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Abstract

In this paper, we introduce a new type of contrast pattern,

the minimal contrast subgraph. It is able to capture struc-

tural differences between any two collections of graphs and

can be useful in chemical compound comparison and build-

ing graph classification models. However, mining minimal

contrast subgraphs is a challenging task, due to the exponen-

tially large search space and graph (sub)isomorphism prob-

lems. We present an algorithm which utilises a backtracking

tree to first compute the maximal common edge sets and

then uses a minimal hypergraph transversal algorithm, to

derive the set of minimal contrast subgraphs. An experi-

mental evaluation demonstrates the potential of our tech-

nique for finding interesting differences in graph data.
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1 Introduction

In this paper, we introduce a new type of pattern for
contrasting collections of graphs, called a minimal con-
trast subgraph. A contrast subgraph is essentially a sub-
graph appearing in one class of graphs, but never in
another class of graphs. It is minimal if none of its sub-
graphs are contrasts. There are many situations where
minimal contrast subgraphs can be applied, such as
comparing structural differences between chemical com-
pounds. There is a large body of previous work on graph
comparison, focusing on problems such as subgraph iso-
morphism, graph isomorphism, common subgraph and
maximum common subgraph [14, 10, 7, 11]. However,
these approaches have their limitations. Unlike minimal
contrast subgraphs, they cannot be directly used to enu-
merate interesting differences between classes of graphs.
They are unable to answer questions like “What are
the smallest structural differences between two chem-
ical compounds?” or ”How did the network topology
change over a period of time?”. Also, we believe mini-
mal contrast subgraphs have strong potential for build-
ing classifiers.

Several challenges arise in the mining of minimal
contrast subgraphs. Firstly, it involves matching oper-
ations which are computationally demanding. Indeed,
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just testing whether a graph is a subgraph of another
is NP-complete. Secondly, we are interested in dis-
covering the complete set of contrast subgraphs. This
is unlike many frequent subgraph mining algorithms,
which focus on mining only connected subgraphs or in-
duced subgraphs and omit subgraphs that are isomor-
phic [5, 8, 15, 2].We believe allowing disconnected sub-
graphs is important, since it facilitates a very succinct
representation of differences, yet is still useful for do-
main experts. However, allowing disconnectedness has
a price, since it makes the search space of possible con-
trasts larger. Therefore, a key focus of this paper is
to investigate the limits of contrast mining under this
difficult requirement. We make the following two im-
portant contributions: i) We introduce the concept of
minimal contrast subgraphs, formally clarify the rela-
tionships between contrast subgraphs and the associ-
ated notion of contrast edge sets and identify the con-
nection between minimal contrast edge sets and the dual
notion of maximal common edge sets, using the techni-
cal device of hypergraph transversals, ii) We present an
algorithm for mining minimal contrast subgraphs and
experimentally show its potential for finding interesting
differences.

2 Preliminary Concepts

We now provide some necessary definitions and also
give a new result that links together minimal contrast
subgraphs and two other types of graphs: minimal
contrast vertex sets and minimal contrast edge sets.
The focus of this paper will be on finding minimal
contrast subgraphs between a single positive graph and
a set of negative graphs. All graphs are assumed to be
undirected, labelled, simple graphs. The positive graph
is labelled Gp and each negative graph as Gn or Gni

.

Definition 2.1. A labelled graph G is a 4-tuple
(V, E, α, β), V is a vertex set, E ⊆ V × V is a set of
edges, α is a function assigning labels to vertices and β

is a function assigning labels to edges.

Definition 2.2. S = (W, F, α, β) is the subgraph of
G = (V, E, α, β) iff (1) W ⊆ V and (2) F ⊆ E ∩ (W ×
W ). Equivalently, G is said to be the supergraph of S.

S ⊆ G indicates that S is the subgraph of G and ⊂ is
used to indicate strict inclusion.
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Definition 2.3. I = (W, F, α, β) is the induced sub-

graph of G = (V, E, α, β) iff (1) W ⊆ V and (2)
F = E ∩ (W × W ).

