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Abstract

A new approach to finding good local maxima of the
likelihood function based on synthesizing information
from two local maxima is presented. We investigate the
coupled EM algorithm (CoEM) for coupling local max-
ima solutions from two separate EM runs for the multi-
nomial mixture model. The CoEM algorithm proba-
bilistically splits and merges multiple latent states based
on conditional independence assumptions and is numeri-
cally shown to significantly improve on uncoupled EM or
deterministic annealing (DAEM) parameter estimates.

1 Introduction

The EM algorithm (e.g. Dempster, Laird and Ru-
bin 1977) and its variants are fundamental algorithmic
building blocks for parameter estimation in latent vari-
able models. The monotonic convergence property of
the EM algorithm, as well it’s ease of derivation and
implementation has made it the principal algorithm for
model parameter estimation in the machine learning
and data mining communities. The monotonic conver-
gence property guarantees convergence to a local max-
ima. However, when the likelihood function contains
many local maxima, how does one go about fitting the
model parameters? A simple strategy is to run the EM
algorithm with various initial conditions to map out
the local maxima in the likelihood function, and simply
choose the best local maxima. This is computationally
costly especially in high dimensional data and param-
eter space. Researchers have tackled the local maxima
problem in two ways. One strategy is to modify the like-
lihood cost function landscape. In analogy with a phys-
ical annealing process, the deterministic annealing EM
algorithm (DAEM) (Rose et.al. 1990, Ueda et.al. 1998)
modifies the likelihood function by adding a tempera-
ture control parameter, and explores various annealing
schedules to try to find good local maxima. Similarly,
the information bottleneck EM algorithm (IB-EM) in-

troduces a general class of cost functions which trade-off
information compression and preservation (Elidan and
Friedman 2003). A second strategy is to use various
criteria for selectively splitting and merging clusters to
try to escape from poor local maxima (e.g. Brown et.al.
1992, Ueda et.al. 1998, Jain and Neal 2004). Instead
of splitting and merging pairs of states, we present an
approach which maps all the latent states of two local
maxima parameter estimates to each other. The com-
putational goal is to be able to run multiple EM trials
in parallel from different initial conditions, and to syn-
thesize the information from multiple local maxima into
better parameter estimates. We investigate the coupled
EM algorithm (CoEM) for various multinomial mixture
models. Recently, these models have received great in-
terest in the data mining and machine learning com-
munities (e.g. Lee and Seung 1999, Hofmann 2001, Lin
2003, Ding and He 2005).

An outline of the paper is as follows. In Sections
2 and 3, the intuition for combining clusters and the
CoEM algorithm for the multinomial mixture model is
described. Numerical results are presented in Section 4.
The CoEM algorithm for a more complex multinomial
mixture traffic model is described in Section 5.

2 Intuition

Our main goal is to find a method of combining infor-
mation contained in multiple EM soft clustering solu-
tions. Some hard classification examples will illustrate
the intuition. Given objects in the set {NYC, Boston,
apple orange,red blue}, let the first partition solution
be π1={NYC, Boston, apple, orange} {red, blue}, and
the second partition π2={NYC, Boston},{ apple, or-
ange, red, blue}. Even though the two partitions are
not optimal, they contain information about the cor-
rect underlying classes π1 ∧ π2={NYC, Boston},{ ap-
ple, orange},{red, blue}. Here π1 ∧ π2 denotes the
combinatorial meet of the two partitions (e.g. Stan-
ley 1986). Consider a second example of combining
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classification information. Let the two partitions be
π1={red, green},{blue, yellow}, {pacific, atlantic}, and
π2={green, yellow},{red, blue}, {pacific, atlantic}. The
combinatorial join of the two partitions is given by
π1 ∨ π2={red, green, blue, yellow}, {pacific, atlantic},
which is the correct underlying classification.

In the first example, taking the meet of the parti-
tions correctly splits up the fruit cluster {apple,orange}
from their respective incorrect clusters. In the sec-
ond example, taking the join of the partitions correctly
merges all the colors into one class {red, green, blue,
yellow}. These examples illustrate some intuition be-
hind how two classification solutions can be combined
to form more suitable partitions. Combining informa-
tion from multiple partitions has been investigated from
a lattice theoretic perspective in Neumann and Norton
(1986) and Barthelemy et.al. (1986), and from a mutual
information perspective in Strehl and Ghosh (2002). In
this paper we investigate algorithms for combining two
soft probabilistic clustering solutions.

