain knowledge), the algorithms 
considered in this section (k-means and hierarchical 
clustering) do not utilize the information about ML and 
CL edges when clustering the data. Instead they rely on 
a similarity or distance measure to determine which 
data points should be grouped together. Unless the ML 
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and CL edges are consistent with the similarity or 
distance measure, we might not be able to draw any 
definitive conclusions about the effectiveness of 
different clustering algorithms. This explains the 
rationale behind our approach for defining the ML and 
CL edges in this section. It is not necessary to define 
the ML and CL edges this way, though, for clustering 
algorithms that work directly with the ML and CL 
edges, such as the ones described in Section 5.  

Our intention here is to show the tradeoff between 
the impurity and incompleteness metrics for different 
clustering algorithms when bridge-nodes are present in 
the data. Figure 4 shows the results for the newsgroup 
data. When the number of clusters is large the nodes 
that participate in CL edges can be easily separated into 
different clusters so all the algorithms have low 
impurity. As the number of clusters decreases we see 
that the impurity score for single-link increases 
markedly. This is because single-link computes the 

similarity between two clusters based on the similarity 
of the two closest data points that are in different 
clusters. As a result, it tends to place all the nodes that 
participate in a bridge-path into the same cluster 
including the endpoints that participate in the CL, thus 
increasing its impurity score. k-Means also creates 
impure clusters but not as many as single-link.  This is 
because as the number of clusters gets smaller it is 
more likely to place an entire bridge-path including the 
endpoints in the same cluster.  In contrast, complete-
link and group-average still produce pure clusters even 
at 20 clusters. Complete-link determines the similarity 
between two clusters based on the similarity between 
the two furthest data points, whereas group-average 
uses the average similarities of all pairs of points from 
different clusters. Both approaches are therefore less 
likely to create impure CL edges than single-link.  

Figure 4 also shows that with high numbers of 
clusters all of the algorithms produce clusters with high 

Figure 4: Impurity and Incompleteness for 
Newsgroup data. 
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Figure 5: Impurity and Incompleteness for 
Reuters data. 
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incompleteness scores.  Again this was not unexpected 
because with only 1 or 2 nodes per cluster many of the 
highly similar nodes that participate in the ML edges 
would not be found in the same cluster.  As the number 
of clusters decreases, complete-link and group-average 
have considerably worse incompleteness scores than 
single-link because they tend to break the bridge-paths 
that are present in the data. For example, using 
complete-link the following word pairs that should 
have been clustered together were not (even when the 
ML threshold was raised from top 1% to top 0.2%): 
(afghan, taliban), (blair, minister), (iraq, war), and 
(laden, saudi). All of these pairs participate in a bridge-
path triangle (Figure 3a).  For example, minister is a 
bridge-node between blair and sharon. 

For the most part algorithms that had relatively pure 
clusters also had high incompleteness scores, while 
those that had relatively complete clusters tend to be 

impure. This suggests a trade-off between the two 
evaluation metrics. The results for the other data sets in 
Figures 5 and 6 agree with our observations for the 
newsgroup data.  The only other observation we can 
make besides the trade-off is that k-Means does not 
perform as well as the others – that is it performs worse 
than at least one other algorithm in both measures in all 
three data sets.  Finally note that while there exist 
algorithms that explicitly deal with constraints 
[2,4,6,7], even these algorithms will need to violate 
some constraints in order to form clusters. Therefore 
there will still be a tradeoff between impurity and 
incompleteness scores among these algorithms. 
 

4. Methodology for Handling Bridge-Nodes 
 
In this section we explore how we can reduce the ill-
effects of bridge-nodes by node cloning to produce 
overlapping clusters. 

 
4.1 Cloning 
Consider a graph G = (V, E) where each node u ∈ V 
has a unique identifier. For example, in figure 7(a) v1, 
v2, v3, are the identifiers.  Let G’ = (V’, E) be a cloned 
graph of G where V’ ⊃ V and the identifiers assigned to 
the nodes in V’ may not be unique. 
 