Definition 2.4. An edge set is a labelled graph with
no isolated vertex.

Definition 2.5. Given G
′

= (V
′

, E
′

, α
′

, β
′

) and G =
(V, E, α, β), a subgraph isomorphism is an injective
function f : (V

′

) → V such that (1) ∀e
′

= (u, v) ∈ E
′

,
there exists e = (f(u), f(v)) ∈ E, (2) ∀u ∈ V

′

,
α

′

(u) = α(f(u)) and (3) ∀e
′

∈ E
′

, β
′

(e
′

) = β(f(e
′

)).

If there exists such a function, then G
′

is subgraph
isomorphic to G. If f : (V

′

) → V is bijective, G
′

is
isomorphic to G.

Definition 2.6. Given the graphs C ⊆ Gp, Gp and
Gn, C is a common subgraph iff it is subgraph
isomorphic to Gn.

Definition 2.7. C is a common edge set iff (1) it
is an edge set and (2) a common subgraph. C is a
maximal common edge set iff it is a common edge
set and there does not exist any strict superset which is
a common edge set. C is a maximum common edge

set if it is a common edge set and no other common
edge set has more edges than C.

Note that a maximum common edge set must
be a maximal common edge set, but not vice versa.
Our definition of maximum common edge set is the
same as the use of maximum common subgraph in the
literature [9, 11].
The following definitions are presented for the case
where there is a single negative graph Gn, but can be
straightforwardly extended to the situation where there
is a set of negative graphs {Gn1

, . . . , Gnk
}.

Definition 2.8. C ⊆ Gp is a contrast subgraph iff
C is not subgraph isomorphic to Gn. It is minimal if
all of its strict subgraphs are not contrast subgraphs.

Definition 2.9. C is a contrast edge set iff (1) it is
an edge set and (2) a contrast subgraph. It is minimal

if all proper subsets of C do not form contrast subgraphs.

Observe that any supergraph of a minimal contrast
subgraph will be a contrast subgraph.

Definition 2.10. Given a graph G = (V, E, α, β), a
partition π is a set of disjoint and non-empty subsets
of V called cells, such that the union of all the cells in
the set is V . Vertices in the same cell have the same
label and vertices in different cells have different labels.

Definition 2.11. Given Gp and Gn that are associ-
ated with the partitions πp = {cellp1 . . . cellpj} and
πn = {celln1 . . . cellnj} respectively, a minimal con-

trast vertex set is a subset of a cell in πp such that
its cardinality is exactly |cellnj | + 1.

A minimal contrast vertex set is a smallest possible
subgraph of Gp that i) has no edges and ii) does not have
any subgraph isomorphism to Gn, iii) contains vertices
all with the same label. Enumerating the collection of
minimal contrast vertex sets is a trivial task. The next
theorem establishes a relationship between minimal
contrast edge sets, minimal contrast vertex sets and
minimal contrast subgraphs.

Theorem 2.1. Given a positive graph Gp and a neg-
ative graph Gn, let MinES be the set of all minimal
contrast edge sets, let MinV S be the set of all min-
imal contrast vertex sets and let MinSG be the set
of all minimal contrast subgraphs. Then MinSG =
(MinES ∪min MinV S). Here ∪min indicates minimal
union, i.e. removal of any graphs which are supergraphs
of others in the set.