3 Coupling EM runs

3.1 Summary of the multinomial mixture
model

We wish to formulate an algorithm for combining
the information from two EM solutions. In this section,
we summarize the multinomial mixture model with one
latent variable and a conditional independence assump-
tion. This model has been applied to information re-
trieval and natural language processing (Brown et.al.
1992, Pereira et.al. 1993, Saul and Pereira 1997, Lee
and Seung 1999, Hofmann 2001) and has appeared in
the statistics literature as latent class analysis (Everitt
1984). The coupling of EM runs for more structured
mixture of multinomials is described in a later section.

Let p̃(x, y) be the empirically observed joint distri-
bution over discrete random variables X and Y , and let
H be a discrete ’class’ latent variable. Let the number
of states in the random variables be |X| = |Y | = n and
|H| = k. The model assumes that X and Y are condi-
tionally independent given H, which we write X ⊥ Y |H.
Maximizing the likelihood is equivalent to minimizing
the following Kullback-Leibler divergence

D(p̃(x, y) ‖
∑

h

p(x|h)p(y|h)p(h)).

with respect to p(x|h), p(y|h) and p(h).

3.2 Initial attempts at coupling EM runs

Suppose two EM algorithms are run in parallel with
two different initial conditions. Let H1 and H2 be the

latent variables in the two runs. The conditional in-
dependence assumptions for the two separate models,
{X ⊥ Y |H1, X ⊥ Y |H2}, together with the two sets of
model parameters specify the marginals p(x, y, h1) and
p(x, y, h2). We tried embedding the two mixture mod-
els of the marginals p(x, y, h1) and p(x, y, h2) into a full
model of p(x, y, h1, h2). First consider the undirected
graphical model with edges between X and H1, X and
H2, Y and H1, and Y and H2. This model graphically
links the two underlying graphical models together at
the observed variables X and Y . Two undesirable prop-
erties of this model are immediately apparent. First this
is a loopy graphical model; second, this model’s con-
ditional independence assumptions, X ⊥ Y |{H1, H2}
and H1 ⊥ H2|{X,Y }, are not directly consistent with
the two multinomial mixture models’ conditional inde-
pendence assumptions. Our second attempt at cou-
pling the mixture models seeks a model of the full joint
distribution consistent with the two mixture models.
A simple way of modeling p(x, y, h1, h2) is to assume
H1 ⊥ H2|X,Y , in addition to the two conditional inde-
pendence assumptions for the two multinomial mixture
models X ⊥ Y |H1, and X ⊥ Y |H2. This new condi-
tional independence assumption is consistent with the
assumptions from the two mixture models since it sim-
ply defines the joint as

p(x, y, h1, h2) = p(h1|x, y)p(h2|x, y)p̃(x, y).

Using maximum entropy to pick out a model of the
full joint distribution p(x, y, h1, h2) given pre-specified
marginals p(x, y, h1) and p(x, y, h2) selects this exact
model. Unfortunately, this is not a graphical model,
and parameter estimation is a non-trivial challenge.

3.3 CoEM algorithm for two mixtures of
multinomials

Instead of constructing a model for the full joint
distribution and worrying about consistency of assump-
tions, we focus on one-time couplings of parameters
from the two mixture models similar to a message pass-
ing update. For coupling EM runs, we simply perform
a one-time “probabilistic split-merge” coupling of two
converged EM run parameter estimates, then continue
the EM runs separately until convergence. Thus the
only difference between regular EM and a coupled EM
algorithm is the one-time coupling step. This will be
referred to as the CoEM algorithm.

We now address the issue of combining parameter
estimates. Parameters from the two mixture models
{p(x|h1), p(y|h1), p(h1)}, and {p(x|h2), p(y|h2), p(h2)},
are assumed to correspond to two local maxima of
the likelihood function. To combine information from

383



H 1

H 2

X Y

H 1

H 2

X Y

H 1

H 2

X Y

(a) (c)(b)

Figure 1: Approximate mapping diagram motivating the coupling updates in the CoEM algorithm. Note, this is
not a graphical model diagram.

the two local maxima, we cannot simply take convex
combinations of the corresponding parameters. The
ordering of the states for H1 and H2 are generally not
in direct correspondence with each other. Furthermore,
some states in H1 may be mixtures of the states in
H2 and vice versa. In order to compare one set of
parameters to the other set, we need a mapping between
the states in the two latent variables.

