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Abstract

This paper presents a unified view of a number of
dimension reduction techniques under the common
framework of tensors. Specifically, it is established
that PCA, and the recently introduced 2-D PCA
and Generalized Low Rank Approximation of Matri-
ces (GLRAM), are special instances of the higher or-
der orthogonal iteration of tensors (HOOI). The con-
nection of these algorithms to HOOI has not been
pointed out before in the literature. The pros and
cons of these specializations versus HOOI are dis-
cussed.

Keywords: Tensor, HOOI , HOSVD, Dimen-
sion Reduction, Principal Component Analysis,
GLRAM

1 Introduction

Recently there has been a surge of interest in the use
of low rank approximations to tensors as a general
technique for dimension reduction of large amounts
of data in applications such as data mining and in-
formation retrieval [12, 8], face recognition [14], tex-
ture modeling [15, 17], speech discrimination [11], and
computer graphics [16]. The High-Order Singular
Value Decomposition (HOSVD) algorithm [3], and its
low-rank counterpart, the Higher Order Orthogonal
Iteration of Tensors (HOOI), see [4], can be viewed
as natural extensions to the Singular Value Decom-
position (SVD) and Principal Component Analysis
(PCA), when one is confronted with multifactorial or
N -way data rather than a common matrix.

A model problem along these lines is the fol-
lowing. We are given a set of matrices Mk, k =
1, 2, . . . K, all of the same dimension I × J . For
concreteness, we can think of these matrices as be-
ing bitmap pictures in a face database, or successive
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images in a motion picture, or images of a texture
viewed from various angles and under various light-
ing conditions. Whatever the source and nature of
these images, the problem we have before us is how
to approximately represent these images by a lower
rank approximation. Figure 1 shows how such a set
of images might be viewed as a tensor. The tensor
viewpoint will be emphasized in this paper.

M1

M2

MK

Mk = M(:, :, k)

I × J

Figure 1: Set of K matrices Mk ∈ R
I×J represented

as an I × J × K tensor M

There are a number of approaches to compressing
such a set of images, each of which gives a different
interpretation to the phrase ‘lower rank approxima-
tion’. Three typical approaches to dimension reduc-
tion of image sets are:

1. Standard SVD and PCA

2. GLRAM and 2DPCA

3. HOSVD and HOOI

Principal Component Analysis (PCA), which is
founded on the Singular Value Decomposition (SVD),
has been widely used in statistics and elsewhere [6].
An algorithm known as ‘Generalized Low Rank Ap-
proximation of Matrices’ (GLRAM) [20] has been re-
cently proposed as an alternative to PCA that re-
tains the 2-D structure of images and avoids first



vectorizing them as is done in PCA. A number of re-
searcher have proposed essentially the same algorthm
as GLRAM but under different names, G2DPCA and
Coupled Subspace Analysis [9, 18]. Higher-Order Or-
thogonal Iteration or HOOI [4] takes a further con-
ceptual leap by regarding a set of matrices as a sin-
gle entity, a ‘tensor’, or multi-dimensional data array,
and attempts to extend the truncated SVD algorithm
to such data objects.

While on the surface PCA, GLRAM, and HOOI
appear to be distinct computational choices, we will
demonstrate in this paper that HOOI encompases
both PCA and GLRAM as special cases. The fact
that well-known and successful algorithms like PCA
and GLRAM can be regarded merely as special cases
of HOOI provides, in itself, a compelling argument
for the power and generality of the tensor point of
view. The subordinate relation of PCA and GLRAM
to HOOI has not, to our knowledge, been documented
elsewhere.

In [20] it is argued that a combination of GLRAM
and PCA provides better reconstruction accuracy
that GLRAM by itself; we shall also demonstrate
that such a composite dimension-reduction strategy
is simply a disguised HOOI subjected to a restricted
iteration scheme.