3 Related Work

We will briefly review areas that are relevant to the
concept of minimal contrast subgraphs.
Contrast Patterns: Contrasts have been used in
other areas of data mining, such as emerging patterns,
introduced by [3], which can be used to build high
accuracy classification models. It was shown that
there is a close relationship between the problem of
computing minimal emerging patterns and minimal
hypergraph transversals in [1]. We will demonstrate
a similar relationship but in a graph context, using
the algorithm from [1] to find the transversals as a
subroutine.
Frequent Subgraph Mining: In [5], Inokuchi
introduced AGM to mine all the frequent induced
subgraphs. FSG, gSpan and MoFa were introduced
to mine all frequent connected subgraph[8, 15, 2]. It
has been shown that frequent subgraph mining can
be modified to mine discriminative substructure [2].
However, the difference is these approaches are only
capable of mining a subset of the contrast subgraphs
(i.e. the non-isomorphic connected ones).
Maximum Common Subgraph: There are two main
classes of algorithms that compute maximum common
subgraphs. The first is based on the reduction of the
maximum common subgraph problem to the maximum
clique detection problem [4]. Another class is based on
the backtracking tree, introduced by McGregor [9].
Our algorithm for finding maximal common edge sets
is similar to work in [9] in its use of a backtracking
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tree, but differs since it is concerned with enumerating
all the maximal common edge sets, as opposed to
the maximum common edge sets. Its use of ordering
heuristics such as ordering of negative graphs and label
ordering also differs.
Other graph contrasting approaches: Work in
[12] examines how change in a time series of graphs
can be determined using global distance measures.
Contrasts between graphs are a focus of work in [6].
They propose a language that is able to query for
fragments that are frequent in one class of graphs,
but infrequent in another. A key difference from our
work is that a fragment is a linear substructure of a
compound. The advantage of using fragments is that
the complexity of mining is lower, but the disadvantage
is that richer and more complex contrasts can be missed.

4 Minimal Contrast Subgraph Miner

Our algorithm operates in three main stages. In the
first stage, it discovers the maximal common edge sets
between Gp and each given negative graph Gni

, using
a backtracking tree. Next, the maximal common edge
sets across for all Gni

are then unioned together and the
minimal transversals of their complements computed, to
yield the minimal contrast edge sets for Gp, with respect
to a set of negative graphs. Finally, these contrasts
are then minimally unioned with the minimal contrast
vertex sets to give the complete set of minimal contrast
subgraphs.

4.1 Duality Between Minimal Contrast and

Maximal Common Edge Sets We now formalise
the connection between the minimal contrast edge sets
and the maximal common edge sets. Suppose S =
{S1, S2, . . . , } is a set of sets, then S, the complement
of S, is the set of complements of each of the sets. i.e.
S = {S1, S2, . . .}.

Definition 4.1. Let A = {A1, A2, . . . , An} be a set
of sets. We say a set P is a transversal of A if
(P ∩ A1 6= ∅) ∧ (P ∩ A2 6= ∅) ∧ . . . ∧ (P ∩ An 6= ∅).
We say that P is a minimal transversal of A, if P is a
transversal of A and each P ′ ⊂ P is not a transversal
of A. We define Min Trans(A) to be the set of all the
minimal transversals of A.

The key idea is that the maximal common edge sets and
the minimal contrast edge sets are duals of one another.
Given a set of maximal common edge sets S, then the
minimal transversals of S is equal to the collection of
the smallest edge sets which are not contained in any
edge sets from S (i.e. the minimal contrast edge sets).
This is formalised in the following theorem.

Theorem 4.1. Given Gp and {Gn1
, . . . , Gnk

}, let Mi

be the set of maximal common edge sets between Gp

and Gni
. Then Min Trans(M1 ∪ M2 . . . ∪ Mk) is the

set of all minimal contrast edge sets between Gp and
{Gn1

, . . . , Gnk
}.