We investigated mappings between latent states
for CoEM based purely on conditional independence
assumptions. The CoEM algorithm for mixture of
multinomials model is as follows:

1 Iterate two EM runs in parallel until convergence.
2 Couple:

(a) Assume H1 ⊥ H2|Y ,
compute pa(h1, h2) =

∑
y p(h1|y)p(h2|y)p(y).

Update p(x|h1) =
∑

h2
p(x|h2)pa(h2|h1),

and p(x|h2) =
∑

h1
p(x|h1)pa(h1|h2).

(b) Assume H1 ⊥ H2|X,
compute pb(h1, h2) =

∑
x p(h1|x)p(h2|x)p(x).

Update p(y|h1) =
∑

h2
p(y|h2)pb(h2|h1),

and p(y|h2) =
∑

h1
p(y|h1)pb(h1|h2).

3 Iterate the two updated EM runs in parallel
until convergence.

All conditionals are computed based on the corre-
sponding specified joint distributions. Here the updates
for parameters involving X are based on H1 ⊥ H2|Y ,
while updates for parameters involving Y are based on
H1 ⊥ H2|X. This is to retain symmetry in the roles
played by X and Y . Figure 1 depicts an approximate

mapping description of the multinomial mixture model,
as well as the intuition behind the coupling algorithm.
Note, these are not graphical model diagrams, as the
conditional independence assumptions in CoEM do not
exactly correspond to those contained in a DAG inter-
pretation of the diagrams. In Figure 1(a), the dark ar-
row from X to Y denotes the observed empirical transi-
tion mapping p̃(y|x) obtained from p̃(x, y). The multi-
nomial mixture model seeks to find compositional map-
pings from X to H (H1 and H2 for the two EM runs)
and then Y which approximates p̃(y|x) optimally in a
minimum Kullback-Leibler divergence sense. The up-
dates in CoEM step 2(a) for p(x|h1) and p(x|h2) are
depicted in Figures 1(b) and (c) respectively.

Other choices of conditional independence assump-
tions for determining p(h1, h2) are explored in sections
4.3 and 4.4. Note that these conditional independence
coupling assumptions are used only in the coupling step.
The coupling and iterate until convergence steps can
be repeated until a satisfactory solution is reached. Ex-
cept for possible parameters arising from the EM con-
vergence criteria, there are no threshold parameters in
the coupling step of the CoEM algorithm to set.

4 Numerical results

We performed numerical experiments comparing regu-
lar uncoupled EM runs, coupled EM runs (CoEM), and
deterministic annealing EM algorithm runs (DAEM)
(Ueda et.al. 1998). In the following subsections, pa-
rameter estimation results are reported for synthetically
generated data, as well as computer skills, text corpus,
and traffic data. Sections 4.2 and 4.3 compare KL-
divergence minimization (equivalently likelihood maxi-
mization) results. Section 4.4 reports predictive test-set
loglikelihood results. We begin with numerical experi-
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Figure 2: (a) KL-divergence as a function of iteration number for EM and CoEM runs. (b) Transition matrix
p(h2|h1) used after iteration 100 for CoEM algorithm.

ments on a small computer skills data set to demon-
strate the coupling.

4.1 Computer skills data

We applied the CoEM multinomial mixture model
algorithm to a computer skills co-occurrence dataset,
courtesy of Prof. Richard Martin and the IT consulting
firm Comrise. This data set is small and intuitive
enough to permit a more detailed analysis of the CoEM
algorithm. The raw data consists of a collection of job
descriptions, each of which contains a set of computer
skills the hiring manager considers important for the
job. A co-occurrence matrix is constructed which
tabulates the number of times each pair of 159 computer
skills appear in a job description. The entries along
the diagonal of the co-occurrence matrix contain the
number of times each skill occurred over all the job
descriptions. The multinomial mixture model was used
to find computer skills topic clusters.

