
Mining and Validating Localized Frequent Itemsets with Dynamic Tolerance*

Olfa Nasraoui† Suchandra Goswami‡

* supported by National Science Foundation CAREER Award IIS-0133948 to O. Nasraoui
† Department of Computer Engineering & Computer Science, University of Louisville, Louisville, KY 40292
‡ Department of Computer Science, University of Central Florida, Orlando, FL-32816

Abstract
We cast the frequent itemset mining problem as a criterion guided optimization

problem instead of one based on exact counting. This opens several interesting
possibilities, including modification of the criterion function to take into account
(i) error tolerance, (ii) locality, (iii) unsupervised estimation of the error
tolerance, and (iv) search strategy. We also propose a new validation procedure
that takes into account the completeness and accuracy of the discovered patterns.
Experiments with real Web transaction data are presented.

keywords: frequent itemsets, association rules, frequent patterns, error
tolerant itemsets, market basket analysis.

1 Introduction
Association rule mining [2] is a key data mining task that is most widely
applied to problems in market basket analysis. Mining frequent itemsets
is a crucial prerequisite step to mining association rules, a crucial task in
some Web usage mining systems that discover association rules to build
prediction models for recommender systems. Frequent itemset or
Frequent Pattern (FP) mining faces several challenges that have
previously been identified. Most have addressed the issue of mining and
maintaining association rules in very large databases [6] and in evolving
databases [7,8]. In this paper we focus our attention on three other issues
that directly address the FP definition, in particular in the context of
Transactional DataBases (TDBs) with a large number of
items/dimensionality, sparse data, and heterogenous data distributions.
Such databases are very common in the context of e-commerce
transactions on large Websites that offer a huge number of products.
Such TDBs are also very common in the context of mining web user
clickstream data, where user sessions are the transactions and URLs are
the items. Other kinds of data that satisfy these characteristics occur in
the context of mining large collections of text documents, where the
documents play the role of transactions and keywords play the role of
items. Sparse data sets suffer from the fact that even though there is a
large number of items, the number of non-zero entries is a very small
fraction of the total number of entries in the transaction matrix.

1.1.1 Sensitivity to Support Thresholds

Very low support thresholds typically lead to generating too many
spurious patterns (that are due to random correlations in data), while
high support thresholds risk missing many interesting patterns that occur
with low support, but have high confidence. This problem most
particularly affects heterogeneous data sets, where certain itemsets may
occur on only part of the data (e.g. in only some segments of a customer
database depending on the geographical location), and hence will have
low support. These itemsets cannot be discovered on the entire aggregate
data, but have a better chance to be discovered by mining only the small

portion of the data where they occur. One of the first researchers
who have addressed this issue are Pei, Tung, and Han [4] who
defined the notion of Fault-Tolerant Frequent Patterns (FTFP).
Unlike frequent itemsets, FTFPs allow a fault tolerance equal to δ,
meaning that up to δ mismatches in the items are allowed. So
instead of finding exact patterns in data the search is for
approximate and more general fault-tolerant patterns. Fault tolerant
frequent pattern mining is an extension of mining frequent itemsets.
Unlike frequent itemsets, FTFPs allow a fault tolerance of δ, that is
upto δ mismatches in the items is allowed. So instead of finding
exact patterns in data the search is for approximate and more
general fault-tolerant patterns. Unfortunately, this approach actually
requires two instead of one support threshold: one for the items, and
another one for the itemsets. Moreover, an additional threshold is
required for the amount of tolerance, δ.

1.1.2 Error Tolerance

When counting the support of an itemset, only transactions that
completely include all the items of an itemset are counted. If a
transaction matches an itemset in say 10 items, but fails to match
one item, then it is completely excluded from the support count.
In other words, this is an all or nothing counting.

Some work has addressed this issue, including Fault-Tolerant
Frequent Pattern (FTFP) [4], and Error-tolerant Itemsets (ETI) [5]
of two types (strong and weak). The problem with this approach is
that getting away from having to pre-specify support thresholds led
to getting trapped in another requirement: having to specify
tolerance thresholds.