4.2 Finding the Maximal Common Edge Sets

The problem reduces to finding the set of maximal com-
mon edge sets between the positive graph Gp and a
negative graph Gni

. We do this by using a recursive
backtracking tree, similar to [9]. Each node of the tree
corresponds to a tentative mapping between a vertex in
the positive graph Gp = {Vp, Ep, αp, βp} and negative
graph Gni

= {Vn, En, αn, βn}, as well as corresponding
to a tentative common edge set. Associated with each
node, is an edge correspondence matrix where each cell
indicates whether an edge in Gp can correspond to an
edge in Gni

.
Without a priori knowledge, all cells in the matrix are
set to true at the root node, indicating that all the edges
can correspond to each other. Possibilities can then be
eliminated using a connectivity constraint. If node i is
paired with node j, all the edges connected to i can
only correspond to all the edges that connected to j. A
similar rule applies to edges that are not connected to
i and j. At the leaf node, all the rows that do not con-
sist of all zeros will represent an edge in the common
edge set C. This algorithm is unrealistic in its basic
form, because the number of possible paths is equal to

|Vn|!
(|Vn|−|Vp|)!

. To obtain better efficiency, more powerful

pruning is needed.
Non Maximal Common Edge Set Pruning: All
common edge sets must be maximal and so we should
only explore paths that lead to a maximal common edge
set. We therefore explore the tree in a depth first man-
ner. Suppose we have found a common edge set C1 and
at any node of the tree, a tentative common edge set
C2 is computed. We should not proceed downwards if
C2 ⊆ C1.
Ancestors and Leaf Equivalence Pruning: If the
tentative common edge set of a node’s parent is equiv-
alent to the common edge set of a leaf, then there is no
need to expand all the siblings of the node.
Local Maximal Common Edge Set Pruning: If
there is more than one negative graph, we find the the
maximal common edge sets between the positive graph
and each negative graph and then keep only the maxi-
mal common edge sets across all negatives. i.e. A com-
mon edge set may be a maximal common edge set be-
tween positive graph Gp and negative graph Gni

, but
this may be a superset of a maximal common edge set
between Gp and negative graph Gnj

. If Gp and Gni
are

compared first, we can use the maximal common edge
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set found to prune unfruitful paths when later compar-
ing Gp and Gnj

.
Vertex and Edge Label Pruning: If a vertex has a
label that does not appear in the other graph, the edges
attached to it must not be in any common edge set be-
tween the two graphs. This also applies to edges that
have a distinct label. We can therefore eliminate a row
or column that represents the edge in the edge corre-
spondence matrix. Also, edges can only be paired with
each other if their vertex labels at either end match.
Such incompatible edge pairings are eliminated stati-
cally before tree expansion. It is also possible to elimi-
nate distinct vertices from the mapping. Furthermore,
we should only pair vertices with same label together.
Ordering Strategies: It is obvious that the earlier we
reach the maximal common edge sets in the tree, the
earlier pruning can be performed. The first ordering
strategy considers the order in which both positive and
negative vertices should be considered within the tree.
For a given label, both positive vertices and negative
vertices are ordered from highest to lowest degree. The
intuition is that subgraphs containing vertices of high
degree will likely yield larger maximal common edge sets
and finding these earlier is advantageous.
The second strategy considers the order to be used
across labels. Our strategy is to first try the labels
which have largest distribution imbalance between the
positive and negative graph. The reason is that after
exhausting all the vertices with the same label in one
graph, the residual vertices in the other graph that has
the label cannot be mapped. Hence, they can elimi-
nated from mapping. In most cases, eliminating more
vertices implies more edges will be eliminated from the
edge correspondence matrix and so we can perform the
pruning earlier in the recursion tree.
The third strategy considers the order in which the neg-
ative graphs {Gn1

, . . . , Gnk
} should be contrasted with

the positive graph Gp. We use the heuristic that larger
negative graphs (having more vertices) should be com-
pared earlier, since a larger negative graph is likely to
have greater similarities with Gp and thus have larger
maximal common edge sets. These edge sets can then
be used to prune away common edge sets found in subse-
quent smaller negative graphs, using the local common
edge set pruning technique.