Two EM trials are run in parallel with 15 la-
tent states for H for 100 iterations. Subsequently,
the two trials are run for an additional 100 itera-
tions both with and without a CoEM coupling step.
The CoEM coupling step consists of the updates
p(x|h2) =

∑
h1,y p(x|h1)p(h1|y)p(y|h2), and p(x|h1) =∑

h2,y p(x|h2)p(h2|y)p(y|h1). The progression of the
KL-divergence is shown in Figure 2(a). The KL-
divergence for the EM and CoEM trials are identical for
the first 100 iterations. For CoEM, the coupling step af-
ter iteration 100 increases the KL-divergence, though af-
ter a few additional iterations, the CoEM trials arrive at
significantly lower KL-divergences compared with their
uncoupled EM counterparts.

The coupling transition matrix p(h2|h1) =∑
x p(h2|y)p(y|h1) used after iteration 100 is depicted

in Figure 2(b). We focus on state H1 = 1. From CoEM
step 2(a), the updated p(x|h1 = 1) is a convex combi-
nation of the distributions p(x|h2) with weights given
by the first row of the transition matrix in Figure 2(b).
The coefficients in p(h2|h1 = 1) has large contributions
for h2 = {3, 4, 11}. Though this is a soft probabilistic
clustering model, we look at the MAP assigned states
to help us understand how the CoEM algorithm cou-
ples the EM runs. MAP assignment for latent state
H1 = 1 (state 1 in EM run 1) gives the computer skills
{pc(ibm), windows95, msoffice, dos} after both 100 and
200 iterations for EM run 1. After 100 iterations, latent
state H2 = 3 contains skills {windowsnt, windows95,
visualc++, visualbasic}, H2 = 4 contains {sunos, so-
laris, unix}, and H2 = 11 contains {pc(ibm),msoffice,
msoffice97, msproject}. After 200 iterations, the CoEM
run for H1 gives MAP assigned skills for H1 = 1 of
{pc(ibm),windows95, windowsnt, dos, visualc++, visu-
albasic, vbscript}, while the uncoupled EM run 1 retains
the same MAP assigned skills {pc(ibm), windows95,
msoffice, dos}. The coupling step merged the skills
{windowsnt, visualc++, visualbasic, vbscript} into clus-
ter H1 = 1, and split off the skill {msoffice} into a
new cluster containing {msoffice, msoffice97, mspro-
ject, msexchange}. The coupling of other latent states
showed similar behavior. Intuitively, large coefficients
across a row in Figure 2(b) give rise to a merging of
states, while large coefficients across a column lead to
splitting of states. Thus, in contrast to pairwise merge,
or single split algorithms, CoEM can merge more than
two states, and split a single state into multiple states.

4.2 Synthetic data

We synthetically generated both exactly decom-
posable and noisy empirical joint distributions p̃(x, y).
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Figure 3: KL-divergence percentile plots for (a) exactly
decomposable p̃(x, y) (Table 1), (b) randomly generated
p̃(x, y). The percentiles for Ds.9 and Dl.9 are signifi-
cantly larger, and do not appear on the plots.

For exactly decomposable p̃(x, y), we randomly sampled
p(x|h), p(y|h) and p(h) to construct p̃(x, y) from the
multinomial mixture model. Even though the minimum
KL-divergence is zero for these distributions, it is frus-
tratingly difficult for the EM algorithm to find the exact
decomposition. The noisy distributions were randomly
sampled from the n2 − 1 dimensional simplex.

The experimental setup is as follows. Multiple pairs
of EM runs were run for a suitably large number of EM
iterations. Instead of using convergence conditions, we
simply chose a fixed number I of iterations for each EM
run. This was motivated by the observation of many
plateaus in the likelihood landscape. Also, this fixes
the number of iterations in the comparisons between
the various algorithms. We assume that the iterations
have converged to local maxima solutions at that time.
For the CoEM runs, we coupled pairs of EM runs,
then iterated them for an addition I iterations. For
EM runs (“EM continued”), we did not perform the
coupling step, and simply continued for an additional I
iterations.

Testing of the DAEM algorithm required the specifi-
cation of annealing schedules. We implemented a linear
annealing schedule where the inverse temperature pa-
rameter β was linearly ramped from βmin at the first
iteration to 1 at the 2I-th iteration. We also tried a
stepwise constant annealing schedule with β = βmin for
the first 2I/3 iterations, β = (1 + βmin)/2 for the next
2I/3, and regular EM iterations (β = 1) for the remain-
ing 2I/3 iterations. The EM, CoEM, and DAEM runs
all consisted of a total of 2I iterations.