1.1 SVD and PCA To apply Principal Compo-
nent Analysis (PCA) to dimension reduction of a set
of images, one must first vectorize the images. Each
image Mi ∈ RI×J is rearranged into a vector xi ∈ RN

where N = IJ is the number of pixels in the image.
First, define the mean image

µ =
1

K

K
∑

i=1

xi.(1.1)

and the covariance matrix

C = AAT ∈ RN×N(1.2)

where

A ≡ [y1, . . . , yK ](1.3)

yi = xi − µ, i = 1, . . . ,K .(1.4)

Low rank approximations to the data set A are
obtained by computing a small number r ≪ K of
the largest eigenvalues of C,

Cui = λui, i = 1, . . . , r(1.5)

and writing

C ≈ UrΛrU
T
r(1.6)

where Ur = [u1, . . . , ur] and Λr = diag{λ1, . . . , λr}.
Low rank apprximations to the images are obtained
by projecting each vectorized image into the range
space of Ur:

x̃i = UT
r (xi − µ) ,(1.7)

xi ≈ µ + Urx̃i.(1.8)

An alternative way to obtain the orthogonal
matrix Ur is by computing a truncated SVD of A ∈
RN×K , i.e.,

A ≈ UrΣrV
T
r ,(1.9)

where Σr = diag{σ1, . . . , σr} ∈ Rr×r is the diagonal
matrix containing the r largest singular values σ1 ≥
σ2 ≥ · · · ≥ σr of A, and Ur ∈ RN×r and Vr ∈ RK×r

are matrices whose columns are the leading r left and
right singular vectors of A, respectively. Regardless
of how Ur is obtained, the dimension-reduced images
are given by (1.8).

1.2 GLRAM While PCA requires the images
Mk to be vectorized, GLRAM maintains the 2-
dimensional nature of each image. It seeks a set
of core matrices M̃i ∈ Rr1×r2 , i = 1, . . . ,K, to-
gether with two projection matrices L ∈ RI×r1 and
R ∈ RJ×r2 having orthonormal columns, such that
the following optimal projection condition is reached:

(1.10) min
L∈RI×r1 , LT L=I

R∈RJ×r2 , RT R=I

M̃i∈Rr1×r2 , i=1,...,K

K
∑

i=1

‖Mi − LM̃iR
T ‖2

F .

Here r1 ≪ I and r2 ≪ J are prescribed numbers
controlling the degree of compression of the data.

The solution to (1.10) is computed iteratively.
First, it is observed [20] that minimizing (1.10) is
equivalent to maximizing Φ =

∑

i ‖L
T MiR‖2

F . This

removes the core matrices M̃i as unknowns. Then, an
alternating procedure is invoked in which the measure
Φ is minimized for L while R is fixed and then for R

while L is fixed. Specifically, starting with an initial
guess for R, the matrix

CL ≡

K
∑

i=1

MiRRT MT
i .(1.11)

is formed and its eigenvectors associated with the r1

largest eigenvalues are computed, i. e.,

CLuL
i = λL

i uL
i , i = 1, . . . , r1.(1.12)

Then L is set as L = [uL
1 , . . . , uL

r1
].



Interchanging the roles of R and L, one proceeds
similarly to compute a new R by forming

CR ≡

K
∑

i=1

MT
i LLT Mi.(1.13)

The eigenvectors uR
i , i = 1, . . . , r2, associated with

the largest r2 eigenvalues of CR are computed and
then R is set to R = [uR

1 , . . . , uR
r2

]. The process is
iterated until L and R converge to a stable pair of
matrices. The iteration does not necessarily converge
to the optimal solution of (1.10).

Finally, the core matrices M̃i are obtained by

M̃i = LT MiR, i = 1, . . . ,K(1.14)

and the low rank approximation to Mi is

Mi ≈ LM̃iR
T , i = 1, . . . ,K.(1.15)

The reader should compare (1.14) and (1.15) and note
the analogy to (1.7) and (1.8) of the PCA method.

The parallel to PCA can be tightened by defining
a mean image µ = 1

K

∑K
i=1 Mi and then replacing

(1.14) and (1.15) by

M̃i = LT (Mi − µ) R(1.16)

Mi ≈ µ + LM̃iR
T(1.17)

for i = 1, . . . ,K.

The 2D-PCA method proposed in [19] can be
considered a special case of GLRAM in which only
the right-side R projector is considered (in other
words, L is set to the I × I identity and drops out of
consideration).