DEFINITION 5 [Cloned Node]: A node u ∈ V’ is a 

cloned node if ∃ v ∈ V’ such that u and v have the 

same identifiers and u ≠ v. 

 
DEFINITION 6 [Cloned Set]:  A cloned set for node w, 

S(w), is defined as the set of all nodes (including w) 

with the same identifier  as w.  

 

 
Cloning nodes, that is, creating multiple copies of a 

node will be helpful for reducing impurity and 
incompleteness. A simple example helps to illustrate.  
Given three nodes v1, v2 and v3 (Figure 7), where there 
is a ML between v1 and v2 and between v1 and v3 but a 
CL between v2 and v3 is there any way to put them into 
2 clusters without raising the impurity or 

Figure 7: Node cloning 

Figure 6: Impurity and Incompleteness for 
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incompleteness?  In the example above if we can clone 
node v1 so that we create a cluster with v1 and v2 and 
another with v1 and v3 our clusters would be pure 
because v2 and v3 does not belong to the same cluster.  
Our definition of impurity can remain intact.  

Our old definition of incompleteness, though, no 
longer applies.  Because the vertex v2 in the first cluster 
is linked to v1 in the same cluster, the cloned vertex v1 
in the second cluster is not placed in the same cluster as 
v2. We argue that the incompleteness score for this 
situation is zero because the ML constraint is still 
preserved in one of the clusters.   

When cloning is allowed, we need to redefine an 
incomplete edge as follows: 

 
DEFINITION 1B [Incomplete Edge]: An edge (u,v) ∈ 

E is incomplete if (u,v) ∈ ML, ∀y ∈ S(u) , ∀w ∈ S(v): 

C(y) ≠ C(w), where S(v) and S(u) are the cloned sets 

for u and v respectively. 
 

To support this definition we give the following 
intuitive example.  Suppose v1, v2 and v3 in Figure 7 
correspond to the words union, soviet, credit, 
respectively. Assume also that (soviet, union) and 
(credit, union) are both ML edges and (soviet, credit) is 
a CL edge, which means that union is a bridge-node.  A 
reasonable clustering will have soviet and union 
together in the same cluster and credit and union 
together in another cluster. This means that every 
cluster that contains soviet must also contain union but 
not the other way around – that union can belong to 
some clusters that do not contain soviet.  In terms of 
Figure 7, v1 must appear in every cluster that contains 
v2 and every cluster that contains v3 but v2 and v3 do 
not have to belong to every cluster that contains v1 
(since v1 is the cloned node).   

The above definition suggests that if a node does not 
have a clone, it must belong to the same cluster as other 
nodes that have a ML relationship to it. If the node has 
a clone, then it must appear at least once in a cluster 
with every node with which it has a ML relationship.   

 
4.2 Measure of Overlap  
With cloning nodes, there is a danger of cloning too 
much. Considering the bridge-node in Figure 7 it is 
informative to clone the node v1 but if the other nodes 
are cloned as well we could end up with clusters with 
many overlapping nodes which would be disastrous.  
So we could use another measure to help us determine 
whether the overlap is acceptable. With the overlap 
measure we are only concerned with nodes that appear 
in more than one cluster.   
 

DEFINITION 7 [Additional Nodes]: Let G’=(V’,E) be 

a cloned graph of G=(V,E). The number of additional 

nodes created by cloning is |S(w)|-1 for all w ∈ V 

where S(w) is the cloned set of w in V’.  

 
DEFINITION 8 [Overlap]: The overlap measure is 

defined as the ratio of additional nodes to the total 

number of nodes in the cloned graph. 

 
Note that this measure is zero when there is no overlap 
and approaches but never reaches one when there is 
excessive overlap. 
 

4.3 Measuring Effectiveness of Handling 

Bridge-Nodes 
Consider again the diagram shown in Figure 7(a). We 
have three rational choices:   

1. we can cluster v1 and v2 together or v1 and v3 
together and put the other node in a separate 
cluster, 

2. we can cluster all three node together, or 
3. we can clone v1 and put it in two clusters one 

with v2 and the other with v3. 
 