Table 1: KL-divergence percentiles for n = 200, k = 25

EM CoEM Dl.9 Dl.95 Ds.9 Ds.95

1% .099 .074 3.11 .116 3.19 .091

5% .114 .088 3.13 .132 3.22 .113

10% .121 .093 3.14 .145 3.22 .128

time 9.47 9.47 17.20 17.40 14.62 14.60

We ran 200 pairs of EM runs (400 runs) initialized
with random initial values with the iteration count
I = 300. Cumulative percentiles of final KL-divergences
for exactly decomposable empirical joint distributions
with n = 200 and k = 25 are tabulated in Table 1 and
plotted in Figure 3(a). The DAEM algorithm with both
linear and stepwise constant annealing schedules were
tested for various settings of βmin. The columns Dl.9,
Dl.95, Ds.9 and Ds.95 correspond to linear (Dl) and
stepwise constant (Ds) annealing schedules at values of
βmin = .9 and .95. DAEM runs with βmin < .9 resulted
in very poor parameter estimates. The DAEM trials
were initialized with the same initial conditions as the
EM and CoEM trials. From Table 1 we see that the
percentiles are the smallest for the CoEM algorithm.

Computation time in seconds needed to run the
corresponding algorithms for 2I = 600 iterations on a
Pentium-IV 1.7 GHz computer are also listed in Ta-
ble 1. Since the CoEM runs consist of a single simple
coupling step after iteration 300, and regular EM itera-
tions otherwise, the computation time for CoEM is es-
sentially equivalent to regular EM algorithm. On the
other hand, DAEM iterations require componentwise
exponentiation of the parameters and result in signif-
icant increases in computation time. The Ds DAEM
runs are less costly computationally than the Dl runs
because the last 200 iterations of the Ds runs are regu-
lar EM iterations. From the numerics, the performance
of the DAEM runs depended critically on the annealing
schedules. The search for an annealing schedule which
can successfully maneuver around poor local maxima
in the loglikelihood is a considerable challenge. All the
DAEM runs except Ds.95 performed worse than plain
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EM runs, and in addition, computation cost is signifi-
cantly higher for DAEM than for CoEM.

We then tested the performance of the algorithms
for randomly generated noisy empirical joint distribu-
tions p̃(x, y). In Figure 3(b), the KL-divergence per-
centiles are plotted for 200 pairs of runs for a few dif-
ferent algorithms. We increased the base number of
EM iterations to I = 600. For reference, lines labeled
EM and DAEM are KL-divergence percentiles after I
iterations, before the coupling step. The line EMcont
is for 2I uncoupled iterations of EM. For the DAEM-
cont algorithm, regular DAEM iterations are run for
the first I iterations, and continued with regular EM
for another I iterations. Using the annealing analogy,
the DAEMcont runs were not “re-heated”. Experiments
with “re-heated” DAEM runs performed worse than
DAEMcont. Comparing the percentiles for EMcont,
CoEM and DAEM, we see improvements of CoEM over
EMcont, and DAEM (Ds.95) over CoEM. The differ-
ence in performance of CoEM and DAEM seems to de-
pend on the actual structure (decomposable vs. noisy)
of the empirical joint distribution. Since the CoEM al-
gorithm simply couples two local maxima parameters,
we also implemented a CoDAEM algorithm which cou-
ples the local maxima found using the DAEM (Ds.95)
algorithm. Essentially, the coupling step in CoEM can
be implemented to couple local maxima found using any
optimization algorithm. From the figure, the CoDAEM
algorithm gives better percentile performance than the
uncoupled DAEMcont runs.

4.3 Text corpus data

We compared the results of running EM, CoEM and
DAEM for multinomial mixture models on text cor-
pus data. Non-negative matrix factorization (NMF),
or equivalently pLSA have been applied to decompose
document-word co-occurrence matrix. In this context
the latent class model pLSA does not provide a prob-
abilistic generative model, and does not cleanly assign
predictive probabilities to new documents. A generative
model called Latent Dirichlet Allocation is described in
Blei et.al. (2003), along with a discussion of some is-
sues with computing perplexity scores with pLSA. Here
we compare results from a pure likelihood maximiza-
tion or equivalently KL-divergence minimization per-
spective, essentially seeking the best NMF factorization
of the document-word co-occurrence matrix using the
KL-divergence measure of distance. We compared the
various algorithms on the Medlars document collection
with 1033 medical abstracts, and the Cranfield collec-
tion of 1398 aerodynamics abstracts.