2 Tensors

Next, we explain how the set of images Mk can be
compresssed in a way analogous to PCA and GLRAM
but by treating the data as a three-dimensional
tensor. The approach is known as Higher Order
Orthogonal Iteration (HOOI). It will be helpful to
first review some basic properties of tensors.

A tensor is a generalization of a vector and a
matrix. A vector is one-dimensional; a matrix is
two dimensional; a tensor can have any number of
dimensions. A three dimensional tensor is a box of
numbers—a vector of matrices.

Tensors were originally introduced in physics to
describe linear relations between two vectors or mat-
ices (e. g., moment of inertial tensor, stress and strain
tensors). Tensor analysis became immensely popular
after Einstein used tensors as the natural language
to describe laws of physics in a way that does not
depend on the inertial frame of reference. In the

1960’s, Tucker [13] introduced tensors into psycho-
metrics as a way to analyze multi-way data sets (e. g.,
scores versus students versus test conditions). Circa
1970, more or less contemporaneously, Harshmann
proposed PARAFAC [5] and Carrol and Chang pro-
posed CANDECOMP [2] (the two algorithms are es-
sentially the same) as ways to perform factorial anal-
ysis on n-way data. In the early 1980’s Kroonen-
berg [10] gave a range of practical examples of ‘three-
mode principal component analysis’. Recently, De
Lathauwer et al. popularized HOSVD, a high-order
generalization of the SVD algorithm. HOSVD has
recently been applied to face recognition, image com-
pression, and other applications as well. MATLAB
toolboxes for tensors are available [7, 1].

2.1 Review of Tensors A T ’th order tensor is
denoted by A ∈ RI1×I2×···×IT ; a typical element is
Ai1,i2,...,iT

or A(i1, i2, . . . , iT ), 1 ≤ im ≤ Im. An
inner product can be defined on tensors:

〈A,B〉 =

I1
∑

i1=1

I2
∑

i2=1

· · ·

IT
∑

iT =1

Ai1,i2,...,iT
Bi1,i2,...,iT

(2.18)

which induces the Frobenius norm ‖A‖ = 〈A,A〉
1/2

.
Note that this inner product represents the common
dot product of the two tensors viewed as two long
vectors of length I1I2...IT each.

The mode-n product of a I1 × I2 ×· · ·× IT tensor
and a Jn × In matrix U is the tensor Bn = A ×n U

whose elements are

(2.19) Bn (i1, . . . , in−1, i, in+1, . . . , iT ) =

In
∑

k=1

A (i1, i2, in−1, k, in+1, . . . , iT ) U (i, k)

Note that the n-th dimension of the tensor B is Jn,
the row-dimension of U , while the other dimensions
are the same as those of A. For a 2-tensor A
represented by matrix A, the mode-1 product A×1 U

is simply the product UA, while the mode-2 product
A ×2 U corresponds to the product AUT . For a 3-
tensor A the mode-1 product B1 = A×1 U represents
the tensor with entries

B1(i, i2, i3) =

I1
∑

k=1

U(i, k)A(k, i2, i3)

So, using MATLAB notation, for each fixed i2 the
matrix B1(:, i2, :) is the result of the common matrix
product UA(:, i2, :) and, similarly, for each fixed i3,
the matrix B1(:, :, i3) is the result of the common



matrix product UA(:, :, i3). Similar interpretations
hold for products in the other 2 modes.

One can multiply by more than one mode, i. e.

A×n1
Un1

×n2
Un2

· · · ×np
Unp

.(2.20)

The order of the products is immaterial provided the
modes are all distinct (ni 6= nj ,∀ i, j). Using the
same examples as before, if A is an array representing
a second order tensor A then

A×1 U ×2 V = (A×1 U) ×2 V = UAV T .

When the same mode is involved, one has the
relation A×p U ×p V = A×p (V U). In particular, if
UT U = I, then A×p U ×p UT = A. Other properties
of n-mode products are:

1. 〈A ×p U,B〉 =
〈

A,B ×p UT
〉

.