Depending on which choice was selected we 
would add one to either the number of (1) incomplete 
edges, (2) impure edges, or (3) additional (cloned) 
nodes.  While the trade-off among the choices may 
seem the same, we argue that having an extra clone 
node is still much better than having an incomplete or 
impure edge since the clone node provides us with a 
better interpretation of the clusters (unless the number 
of clone nodes is too large). This argument holds only 
if we do not make mistakes such as cloning irrelevant 
nodes that are not part of a bridge-path.   

A clustering algorithm that handles bridge-nodes 
should minimize the following objective function: 
 

     Q = λ1|Eincomplete| + λ2|Eimpure| + λ3|Vadditional| 
 
where λ1, λ2, and λ3 are the cost of having an 
incomplete edge, an impure edge or an additional node. 
Based on our argument above the cost values are 
assigned in such a way that λ1 >> λ3 and λ2 >> λ3.  
Therefore in this paper we focus only on algorithms 
that produce clusters with zero impurity, zero 
incompleteness, and minimal amount of overlap.  
Developing an algorithm that minimizes the objective 
function for other costs is a subject for future work. 

 
4.4 Selecting Bridge Nodes for Cloning 
Finding the minimum number of bridge nodes to clone 
is not a trivial task. For the simple graph shown in 
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Figure 7(a), it is clear that the bridge node v1 must be 
cloned to minimize the objective function.  However, 
when there are multiple bridge nodes or bridge paths 
available, the situation becomes more complicated.  

 
Consider the diagram shown in Figure 8(a). In this 

case, there are two bridge paths between the nodes v1 
and v2. It is sufficient to clone one of the nodes, v3 or 
v4, to produce two clusters with zero impurity, zero 
incompleteness, and minimal amount of overlap. 
However, for the diagram shown in Figure 8(b), one 
has to clone at least two nodes to ensure that the 
impurity measure of the resulting clustering is zero.  

It is also tempting to estimate the minimum 
number of nodes to clone as the sum of bridge-paths 
for each CL pair but some paths may have common 
nodes.  Looking at Figure 9 we see that there are 3 CL 
links, GH, IJ and KL.  Under the naïve assumption 
above that would mean we would have to clone 3 
nodes.  We can tell though, by looking at the figure that 
by cloning nodes D and B we could have 3 clusters 
{G,A,B,I}, {B,C,H,D,E,F,L}, and {J,D,K} with zero 
impurity, zero incompleteness, and two additional 

nodes.   
Therefore selecting the appropriate bridge nodes to 

clone is not a trivial problem.  We refer to this problem 
as the node cloning problem.  Theorem 1 shows that 
finding the minimum number of nodes to clone is an 
NP-Complete problem.   
 
HITTING SET [9] 
Instance: Collection C of subsets of a finite set S, 
positive integer K ≤ |S|. 
Question:  Is there a subset S’⊆S with |S’| ≤ K such that 
S’ contains at least one element from each subset of C? 
 
THEOREM 1. Within a graph G formed by ML and 

CL edges, finding the minimum number of nodes to 

clone so that there are no ML paths connecting any 

two nodes in a CL link is NP-Complete. 
 
PROOF: It can be easily seen that given a non-

deterministic algorithm that found potential solutions 

we could validate the solutions in polynomial time – so 

the problem is in NP.  To prove that it is NP-Complete 

we will reduce HITTING SET to the node cloning 

problem.  Given an instance (C,S,K) of HITTING SET 

we will transform it into a graph G in the following 

way.  For each subset c∈C we create an ML path in G 

using the elements in c as the nodes along the path.   

Each ML path is then converted into a bridge-path by 

adding two terminal nodes at both ends of the ML path 

with a CL link between them. Finding a number <= K 

of nodes that when cloned (cut) will separate ML paths 

between each CL pair in G is equivalent to finding an 

S' that contains at least one element from each subset 

of C.  Note that the reduction from HITTING SET can 

be done in polynomial time. From the reduction it is 

clear that finding the minimum number of nodes to 

clone is at least as hard as HITTING SET. ■ 

 
As an example of the transformation in the proof,  

the collection C={ {A,B,C}, {B,C,D}, {D,E,F} } can 
be transformed into the graph in Figure 9.   