4.3 Minimal Transversal Computation and Re-

sult Merging Once the maximal common edge sets
have been computed, we need to derive the minimal
contrast edge sets via the relationship described in the-
orem 4.1. We use the hypergraph transversal algorithm
described in [1]. Once the minimal contrast edge sets
have been computed, the final step is to merge them

with the minimal contrast vertex sets. The merge oper-
ation must remove any minimal contrast edge set which
is a supergraph of a minimal contrast vertex set. The
superset testing is very efficient, since the minimal con-
trast vertex sets are graphs without edges. The mini-
mal contrast vertex themselves are trivial to compute,
directly from definition 2.11.

5 Performance Study

We conducted a number of experiments on both real
world and synthetic datasets. All experiments were run
on a 2.8GHz Intel Xeon PC, with 4 gigabytes of main
memory, running UNIX.
Synthetic Datasets: To study the performance of
the system in a controlled environment, we generated
a number of synthetic datasets with the data generator
used in [8, 15] and kindly provided by Michihiro Ku-
ramochi. We varied two principal parameters i) average
transaction size (number of graph edges) and ii) num-
ber of vertex labels.The number of edge labels was fixed
at 10, the number of positive graphs was fixed at 100
and the number of negative graphs was also fixed at
100. The number of vertex labels is expressed as a per-
centage of the average graph size. Graph 1 in Figure 1
shows the average running time when a positive graph is
contrasted against 100 negative graphs (this result has
been averaged over 100 different positive graphs). The
running time slowly increases as graph size increases.
However, the most dominant factor is the percentage of
different vertex labels available.
Real World Dataset: The real world data is a subset
of the dataset that was used in the Predictive Toxicol-
ogy Evaluation Challenge [13]. For the description of
the dataset, refer to [15, 8]. The positive class corre-
sponds to the 65 smallest non-carcinogenic compounds
and the negative class corresponds to the 65 smallest
carcinogenic compounds.
Graph 2 in figure 1 shows the runtime when the n small-
est positive graphs are contrasted against the smallest
n negative graphs. This time is divided by the number
of positive graphs in each case (so each data point ef-
fectively represents 1×n graph comparisons, where n is
the value of the x-axis). We can see that as the positive
graph becomes larger, the running time increases expo-
nentially. The running time is negligible for the very
small graphs.

6 Discussion

Comparing the running time results for this real world
data with those obtained for the synthetic data, a clear
difference is apparent. The former is far much more de-
manding. Indeed all contrasts for synthetic graphs of
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Figure 1: Experiment results

size 100 can be quickly mined, but real world graphs
of size more than 20 (the 65th graph) pose a signifi-
cant challenge. The reason is that most graphs in the
synthetic dataset contain vertices of all available label
types. However, most graphs in the chemical compound
dataset only contain a very small percentage of the total
number of available labels. This causes the the process
of finding maximal common edge sets in the chemical
compound dataset to be much harder, since for a given
positive/negative graph pair, the use of vertex label
pruning is much less effective for pruning search space
within the backtracking tree. We have also performed
a number of other experiments, not described here due
to lack of space. These are described in the full version
of this paper.
One technique for reducing the mining complexity is to
mine contrast graphs that satisfy a minimum support
threshold in the positive set of graphs. Such contrasts
could be easily found via an additional preprocessing
step, whereby an existing tool such as [15] or [8] is used
to find frequent subgraphs satisfying a minimum sup-
port constraint in the positive set of graphs. Each of the
resulting graphs is then individually contrasted against
the entire negative set, using ConSubGraphMiner. Any
minimal contrast subgraphs then found would be guar-
anteed to satisfy the minimum positive support con-
straint, as well as the zero negative support constraint.
However, the solution may not be complete because the
preprocessing tools can only mine frequent connected
and non-isomorphic subgraph.

7 Conclusions

We have introduced the data mining problem of minimal
contrast subgraphs. These patterns capture essential
contrast information between collections of graphs. We
have formally established the relationships between
minimal contrast subgraphs and minimal contrast edge
sets and also showed a duality that exists between
minimal contrast edge sets and maximal common edge

sets. We presented an algorithm for mining minimal
contrast subgraphs and demonstrated its ability to mine
contrasts from both real world and synthetic data.
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