2. If UT U = I, ‖A ×p U‖2
F = ‖A‖2

F .

3. A×n I = A, where I ∈ RIn×In is the appropri-
ately sized identity matrix.

The unfolding operation provides a bridge be-
tween the concept of tensors and the mathematical
machinery of matrices. The mode-n filaments of A
are the set of vectors x ∈ RIn of the form

x = A (i1, . . . , in−1, :, in+1, . . . , iT )(2.21)

where, 1 ≤ ik ≤ Ik, k 6= n. (the colon ‘:’ in
dimension n is to be interpreted in the MATLAB
sense).

The mode-n unfolding of A, denoted by A(n), is
the In×Sn dimensional matrix ,where Sn =

∏

i6=n Ii,
whose columns are A’s n-mode filaments ordered in
some way. In other words, if

π : I1 × · · · × In−1 × In+1 × · · · × IT → Sn(2.22)

is a 1-1 mapping from the set of indices of A, except
for the n’th index, to the integers 1, 2, . . . , Sn, then
the pq’th element of A(n) is

[

A(n)

]

pq
= A(i1, . . . , in−1, p, in+1, . . . , iT )(2.23)

where π(i1, . . . , in−1, in+1, . . . , iT ) = q. Equation
(2.23) can be interpreted as saying that index q selects
the filament (through the mapping π), and index p

selects the component of that filament. As indicated
by the relation

UA(n) = [A×n U ](n) ,(2.24)

we see that A ×n U can be thought of as replacing
each mode-n filament x by Ux.

In what follows we will deal with matrices of
the form C = A(n)A(n)

T , i. e., outer products of
unfolded tensors. Such matrices can be formulated
directly in terms of the original tensor A without the
intermediary of an unfolding step. For example, if A
is a third order tensor with dimensions I1 × I2 × I3

and C = A(1)A(1)
T , then

Cij =

I2
∑

p=1

I3
∑

q=1

AipqAjpq, i, j ∈ {1, 2, . . . , I1}(2.25)

= 〈A(i, :, :),A(j, :, :)〉 .(2.26)

In words, element Cij is the inner product of the ith

and jth slices of A, those slices being taken perpen-
dicularly to mode 1. Outer-products of unfoldings
taken along other dimensions can be reformulated in
a similar way.

2.2 Higher Order Orthogonal Iteration

Higher Order Orthogonal Iteration (HOOI) [3] is an
iterative algorithm for computing low-rank approxi-
mations to tensors. Let A be an I1 × I2 × · · · × IT

tensor and let r1, r2, . . . , rT be a set of integers
satisfying 1 ≤ rn ≤ In, for n = 1, · · · , T . The
Rank-{r1, r2, . . . , rT } approximation problem is to
find a set of In × rn matrices U (n) with orthogonal
columns, n = 1, 2, . . . , T , and a r1 × · · · × rT core
tensor B such than the optimization problem

min
U(1),U(2)...,U(T )

B

‖A − B ×1 U (1) ×2 U (2) · · · ×T U (T )‖2
F

(2.27)

is satisfied. It can be shown [3] that the optimal B is
given by

B = A×1 U (1)T
×2 U (2)T

· · · ×T U (T )T
,(2.28)

and that it is sufficient to find U (n)’s satisfying
UT U = IRn

that maximize ‖B‖2
F .

HOOI is an alternating least squares (ALS) ap-
proach to solving the Rank-{r1, r2, . . . , rT } prob-
lem. It successively solves the restricted optimization
problems

min
U(p)

‖A − B ×1 U1 ×2 U2 · · · ×T UT ‖
2
F(2.29)

in which optimization is done over the pth matrix U (p)

while the latest available values of the other U (i)’s,
i 6= p, are used in (2.28) and (2.29). It is a Gauss-
Seidel-like procedure that cycles dimension p through
1, 2, . . . , T etc. and for each p treats only U (p) as the
unknown.