1.1.3 Locality

Data may be skewed, heterogeneous, or better modeled by several
subsets, each with its own frequent itemsets, possibly with different
support thresholds and even different levels of tolerance.
Researchers who have addressed this issue include Aggarwal,
Procopiuc, and Yu [1] who have proposed CLASD (CLustering for
ASsociation Discovery) that discovers frequent patterns called
metatransactions by aggregating the item frequencies of
transactions assigned to each clusters based on maximum similarity
into a frequency vector. The clusters are found using a Hierarchical
Agglomerative Clustering that starts with randomly selected
transactions as the initial seeds.

While this approach , it still needs to address several problems: (i)
sensitivity to prespecified number of clusters (k) and minimum size
threshold of a cluster that implicitly plays the role of
metatransaction support, (ii) also, since transactions are assigned

578

based only on similarity, transactions that are not very similar to any
cluster will still get lumped to the closest cluster, and hence contribute to
its support. In other words, the notion of cluster size which is equivalent
to metatransaction support does not take into account the level of
similarity of the transaction. This corresponds to the opposite extreme
end of exact/intolerant support counting because, even a transaction that
does not match any of the items in the candidate pattern will be counted
in the support.

1.2 Contributions of this Paper
We present an approach that addresses all the identified problems
simultaneously, and in an integrated manner, namely:

(1) discovering local frequent patterns
(2) discovering frequent patterns that are error tolerant,
(3) Allowing tolerance to be dynamically estimated depending on the
underlying local distribution.
(4) Performing the search without pre-fixed support or tolerance
threshold requirements. Instead, support and tolerance are allowed to
adapt to the local distribution of the data.
We call the special kind of patterns that we mine: Localized Error
Tolerant Frequent Pattern (LET-FP). We also propose an information
retrieval inspired validation procedure that attempts to answer the
following crucial question: Is the data set completely and accurately
summarized/represented by the mined patterns?

2 A Generalized Framework for Localized Error-
Tolerant Frequent Pattern (LET-FP) Mining

2.1 Frequent Itemsets: A Similarity Based Perspective
Frequent itemsets or frequent patterns (FPs) can be considered as one
way to form a summary of the input data. As a summary, frequent
patterns represent a reduced form of the data that is at the same time, as
close as possible to the original input data. This is compatible with the
notion of support as a critical measure of goodness for a FP. Classical
support measures the count of the transactions that completely include a
FP. Therefore transactions that are very similar to a FP, but perhaps
lacking a single item from the FP do not even count in its support. The
first step toward including tolerance is to allow transactions that are very
similar to a FP to count in what we term a partial support. For this
reason, we need to consider using a similarity measure to capture
closeness between an FP and a transaction. We first list the notation that
will be used throughout the rest of this section, below.

Pi ith Frequent Pattern (FP) or itemset.
|Pi| number of items in Pi
tj jth transaction.
|tj| number of items in tj
Sij Similarity between the ith FP and the jth transaction.

An FP should represent a frequently occurring trend. Hence it should be
as similar as possible to as many transactions as possible. Hence, we
need to assess the similarity between an FP, Pi, and each transaction tj.
Below, we explore some similarity measures in the order of increasing
complexity and error tolerance.

Total similarity
(1)

⎩
⎨
⎧ =

=
otherwise

Ptif
S ij

ij 0
1

In this case, Pi is considered a valid FP iff it matches most of the
transactions exactly, hence leaving no room for tolerance in this
definition. This is an even more stringent (or less error-tolerant)
requirement than Apriori [2].

Complete transaction inclusion based similarity
(2)

⎩
⎨
⎧ ⊆

=
otherwise

Ptif
S ij

ij 0
1

In this case, a transaction tj will contribute to the support of pattern
Pi, only if it is completely included in pattern Pi, thus favoring
longer patterns even if most of Pi’s items are not part of the
transaction.