 

5. Toward a New Algorithm 
 
In this section we examine several node cloning 
strategies to handle the clustering with bridge-node 
problem. 

 
5.1 NAIVE 
First we consider a naïve approach where every node is 
cloned for each edge attached to it.  The result is every 
ML constraint defines a 2-node cluster and any node 
not in a ML relationship is in a singleton cluster.  

     Figure 8: Selecting the nodes to clone 

(a) (b)

v1 v2

v5

v3 v4

v6

v1 v2

v4

v3

v5

     Figure 9: Graph with multiple CL edges. 
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Although this approach guarantees incompleteness and 
impurity of zero it may result in an extremely large 
number of clusters.  For example, consider a 500 word 
clustering where we use the top 5% of the links for the 
must-link threshold.  This would be approximately 
6,275 ML constraints, which means there would be at 
least that many initial clusters.  We may consider using 
an agglomerative clustering step to merge some of 
these initial clusters as long as no CL constraints are 
violated. During the agglomerative step, we will drop 
extra copies of clones in merged clusters.  Despite the 
merging of clusters, the resulting clusters may still be 
poor due to the over use of clones.   

 
5.2  MIN-CUT 
Our goal is to find an algorithm that uses cloning to 
keep the ML nodes in the same cluster and separate the 
CL nodes into different clusters.  Another way to look 
at the problem is that we need to ensure there are no 
paths from any node in a CL link to the other node in 
that link.   

Before describing our algorithm we first describe a 
min-cut.  In a graph G=(V,E), a cut between two nodes 

u and v are the edges which, when removed, separate 
the graph so that u and v are in different sub-graphs.  A 
min-cut is a cut using the minimum number of edges.   

Our MIN-CUT algorithm attempts to minimize the 
number of clonings by finding the min-cut vertices for 
each pair of CL nodes and then cloning those vertices.  
We used the Ford-Fulkerson [6] algorithm to find the 
min-cut for each pair of CL edges.  Since the algorithm 
returns min-cut edges, we have to choose one of the 
two nodes in each min-cut edge for cloning.  

Figure 10 shows an example of a graph with ML 
and CL edges. A min-cut for the CL edge Y could be 
edges A, I and D, while the min-cut for the CL edge X 
would need to be either L or N. For the min-cut edge I, 
we may either clone node 5 or node 10 because they 
are both part of the bridge-nodes for Y. On the other 
hand, for the min-cut edges A, D, and L (or N), we 
need to be careful about choosing which node to clone 
because one of the two vertices in the min-cut edge is 
part of the CL edge. In this example, the min-cut 
vertices 0, 1, and 7 (or 9) should not be cloned because 
they are not bridge-nodes (see the discussion in Section 
4.1). 

Table 1 summarizes the overall structure of the 
MIN-CUT algorithm.  The algorithm consists of 2 
stages: (1) clone identification stage (Steps 2-5), and 
(2) cluster generation stage (Steps 7-24). The clone 
identification stage determines the set of edges π that 
form the min-cut between the pair of nodes, (u, v), 
associated with a given CL edge. For each min-cut 
edge, (x,y) ∈ π, the second node y will be cloned 
during the cluster generation stage. At the end of Step 
5, the set of nodes to be cloned (with respect to a 
particular edge) is stored in Ψ. 