We ran the 25 pairs of EM runs using random ini-

tializations for I = 50 iterations each (labeled EM).
For the CoEM runs, we mapped pairs of parameter es-
timates to each other using various conditional indepen-
dence assumptions as follows. For CoEMa, we assumed
the the latent variables for the two runs are condition-
ally independent given the W , or in compact graphical
model notation H1 − W − H2. The CoEMb, CoEMc

and CoEMd couplings assume respectively, H1−D−H2,
H1−W −D−H2, and H1−D−W −H2, where D is the
document and W the word discrete variables. For each
of the CoEM runs, the respective conditional indepen-
dence assumptions are used to specify the conditionals
p(h2|h1) and p(h1|h2) from the two sets of parameters.
These conditionals are used in the coupling step for the
respective CoEM runs. After the coupling step, plain
EM is run for an additional I = 50 iterations for each
run. The original EM runs are also continued for a to-
tal of 100 iterations without coupling (labeled EMcon).
For comparison, the best performing DAEM algorithm
with β = .95 for the first 33 iterations, β = .975 for the
next 33, and plain EM for the remaining 34 iterations
is also run using the same initial conditions. The final
KL-divergences for all 25 pairs of runs (50 total) for each
algorithm are ranked in order of KL-divergence scores
and plotted in Figures 4(Medline) and 5(Cranfield) for
k = 25, 50 and 100. In the figures, dotted lines represent
EM runs, the dashed line for DAEM , and solid lines for
the CoEM runs. The training set likelihoods are inverse
monotonically related to these KL-divergences. From
the figures, as expected, 100 iteration EMcon runs im-
prove over 50 iteration EM runs. The stepwise constant
annealing schedule DAEM runs perform better than
EMcon. However, all the coupled EM runs CoEMa

through CoEMd perform significantly better than both
EMcon and DAEM . For k = 50 and k = 100, ev-
ery CoEMcd run achieves better KL-divergence (equiv-
alently log-likelihood) scores than the best EMcon and
DAEM runs. It is interesting to note that CoEMa per-
forms better than CoEMb, and the stronger coupling
assumptions in CoEMc and CoEMd both perform bet-
ter than CoEMa and CoEMb.

We performed a subsequent experiment to deter-
mine whether a split-and-merge “self-coupling” version
of CoEM can account to the performance gains in
the CoEM runs. In Figure 6, the coupling steps in
the CoEMb and CoEMd runs were all based on one
set of multinomial mixture parameters, and re-labeled
SCoEMb and SCoEMd. The roles played by the two
sets of parameters in those runs were all played by a
single set. The splitting and merging are all based on
the latent states for one latent variable, with similarity
of the latent states based on the coupling assumption.
This “self-coupled” EM algorithm is analogous to the
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Figure 4: Final KL-divergences for the Medline document collection.
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Figure 5: Final KL-divergences for the Cranfield document collection.

split-and-merge algorithm which is based on a single
set of parameter estimates. As seen in the figure, the
self-coupled SCoEM runs all achieve better parameter
estimates than EMcon. Nevertheless, the CoEMa and
CoEMc parameter estimates achieved by combining two
sets of runs give the two best (lowest) KL-divergences
percentile curves, pointing to an empirical success in
synthesizing information from two local maxima of the
likelihood.

4.4 Traffic between Autonomous Systems

To compare predictive test-set log-likelihoods of the
various algorithms we switched to a setting where the
mixture of multinomials latent class model provides a
probabilistic model of the data. We consider the mix-
ture of multinomials as providing a model of source
destination traffic. Here p̃(x, y) is the empirical traf-
fic distribution from source x to destination y. The pa-
rameters p(h) contain the distribution of traffic through
latent “hubs”, while p(x|h) describes the onramp traf-
fic distribution from source x to hub h, and p(y|h) the

offramp traffic to destination y from hub h. In this set-
ting the the sources/destinations constitute a fixed set,
and the traffic models define generative probabilities for
new traffic between the sources and destinations. The
motivation for the CoEM algorithm is intuitive in this
traffic model setting. The defined pa(h1, h2) describes
the traffic between hubs in H1 and H2 based on taking
offramps from H1 to destination Y , then onramps from
Y to H2.