Complete FP inclusion based similarity
(3)

⎩
⎨
⎧ ⊆

=
otherwise

tPif
S ji

ij 0
1

In this case the similarity is 1 if the transaction contains all the
items from the FP. This corresponds to the case of the Apriori
algorithm [2], where the frequent pattern has to be completely
contained in the transaction, in order for this transaction to
contribute to its support. This strategy favors the smallest frequent
itemset (with fewer items). Hence it is the extreme opposite of the
previous approach.

FTFP based transaction inclusion based similarity
(4)

⎩
⎨
⎧ ≤∩−

=
otherwise

PtPifS iji
ij 0

1 δ

In this case, a transaction tj will contribute to the support of pattern
Pi, even if it does not include all of Pi’s items. In particular, in this
case, |Pi|-|Pi∩tj| items are missing. Without imposing any
constraints on the number of missing items, it is clear that a pattern
could grow as large as necessary to make each transaction
contribute to its support. Hence the best itemset Pi will be the set of
all items. This is why a constraint is imposed on the number of
missing items as follows: |Pi|-|Pi∩tj|≤δ. This is the same condition
that qualifies transaction tj to FT-contain the pattern Pi [4]. In this
case, δ is the fault tolerance, or equivalently, the error ratio is
ε=δ/|Pi|.

Precision and Coverage/Recall as similarity measures

A more general and flexible similarity measure would not require
that either the FP or the transaction include the other. Instead, a
considerable degree of overlap between the transaction and FP is
considered as follows:

 Sij = |tj ∩ Pi|/f(tj , Pi) where f(tj , Pi) is a generic function that can be
defined in a number of ways to arrive at various familiar metrics,
such as

(5) f(tj , Pi) = f1(tj , Pi) = |Pi|

(6) f(tj , Pi) = f2(tj , Pi) = |tj|

(7) f(tj , Pi) = f3(tj , Pi) = |tj|1/2 |Pi|1/2

Using f1(tj , Pi), Sij reduces to the precision given by

Precij= | tj ∩ Pi |/| Pi |.

Precision is biased towards smaller itemsets. It is used in the case of
imposing support conditions on ETIs [11]. Using f2(tj ,Pi), Sij
reduces to the coverage/recall given by

Covij= | tj ∩ Pi | / | tj |.

Coverage is biased towards larger itemsets. Using f3(tj , Pi), Sij
reduces to the cosine similarity. It is evident from the above that the
cosine similarity can be re- written in the form cos(Pi,tj)=(Precij)1/2.
(Covij)1/2, which is proportional to the geometric mean of Precij and

579

Covij. Hence it simultaneously takes into account Precision and
Coverage.

Minimum of Precision and Coverage similarity measure (MinPC)

The most demanding similarity measure to optimize would be

(8) Sij=min(Precij,Covij)

This similarity measure tries to achieve a balance between precision and
coverage, while at the same time penalizing the situation in which either
precision or coverage becomes too high at the expense of the other. In
addition to the above similarity measures, other sophisticated measures
that exploit the domain knowledge such as a concept hierarchy can be
used. In particular, for Web sessions, a similarity that takes into account
an implicit Website hierarchy was presented in [3], so that related
items/URLs are considered similar to a certain degree, even if distinct.