For this algorithm to work we need to ensure that 
for an edge in Ψ we will clone only one of the nodes 
(the second one).  To do this we allow CL to contain 

Table 1: MIN-CUT Algorithm 

Input:    Graph G = (V, ML, CL) 
Output: Set of clusters, C 
 

1. Ψ = {}; 
2. for each (u,v) ∈ CL 
3.       π = mincut(u, v); 
4.       Ψ = Ψ ∪ π; 
5. end 
6. C = {}; 
7. while ML is not empty 
8.        Select an edge (u,v) ∈ ML 
9.        D = {u};  D’ = {}; 

10.      for each (x,y) ∈ ML where (x ∈ D and y ∉ D)  
11.            if  (x,y) ∈ Ψ 
12.                  D’ = D’ ∪ {y}; 
13.                  Remove (x,y) and (y,x) from ML 
14.          else  if  (y,x) ∈ Ψ 
15.                  Remove (y,x) from ML 
16.          else   

17.                  add y to D 

18.                  Remove (x,y) and (y,x) from ML 
19.          end 
20.     end 

21.     D = D ∪ D’ 
22.     Remove all edges (x,y) and (y,x) ∈ ML where x   
          ∈ D and y ∈ D. 
23.     C = C ∪ D; 
24. end 

Figure 10: Finding the Min-Cut 
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undirected edges but ML must contain directed edges.  
For each must link edge that connects nodes x and y we 
will place both (x,y) and (y,x) in ML.  Ψ will also 
contain directed edges but only one edge for each pair 
– either (x,y) or (y,x) – depending on which node is to 
be cloned. 

The cluster generation stage forms an initial cluster 
D from a pair of nodes (u,v) associated with one of the 
must-links. The algorithm then grows the cluster D by 
examining all the must-links involving one of the nodes 
that belong to the current cluster (Steps 10-20). Given 
an edge (x,y) ∈ ML, there are several possibilities to 
consider: 
1. Both x and y do not belong to D. In this case, the 

edge (x,y) is ignored. 
2. Both x and y belong to D. In this case, the edge 

(x,y) is removed in Step 22. 
3. Node x belongs to D but not node y and (x,y) ∈Ψ.   

Then y is a cloned node to be added to the cluster 
that contains x. Therefore, y is added to the cluster 
D’.  We do not append D’ to D until the entire 
search is exhausted so that neighbors of the cloned 
node y are not added to the cluster.   

4. Node x belongs to D but not node y and (y,x) ∈Ψ.  
Such an edge is ignored when processing node x.  
Both x and y will be included when we process the 
ML link (y,x). 

5. Node x belongs to D but not node y and (x,y) ∉Ψ 
and (y,x) ∉Ψ, then y is added to the current cluster 
D without worrying about violating any CL 
constraint. 

   
When faced with several equally suitable nodes to 

clone the algorithm choose one somewhat randomly.  
Improvements could be made to break the paths in a 
way that provides more cohesive clusters but our 
concern is optimizing the clustering for impurity, 
incompleteness and overlap. 
 
PROOF OF CORRECTNESS: 
Theorem 4 proves that the algorithm puts every ML 
pair of nodes in at least one cluster together (so that 
incompleteness = 0) and theorem 5 proves that no CL 
pair is ever clustered together (so that impurity = 0). 
 
THEOREM 4. All nodes in every ML will be clustered 

together at least once. 
 
PROOF:  Every iteration of the loop that starts at step 

7 assigns nodes to a new cluster D.  Within the loop 

the edges (x,y) and (y,x) are removed from ML only 

when both x and y are in the same cluster (either D or 

D').  A single edge (x,y) can be removed from ML if 

(x,y) is also in Ψ but the other edge (y,x) remains.  If Ψ 

contains (x,y) it cannot contain (y,x) so that when the 

ML edge (y,x) is processed both y and x will be added 

to that cluster.■ 

 

THEOREM 5.  All nodes in every CL will be placed in 

separate clusters.  
 
PROOF( by contradiction): Assume there is an edge  

(x0, xn)∈CL such that x0∈D and xn∈D then there must 

be at least one path x0,x1,… xn such that xi∈D for 

0≤i≤n and (xi, xi+1)∈ML for 0≤i<n.  For any on the 

paths, the mincut step would ensure that for 0≤i<n one 

of the edges (xi, xi+1) or (xi+1,xi,) would be in Ψ.  