We analyzed internet topology data as reflected
in a connectivity graph between Autonomous Systems
(AS). The data consists of AS paths in BGP rout-
ing tables collected by the server route-views.oregon-
ix.net. This data is the basis of the power-law anal-
ysis in Qien et.al. (2002) and is publicly available at
topology.eecs.umich.edu/data.html. The AS connectiv-
ity graph is a symmetric binary matrix. After trim-
ming out nodes with no connections, we are left with
an undirected binary AS connectivity graph with 13233
interconnected AS nodes and 55448 edges.

We simulated random walk traffic on this AS con-
nectivity graph. For the training set, we performed
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Figure 6: Final KL-divergences for the Cranfield document collection.

100000 single random walk steps on the connectivity
graph. The 100000 source nodes were sampled in accor-
dance with the stationary distribution of the random
walk on the connectivity graph. Traffic from source
nodes are assumed to follow each of the outgoing edges
with equal probability. Since multinomial mixture mod-
els can be prone to overfitting problems, we added a
single pseudo-count traffic for each edge in the connec-
tivity graph. If traffic from a source to a destination is
not observed in the test set, but appears in the training
set, the traffic models may assign zero probability to
the test set likelihood. Early stopping effectively stops
parameter updates if an update assigns zero probability
to a traffic path that appears in the test set. In Hof-
mann (2001) an additional inverse annealing (heating)
is used to smooth multinomial parameters and prevent
sparseness. For the test set, 20000 single random walk
steps were sampled.

Results using the same algorithmic settings as the
previous section are shown in Figure 7, with dotted
lines for EM runs, solid lines for the CoEM runs, and
the dashed line for DAEM runs. The results are very
similar to the KL-divergence results for the Medline and
Cranfield document collections. The CoEM runs, in
particular, CoEMc and CoEMd, consistently achieve
the best test-set log-likelihoods. CoEM does not seem
to have any worse over-fitting problems than regular
EM. The probabilistic mapping coupling step may in
fact help smooth the multinomial distributions.

5 Structured Multinomial Model

We wished to explore the coupling of EM runs for other
multinomial models. We considered a more complex
multinomial model of traffic (Lin 2006). The starting
point of the analysis is traffic data consisting of nij

counts of traffic from source X = i to destination X ′ =
j. We assume that all sources are destinations, and

destinations sources. Discrete latent variables H and
H ′ are introduced which characterize the underlying
entrance hubs and exit hubs on the highway. We assume
that all entrances are exits, and vice versa. Our model
of traffic flow consists of onramp traffic from sources
to highway entrances, highway traffic from entrances
to exits, and offramp traffic from highway exits to
destinations. The model assigns a probability of going
from source i to destination j of:

p(i, j) =
∑

k,l

αikβklγjl,

where αik = P (X = i|H = k), βkl = P (H = k,H ′ = l),
and γjl = P (X ′ = j|H ′ = l). In words, αik is the
fraction of traffic at entrance k from source i, βkl is
the probability of going from entrance k to exit l on
the highway, and γjl is the fraction of traffic at exit l
that proceed to destination j. The double sum in the
expression is over all highway entrances and exits. Note
that the traffic model is probabilistic, and in general
allows for more than one highway route from source to
destination. We further impose a constraint equating
the onramp and offramp traffic distributions: γjl = αjl.
Thus the fraction of traffic at exit l which continue to
destination j is equal to the fraction of traffic at entrance
l which originate from j. The model parameters are
specified by α(x|h) = P (x|h) and β(h, h′) = P (h, h′),
which specify respectively the onramp/offramp traffic
distribution, and highway traffic between the entrances
and exits. Let the total amount of observed traffic be
N =

∑
i,j nij , and let p̃ij = nij/N be the observed

empirical joint distribution p̃(x = i, x′ = j).
The log-likelihood function is given by

L = N
∑

x,x′

p̃(x, x′) log[
∑

h,h′

α(x|h)β(h, h′)α(x′|h′)].

Maximizing the likelihood of the observed source-
destination traffic counts is equivalent to minimizing the
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Figure 7: Test set log-likelihoods for the ASN traffic data set.

following Kullback-Leibler divergence:

D(p̃(x, x′) ‖
∑

h,h′

α(x|h)β(h, h′)α(x′|h′)).