2.2 Error Tolerant Support
Let a candidate Localized Error Tolerant Frequent Pattern, henceforth
referred to as LET-FP, be denoted as Pi, and let the transactions in a DB
be denoted by tj. Instead of Apriori’s complete pattern inclusion based
matching, we propose to use a generalized, softer matching measure.
This matching measure Sim(Pi,tj) quantifies how faithfully the frequent
pattern Pi serves as a summary for transaction tj . A dissimilarity d(Pi,tj)
can be defined so that it is inversely related to Sim(Pi, tj), for example,
(9) d(Pi,tj) = (1- Sim(Pi,tj))2
Let the amount of tolerance ε be dynamic and defined in the same units
as d(Pi,tj). Furthermore, let the tolerance be localized, and hence depend
on the ETFP itself, i.e

εi = ε(Pi).
Next, let a tolerance-normalized dissimilarity between ETFP Pi and
transaction tj be defined as

(10) dε(Pi, tj,εi) = (,)i j

i

d P t
ε

A lower tolerance will tend to inflate the effect of dissimilarity, hence
reflecting a more stringent matching process. Now that the tolerance
degree, εi has been “absorbed” into the normalized dissimilarity dε(Pi,
tj,εi), a measure of support that is error-tolerant can be defined. Let this
localized error-tolerant support be defined as

s(Pi,tj,εi) = f(dε(Pi,tj,εi)) = f(d(Pi,tj), εi),
where f: ℜ → [0,1] is a monotonically non-increasing function. The
Total Localized Error-Tolerant support of LET-FP Pi may be defined by
summing the contributions from all transactions as follows
(11) (,) (, ,)

j
i i i j it T

Ts P s P tε ε
∈

= ∑

Note that the total support in (11) increases monotonically with the
tolerance εi. Because tolerance is not known in advance, this will favor
higher tolerance values. To put a limit on this bias, we define a
“normalized support” instead of an absolute support, to be used as an FP
goodness criterion, i.e,
(12) (,)(,) i i

i i
i

Ts PP ερ ε
ε

=

In this equation the tolerance degree can also be considered as a penalty
factor Pi. Given the same support, LET-FPs will be rewarded if their
tolerance degree is smaller and penalized if their tolerance-degree is
higher.

2.3 Avoiding Fixed Support Thresholds: Mining Frequent
Patterns by Support Optimization
Instead of searching for the FPs that exceeds a fixed support threshold,
we propose to seek the FPs that maximize the error tolerant support in
(12). The FP mining and tolerance search problem can be stated as an
alternating optimization problem that boils down to two optimization

steps, to determine the frequent patterns and the error tolerance
respectively that optimize the error tolerant support:

Step1:
- Fix εi

- Solve for Pi = Arg Max (ρ(Pi,εi))

Step2:
- Fix Pi
- Solve for εi = Arg Max (ρ(Pi,εi))

Step 2 can be solved by analytical optimization if ρ(Pi,εi) is
differentiable with respect to εi, and a closed Piccard update
equation can be derived. See Eqs (13), (14), and (15) below.
However ρ(Pi,εi) is not in a form that is differentiable with respect
to Pi. Therefore, a non-analytical optimization approach is needed
for Step 1. We use a Genetic algorithm for this purpose, but do not
rule out other heuristic optimization methods.

2.4 Localized ETFP Mining by Partitioning and
Zooming

Some strong (i.e. highly accurate/confident) associations may lurk
in small segments of a huge data set. In this case, they risk being
missed because of their low support. In other words, finding
frequent itemsets from the entire aggregate data may not be able to
reveal patterns that are only valid in small localized segments of the
data. Data locality concepts can offer several advantages in this
context. We achieve locality by gradually focusing the search on
smaller and smaller segments of the data set. A greedy procedure
extracts the unique optimal patterns discovered in each iteration.
Redundant patterns are identified based on their compatibility with
a previously extracted pattern, and are therefore ignored.
Based on these extracted FPs, the dataset is gradually divided into
smaller parts/clusters containing similar transactions. The steps
needed to obtain localized LET-FPs may be summarized as follows:

Algorithm LET-FP Mining:
0. Let current transaction dataset (Dc) = D (input data), and let the set of
final extracted LET-FPs, P=∅
1. Initial FP-Generation: Seed the FPs by selecting random samples from
current transaction dataset (Dc).
2. Iterative LET-FP search and extraction: will result in C LET-FPs P1,…,
Pc, and tolerance values ε1,…, εc
3. Partition transactions by assigning each transaction to nearest LET-FP
(based on one of the dissimilarity measures in Eqs (1-8). This will partition
the dataset into C subsets T1,…,Tc.
4. For i = 1, …, C { // Step 4 is for zooming (optional)
 Let = {tcoreofout

iT −−
j | s(Pi,tj,εi) < score}

 Let Ti = Ti - coreofout
iT −−

 Let TZoom = U
i

coreofout
iT −−

}
5. For each subset Ti {
 If εi>εmax and |Ti| > tmax Then {
 Let current transaction dataset Dc = Ti .
 Go to step 1, // repeat search on each cluster
 }
 Else P=P∪Pi // Add to final list of LET-FPs
}
6. Let current dataset Dc = TZoom. Go to Step 1. // Step 6 is for zooming
(optional)

Step 2 can be any competent search method, preferably, one that is
global, and that can benefit from randomized search to sample the

580

huge search space of all possible LET-FPs, such as a genetic algorithm.

2.5 Doing Away with Tolerance Thresholds by Dynamic
Tolerance Optimization

The normalized error-tolerant support in (12) satisfies several desiderata.
- Localized Support: Support is defined on increasingly smaller
subsets/clusters of the data, providing a localized and confined counting.
- Error-tolerance: Data tuples that deviate slightly from candidate LET-
FP will still contribute to its support, though to a lesser degree,
depending on the tolerance amount.
- Dynamic Tolerance: Given the local support measure function
(13) s(Pi,tj,εi) = f(dε(Pi,tj,εi)) = ,(,)i j id P te ε ε− ,
we can analytically derive an iterative update equation for dynamic
tolerance level εi based on optimizing the total error-tolerant support
given by (12). For this purpose we set

(14) ∇ρ(Pi,εi)/∇εi = 0

This can be shown to result in

(15)
()

(1)
()

((, ,) (,)

((, ,)
j i

j i

t
i j i i j

t Tt
i t

i j i
t T

f d P t d P t

f d P t

ε

ε

ε
ε

ε
∈+

∈

=
∑

∑
.

The main assumptions are in fixing f(dε(Pi,tj,εi)) from the previous
iteration (t) to derive the new (1)t

iε + .

2.6 Validation in an Information Retrieval Context
Frequent itemsets or patterns (FP) can be considered as one way to form
a summary of the input data. As a summary, frequent patterns represent a
reduced form of the data that is at the same time, as close as possible to
the original input data. This description is reminiscent of an information
retrieval scenario, in the sense that patterns that are retrieved should be
as close as possible to the original transaction data. Closeness should
take into account both (i) precision (a summary FP’s items are all correct
or included in the original input data, i.e. they include only the true data
items) and (ii) coverage/recall (a summary FP’s items are complete
compared to the data that is summarized, i.e. they include all the data
items). These criteria are clearly contradictory, since precision will favor
only the smallest itemsets, eventually 1-itemsets, while coverage will
favor the longest possible itemsets. Ideally, for perfect retrieval, each
data query should be answered by an FP that is identical to this query.
However, this is unrealistic since it corresponds to the case where the
LET-FPs summary is identical to the entire input database. Therefore, it
is imperative that the summary consist of the smallest number of LET-
FPs that are as similar as possible to the input data. We propose a
validation procedure that attempts to answer the following crucial
questions: Is the data set (a) completely and (b) faithfully
summarized/represented by the mined patterns? Each of the previous
questions is answered by computing coverage/recall as an
Interestingness measure to answer part (a), and precision as an
Interestingness measure to answer part (b).

First, we compute the following Interestingness measures for each LET-
FP, letting the Interestingness measure, Intij = Covij (i.e., coverage: See
Eqs. In Sec 3.1.) to answer part (a), and Intij = Precij (i.e., precision: See
Eqs. In Sec 3.1.) to answer part (b).