Without loss of generality lets assume that (xi, xi+1) 

∈Ψ.  This would make the condition in step 11 true so 

that xi+1 is added to D’.  Since xi+1 is not added to D 

within the loop, it is impossible for xi+2 to be added to 

D or D’ which is a contradiction.■ 

 
We illustrate the algorithm with the following example. 
 
EXAMPLE 2: Consider the graph shown in Figure 10. 

There are 12 vertices, 15 ML edges, and 2 CL edges in 

the graph. During the clone identification stage, the 

following edges are identified as min-cut edges: 

      Ψ = {(0,4,A), (5,10,I), (1,11,D), (7,6,L)}; 

Suppose the ML edges are sorted in lexicographic 

order. During the cluster generation stage, suppose 

(0,4), is the first ML edge selected. Therefore, cluster 

D = {0} and D’={} (at Step 9). The algorithm then 

iteratively adds node 4 to D’, nodes 2, 11, 3 and 5 to D 

and then 10 to D’. The first cluster is {0,2,3,4,5,10,11}.  

Links F and G are removed after the loop. Next the 

algorithm selects the edge (1,11) to create a new 

cluster. The cluster sets D and D’ are initialized to {1} 

and {}, respectively.  The algorithm then iteratively 

adds nodes 11, 10, 8, 6, 4 and 9 to D, so that the next 

cluster found is {1,4,6,8,9 and 11}. The only remaining 

edge is L, so the last cluster found by the algorithm is 

{6,7}.  
 
5.3 Bounds for number of clusters 
The number of initial clusters for both the NAÏVE and 
the MINCUT algorithm are bounded by the number of 
ML and CL edges.  The NAÏVE algorithm will create 
|ML| + (n-|cloned nodes|) initial clusters with a 
maximum cluster size of 2.  ML is controlled by the 
upper threshold.  If the upper threshold is set lower 
than any link then essentially all of the links are must-
link and ML=n*(n-1)/2.  During the agglomeration the 
number of clusters will monotonically decrease to 1 
while the cluster sizes will increase to n. 
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The number of clusters in MINCUT is more 
difficult to predict but will never get larger than n.  In 
the extreme case where both the upper and lower 
thresholds are lower than the lowest link the algorithm 
will produce n singleton clusters.  When they are both 
above the highest link it will produce one cluster of 
size n.   

 

6. Experimental Evaluation 
 
The overlapping clustering algorithms that we will test 
here should both be able to return clusters that are 
complete and pure.  Of concern though is the number 
of clones that are generated by the two methods.   

We compared the MIN-CUT and NAÏVE 
algorithms to the agglomerative, hierarchical 
algorithms using complete-link, single-link and group 

average.  Note that the number of clusters found by the 
MIN-CUT algorithm depends only on the ML and CL 
edges present in the graph. This is somewhat different 
than standard clustering algorithms such as k-means in 
which the users have to specify the number of clusters 
they desire.  

For our experiments we identified the ML and CL 
edges using the thresholds of .5, 1, 1.5 and 2 percent of 
the total links.  This means that for the .5% the upper 
threshold was set to include the top .5% of the links 
and the lower threshold was set to include the bottom 
.5%. Once we established the number of clusters 
obtained by MIN-CUT we ran the other algorithms for 
that specific number of clusters. 

Table 2 summarizes the results of our experiment 
for the terror data set.  The number of clusters found by 
the MIN-CUT algorithm (when the threshold is varied 
from 0.5% to 2%) ranges from 6 to 42 clusters. The  
results for agglomerative hierarchical clustering agree 
with the analysis given in Section 3.2. Complete-link 
produces clusters with low impurity and zero overlap 
but may break some of the ML edges present in the 
original graph. In contrast, single-link has zero 
incompleteness and overlap scores, but it can produce 
impure clusters especially when the number of clusters 
is small. 

As expected, the NAÏVE and MIN-CUT algorithms 
produce clusters with zero impurity and incompleteness 
scores. These algorithms are therefore more effective in 
terms of handling bridge-nodes due to ML and CL 
constraints. Furthermore, the MIN-CUT algorithm 
produces far fewer clones than the NAÏVE method.  
The number of clones also decreases with decreasing 
number of clusters.  