The EM algorithm gives the following update equations
E-step

q(h, h′|x, x′) =
p(x, x′, h, h′)∑
hh′ p(x, x′, h, h′)

where p(x, x′, h, h′) = α(x|h)β(h, h′)α(x′|h′).
M-step

α(x|h) =
p̃(X = x,H = h) + p̃(X ′ = x,H ′ = h)

p̃(H = h) + p̃(H ′ = h)
.

β(h, h′) = p̃hh′ ,

where p̃xh, p̃x′h′ , p̃h, p̃h′ , and p̃hh′ are the corresponding
marginals of p̃xx′q(h, h′|x, x′).

A coupled version of the EM algorithm based on
the mapping diagram in Figure 8(a) is implemented
and compared to uncoupled EM runs in Figure 8(b)(c).
Parameters are updated as follows: p(h1|h2) =∑

x α(h1|x)α(x|h2), α(x|h2) =
∑

h1
α(x|h1)p(h1|h2),

and β(h1, h
′

1
) =

∑
h2,h′

2

p(h1|h2)β(h2, h
′

2
)p(h′

1
|h′

2
). A

total of 25 pairs of EM runs were run for 100 iterations
with (CoEM) and without (EMcon) coupling after 50
iterations. Consistent with the previous numerical ex-
periments, the CoEM runs significantly outperform un-
coupled EM runs.

6 Discussion

Various multinomial mixture models and their asso-
ciated matrix factorization algorithms have generated
great interest in the machine learning and data min-
ing communities. However, the problem of finding good
parameter estimates (factorizations) cannot be over-
looked. This paper presents a simple heuristic algorithm

(CoEM) for coupling two local maxima solutions. The
coupling step is similar in spirit to split-and-merge algo-
rithms (Brown et.al. 1992, Ueda et.al. 1999, Jain and
Neal 2004). An important distinction is the probabilis-
tic mapping based on conditional independence assump-
tions used in the coupling step for CoEM. This results
in a probabilistic split-and-merge coupling between all
latent states in the two local maxima parameter esti-
mates. Thus, there can be a merging of more than two
states, and a splitting into more than two states. In
contrast, the split-and-merge algorithms are based on
pairwise merges and two-way splits. In addition, the
CoEM coupling does not have any splitting or merging
threshold parameter. Comparing the CoEM algorithm
to the computationally more expensive DAEM (Ueda
et.al. 1998) algorithm, the CoEM algorithm attempts
to synthesize information from multiple local maxima,
whereas the DAEM algorithm tries to bypass poor lo-
cal maxima by smoothing out the likelihood landscape.
Performance of the DAEM algorithm depends critically
on the annealing schedule, whereas the CoEM algorithm
has no annealing schedule to explore or control param-
eters to set. In the numerical experiments presented
in this paper, the CoEM algorithm obtained the best
parameter estimates. Very significantly, in our experi-
ments on text corpus data, every CoEMcd run resulted
in better parameters the all EM and DAEM runs.

As presented in this paper, the CoEM algorithm is
a heuristic algorithm like the various split and merge
algorithms. The focus of this paper is on numerical
justifications of the CoEM algorithm when contrasted
with uncoupled EM and DAEM algorithms. Compar-
isons of final parameter estimates in terms of loglike-
lihood (equivalent KL-divergence) and predictive test
set loglikelihood scores show significant improvements
of CoEM over EM and DAEM. Comparisons in terms of
computation time is favorable for the CoEM algorithm
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Figure 8: Mapping diagram and final KL-divergences for the ASN traffic data set.

since it is just regular EM with a low cost coupling step.
Simplicity of the CoEM algorithm also means there is no
exploration needed, whereas DAEM requires fine tuning
of annealing schedules, and SMEM requires the setting
of splitting and merging criteria. Recurring results such
as improvements of CoEM over EM, and better per-
formances of CoEMc and CoEMd parameter estimates
over CoEMa and CoEMb hint at an underlying geomet-
ric relationship between the local maxima. We are pur-
suing information theoretic motivations and derivations
of CoEM algorithms for more general classes of mod-
els such as mixtures of Gaussians and graphical models
with multiple latent variables. The algorithm can also
be extended to repeated couplings of pairs of EM runs,
and couplings of more than two EM runs at a time.
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