Now, if we let *T = {tj | (Int
i

Max ij) > Intmin}. Then

(17) |T|/*TInt T =

When Intij = Covij, we call IntT the Cumulative Coverage of
Transactions, and it answers Question a. When Intij = Precij, we call IntT

the Cumulative Precision of Transactions, and it answers Question
b. The above measures are computed for the different techniques
over the entire range of the Interestingness threshold Intmin from 0%
to 100% in increments of 10%, and compared.

2.7 LET-FP Search and Post-processing Options

After the completion of the LET-FP search algorithm, we partition
the input transactions into as many clusters as the number, say |P|,
of the original (i.e., without post-processing) LET-FPs, P={P1,…,
P|P|}. Let these transaction clusters be denoted as T1,…, T|P|. Then,
there are several ways that we may use the LET-FPs, as listed
below.

Search Options: First the search for LET-FPs can either use
zooming or not.
(1) Standard LET-FPs: obtained by eliminating steps 4 and 6 in Algorithm
LET-FP Mining (see Sec 2.4) and doing no post-processing
(2) Zoomed LET-FPs: We use steps 4 and 6 in Algorithm LET-FP Mining
(see Sec 2.4) to gradually zoom into each transaction cluster by peeling off
the out-of-core transactions.

Post-Processing Options: After completing the search for LET-
FPs, there are several options:
(1) Original LET-FPs: These are the LET-FPs obtained without post-
processing
(2) Aggregate LET-FPs: Frequency vectors computed by averaging the
item occurrence frequencies in each cluster separately, then converting to a
binary vector (1 if frequency > 0.10, 0 otherwise).
(3) Robustified LET-FPs: Before aggregating the LET-FP frequencies as in
the previous option, we zoom into each cluster, and remove the out-of-core
transactions, i.e, Ti = Ti - {tj | s(Pi,tj,εi) < score}.

Other options are produced by different combinations of search and
post-processing options. Table 1 lists the different codes used in our
experimental section that designate these different options

Table 1. Category codes corresponding to LET-FP search and post-
processing options

Code search post-processing
spa Standard (i.e., no zooming) post-processing: aggregate
spr Standard (i.e., no zooming) post-processing: robustified
so Standard (i.e., no zooming) Original (no post-processing)
zpa Zoomed (w/ steps 4 & 6 of LET-FP Mining Algorithm) post-processing: aggregate
zpr Zoomed (w/ steps 4 & 6 of LET-FP Mining Algorithm) post-processing: robustified
zo Zoomed (w/ steps 4 & 6 of LET-FP Mining Algorithm) Original (no post-processing)

3 Experimental Results
Experimental results are obtained by using the LET-FP Mining
Algorithm described in Sec. 2.4, and we compare against the
performance of APriori [2] with varying minimum support levels.
However only the results with lowest support are shown since as
expected, they result in the best quality for APriori. The proposed
LET-FP Mining algorithm is validated using the different search
strategies (with or without zooming) and different similarity
measures. Hence, we validate all the possible combinations listed in
Sec. 2.7, as well as the different similarity measure options by
computing and plotting the interestingness measures described in
Sec. 2.6. To avoid information overload, for each [search & post-
processing] category, we report the results only for the best
performing similarity measure. Also because of the definition of
frequent itemsets in APriori, precision is always equal to 1. Hence
we list it in tabular format, considering it as threshold of 0.9. To
optimize step 1, we use a GA with population size 100, 30
generations, and binary encoding of transactions. The crossover and
mutation rates were 0.9 and 0.001 respectively.

581

3.1 Description of the Web Transaction Data

The first dataset consists of the preprocessed web-log data of a
Computer science department website. This dataset has 343 distinct
URLs accessed by users. A session may be defined as a sequence of
URL accesses from the same IP address within a prespecified time
threshold [3]. There are a total of 1704 real user sessions. Since each
URL address can be mapped to a unique integer index starting from 0 to
343, the entire dataset can be modeled as a 1704 by 343 binary matrix
where the presence of an URL in a session may be encoded as 1, and its
absence encoded as 0.