  

7. Related Work 
 
Overlapping clustering methods are not new.  Shepard 
and Arabie[13] introduced Adclus in 1979.  Their 
algorithm is based on grouping objects together that 
have common properties where an object can belong to 
more than one cluster.  The concept of bridge-nodes is 
not really addressed by this algorithm since two objects 
having properties in common with a third object might 
get grouped together in spite of dissimilarities with 
each other. 

Fuzzy clustering[3] creates overlapping clusters 
using the concept that every node belongs to every 
cluster with a certain weight (the weight for each node 
must sum to one).  Because every node is in every 
cluster bridge-nodes are treated the same as non-
bridge-nodes.   

 Impurity Incomplete Overlap 
threshold of .5%, 6 clusters  
Complete 0.016467 0.128411 0 
Single 0.865269 0 0 
Average 0.140719 0.727127 0 
NAÏVE 0 0 0.753231 
MINCUT 0 0 0.015842 
    
threshold of 1%, 17 clusters  
Complete 0 0.359262 0 
Single 0.779433 0 0 
Average 0 0.809944 0 
NAÏVE 0 0 0.880859 
MINCUT 0 0 0.06705 
    
threshold of 1.5%, 28 clusters  
Complete 0 0.451337 0 
Single 0.735013 0 0 
Average 0.02563 0.863102 0 
NAÏVE 0 0 0.928768 
MINCUT 0 0 0.108856 
    
threshold of 2%, 42 clusters  
Complete 0 0.502408 0 
Single 0.656777 0 0 
Average 0.000733 0.897673 0 
NAÏVE 0 0 0.953023 
MINCUT 0 0 0.164336 

Table 2: Metrics for 5 algorithms at various 
thresholds and number of clusters. 
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The advances in semi-supervised clustering[2, 4, 6, 
7] in recent years have provided us with a good 
framework to start our discussion about bridge-nodes.  
This paper assumes a special case of ML and CL 
constraints based on thresholding.  A more general case 
can be built for any ML and CL constraints provided 
by the user.   

Using the min-cut method to cluster data was 
introduced by [8].  They applied min-cut repeatedly to 
create a hierarchical clustering.  Another 
graph/clustering algorithm, Chameleon[11] uses the 
concepts of closeness and inter-connectivity (which 
have similarities to our concepts of impurity and 
incompleteness) to form clusters. 

Overlapping clustering has been proposed using a 
mixture model by Banerjee, et al.[1].  Using a modified 
probabilistic relational model they assign objects to 
multiple clusters by using a threshold which is based on 
a distance from a central point.  Like adclus, this does 
not directly address the bridge-node problem. 
 

8. Conclusions and Future work 
 
In this paper, we have studied the effect of bridge-
nodes on clustering and present two metrics, impurity 
and incompleteness, to measure the effectiveness of a 
clustering algorithm in terms of its ability to handle 
bridge-nodes.  We demonstrate how cloning helps to 
produce clusters with zero impurity and incompleteness 
scores, but such an approach may lead to an 
overwhelming number of cloned nodes unless it is done 
appropriately. We prove that finding the optimum 
solution with minimum number of cloned nodes is 
intractable and present an approximation algorithm 
called MIN-CUT that produces a reasonably low 
number of cloned nodes (with respect to the NAÏVE 
approach) without degrading the impurity and 
incompleteness scores.  

The work presented in this paper assumes that the 
cost for adding a cloned node is significantly lower 
than the cost of having an impure or an incomplete 
node. If the relative costs among the impure, 
incomplete, and cloned nodes are known, an optimal 
algorithm should minimize the objective function given 
in Section 4.3. Designing such an optimization 
algorithm for a general cost function is a subject for 
future work.   

Two other possible directions for future research 
would be to modify MIN-CUT to use weighted graphs 
and to run comparisons of the MIN-CUT algorithm to 
other overlapping methods and the recent semi-
supervised algorithms.  It would be interesting to 
compare them by the measures introduced in this paper. 
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