3.2 Results for Web Transaction Data

On this data set, APriori [2] generates a large number of itemsets,
despite the conservative minimum support thresholds, as shown in
Tables 2-3. The proposed LET-FP Mining algorithm produces a much
smaller number of frequent patterns as shown in Tables 2-3 for the
different search strategies (with or without zooming) and different
similarity measures.

Table 2 shows the percentage of sessions well covered by FPs using the
best similarity measure for LET-FPs and the best support percentage for
Apriori. Here again, the LET-FPs perform much better than the Frequent
Patterns obtained by the Apriori algorithm.
Table 2: Percentage of sessions well covered (Coverage > Threshold) by the

best Frequent Patterns (Web transaction data)
 Threshold >=0.5 Threshold >=0.9
Apriori (support = 1%) 9.22 % (531 itemsets) 3.908 % (531 itemsets)
so (sim: coverage) 88.086854% (19 LET-FPs) 84.565728% (19 LET-FPs)
spa (sim: web hierarchy) 92.077465% (24 LET-FPs) 88.321596% (24 LET-FPs)
spr (sim: precision) 89.906103% (31 LET-FPs) 87.734742% (31 LET-FPs)
zo (sim: coverage) 90.316901% (22 LET-FPs) 88.849765% (22 LET-FPs)
zpa (sim: precision) 87.969484% (26 LET-FPs) 85.974178% (26 LET-FPs)
zpr (sim: precision) 89.319249% (26 LET-FPs) 87.5% (26 LET-FPs)

Table 3 shows the percentage of sessions precisely retrieved by FPs
using the best similarity measure for LET-FPs. It can be seen that the
zpa-LET-FPs using coverage similarity measure gives the best results.
Table 3: Percentage of sessions precisely retrieved (Precision > Threshold) by

the best Frequent Patterns
 Threshold >=0.5 Threshold >=0.9
Apriori (support = 1%) - 32.466 % (531 itemsets)
so (sim: coverage) 90.082160% (19 LET-FPs) 89.260563% (19 LET-FPs)
spa (sim: coverage) 100% (19 LET-FPs) 100% (19 LET-FPs)
spr (sim: cosine) 86.85446% (31 LET-FPs) 86.85446% (31 LET-FPs)
zo (sim: cosine) 82.570423% (31 LET-FPs) 82.570423% (31 LET-FPs)
zpa (sim: coverage) 100% (22LET-FPs) 100% (22 LET-FPs)
zpr (sim: precision) 88.497653% (26 LET-FPs) 88.497653% (26 LET-FPs)

3.3 Summary of Experimental Results

The FPs generated by Apriori do not perform better than the LET-FPs
obtained by the proposed approach, on any of the chosen validation
measures.
- The percentage of sessions/transactions well covered by any of the FPs
obtained by Apriori is less than the % of sessions/transactions well
covered by any of the LET-FPs obtained by our proposed approach.
- The percentage of sessions/transactions precisely retrieved by any of
the FPs obtained by Apriori is less than or equal to the one retrieved by
any of the LET-FPs obtained by the proposed approach.
- The FPs obtained by Apriori are larger in number but poorer in quality
(see Tables 2-3).
- The LET-FPs obtained by the proposed method serve as good FPs at no
additional cost. There is no problem of prespecified, fixed, global
support. We obtain the optimal number of good quality LET-FPs that are
comparable and better than the FPs obtained by traditional methods.
- The proposed LET-FP Mining algorithm takes roughly half the time
compared to APriori.
- When no post-processing is done, zooming has the effect of increasing
coverage as shown in Table 2 (compare patterns zo to so as per Table 1)
because it succeeds in discovering more, even small localized LET-FPs.

More itemsets means more complete summary or in other words,
better coverage. However, despite the fact that coverage is
increased significantly, especially compared to APriori, precision is
not significantly affected. In particular, precision remains higher
than APriori in most cases. Zooming achieves this desired goal
because it acts by peeling all the out-of-core transactions that are
not at the core of each pattern’s cluster, and then repeating the
mining on this smaller out-of-core set.
- It is hard to compare the effect of the different similarity
measures, perhaps because of the interaction between similarity and
method of search and or post-processing (such zooming and
robustification of patterns). However, we note that while each
similarity measure is tailored to optimize its own interestingness,
the MinPC similarity tries to optimize both precision and coverage,
suggesting it as a potentially useful similarity measure, when one
looks for a compromise.

4 Conclusions
We presented an approach addressing several problems in an
integrated manner: (i) discovering local frequent patterns, (ii)
discovering frequent patterns that are error tolerant, (iii) allowing
tolerance to be dynamically estimated depending on the underlying
local distribution, and (iv) performing the search without pre-fixed
support or tolerance threshold requirements. We have also
presented an information retrieval inspired validation procedure
that measures the accuracy and completeness of discovered
patterns. We have proposed zooming as an efficient search strategy,
and used the MinPC similarity to satisfy both of the contradictory
precision and coverage based interestingness measures. Other
important issues such as scalability were not addressed in this work,
but could be addressed in the future for example along the lines of
[6].

References
[1] C. Aggarwal, C. Procopiuc, and P. Yu. Finding Localized associations

in market basket data. IEEE Trans. Knowledge and Data Engineering,
Vol 14, No. 1, Jan 2002.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In Proc. of the 20th Int’l Conf. on Very Large Databases,
SanTiago, Chile, June 1994.

[3] O. Nasraoui, R. Krishnapuram, and A. Joshi. Mining Web Access
Logs Using a Relational Clustering Algorithm Based on a Robust
Estimator, 8th International World Wide Web Conference, Toronto, pp.
40-41, 1999.

[4] J. Pei, A.K.H. Tung, and J. Han, Fault tolerant frequent pattern mining:
Problems and challenges, Proc. 2001 ACM-SIGMOD Int. Workshop
on Research Issues on Data Mining and Knowledge Discovery
(DMKD'01), Santa Barbara, CA, May 2001.

[5] C. Yang, U. Fayyad, and P. Bradley, Efficient Discovery of error-
tolerant frequent itemsets in high dimensions, In Proc. of seventh
ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 194-203, San Francisco, California, Aug. 2001.

[6] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New parallel
algorithms for fast discovery of association rules. Data Mining and
Knowledge Discovery: An International Journal, 4(1):343–373,
December 1997.

[7] A. Veloso,W. Meira Jr., M. B. de Carvalho, B. Possas, S.
Parthasarathy, and M. Zaki. Mining frequent itemsets in evolving
databases. In Proc. of the 2__ SIAM Int’l Conf. on Data Mining,
Arlington, USA, May 2002.

[8] V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Mining and
monitoring evolving data. In Proc. of the 16__ Int’l Conf. on Data
Engineering, pp. 439–448, May 2000.

582

	1 Introduction
	1.1.1 Sensitivity to Support Thresholds
	1.1.2 Error Tolerance
	1.1.3 Locality

	1.2 Contributions of this Paper

	2 A Generalized Framework for Localized Error-Tolerant Frequent Pattern (LET-FP) Mining
	2.1 Frequent Itemsets: A Similarity Based Perspective
	2.2 Error Tolerant Support
	2.3 Avoiding Fixed Support Thresholds: Mining Frequent Patterns by Support Optimization
	2.4 Localized ETFP Mining by Partitioning and Zooming
	2.5 Doing Away with Tolerance Thresholds by Dynamic Tolerance Optimization
	2.6 Validation in an Information Retrieval Context
	2.7 LET-FP Search and Post-processing Options

	3 Experimental Results
	3.1 Description of the Web Transaction Data
	3.2 Results for Web Transaction Data
	3.3 Summary of Experimental Results

	4 Conclusions
	References