For simplicity, the HOOI algorithm will be stated
for 3rd order tensors only. The extension to higher



M ∈ R
I×J×K L ∈ R

I×r1

R ∈ R
J×r2

V ∈ R
K×r3

≈
B

I

J

K

Figure 2: M approximated by B ×1 L ×2 R ×3 V .
Here B ∈ R

r1×r2×r3 is called the core tensor and
L ∈ R

I×r1 , R ∈ R
J×r2 , and V ∈ R

K×r3 are projection
matrices whose orthonormal columns approximately
span the range spaces of the various dimensions of
M.

order tensors is straightforward. To conform to the
notation used in subsequent sections, we will write R

for U (1), L for U (2), and V for U (3).

Algorithm 2.1. Higher-Order Orthogonal Itera-
tion (HOOI)

Input: I × J × K tensor A and numbers r1, r2, r3.
Output: L ∈ R

I×r1 , R ∈ R
J×r2 , V ∈ R

K×r3 , B.
Choose initial R, V , with orthonormal columns.
Until Convergence Do:

C = A×2 RT ×3 V T

L = SV D(r1, C(1))
D = A×1 LT ×3 V T

R = SV D(r2,D(2))
E = A×1 LT ×2 RT

V = SV D(r3, E(3))
EndDo
B = E ×3 V T

Here U = SV D(k,C) means compute the k’th-
order truncated SVD of C and then set U =
[u1, u2, . . . , uk] to the matrix whose columns are the
k largest left singular vectors ui of C. Just as PCA
can be based on either SVD or eigenvalue computa-
tions, the same is true of HOOI. In place of U =
SV D(k,C), one can obtain U as the matrix whose
column vectors are the unit eigenvectors associated
with the largest k eigenvalues of the matrix CCT .
We denote this alternative way of computing U by
U = EIG(k,CCT ).

If any of the reduced dimensions are maximum,
e. g., if r1 = I, say, or r2 = J , then it is unnecessary to
iterate on the first or second dimension, respectively.
L would be the I × I identity matrix, or R the
J × J identity. If r3 = K, V would be the K ×
K identity. As will be seen, such end cases are
important when trying to place other methods into
the tensor framework.

3 Relation of PCA and HOOI

We next show that PCA can be regarded as a special
case of HOOI.

Theorem 3.1. Let M be a 3rd order tensor with
dimensions I ×J ×K, and define individual matrices
by Mk = M(:, :, k). Let II ∈ RI×I and IJ ∈ RJ×J

be identity matrices. Assume that the matrices are
centered, i. e., that µ = 1

K

∑K
p=1 Mp = 0. Then the

following are equivalent:

1. Using HOOI to compute a Rank(I, J, r) approxi-
mation B×1II×2IJ×3Vr = B×3Vr to M, where
Vr ∈ RK×r is the projection matrix determined
by HOOI, and

2. Using PCA to compute projection matrix Ur ∈
RIJ×r.

In other words, PCA is a special case of HOOI in
which maximum ranks (r1 = I, r2 = J) are used for
the 1st and 2nd dimensions.

Proof. The PCA method rearranges each matrix
Mk into a vector xk ∈ RIJ , forms the matrix
A = [x1, . . . , xK ], and sets Ur = SV D(r,A).
HOOI, on the other hand, forms the matrix
C = (M×1 II ×2 IJ)(3) = M(3) and sets Vr =

SV D(r,M(3)). Note that A ∈ RIJ×K and M(3) ∈

RK×IJ . Because unfolding along the 3rd dimension
in the HOOI algorithm plays the same role as vector-
ization in PCA, we can, in fact, write

M(3) = AT P,(3.30)

where permutation matrix P ∈ R
IJ×IJ accounts for

the possibility that the mapping used for the unfold-
ing operation may be different than the mapping that
vectorizes Mk into xk.

Now suppose the singular value decomposition of
A is

A =
[

Ur Uc

]

[

Σrr 0
0 Σcc

] [

V T
r

V T
c

]

.(3.31)

PCA projects each vectorized matrix xk using x̃k =
UT

r xk, i. e.,

Ã = [x̃1, . . . , x̃k] = [UT
r x1, . . . , U

T
r xk] = UT

r A = ΣrrV
T
r .

(3.32)

It then approximately reconstructs each vector xk

from xk ≈ Urx̃k, i. e.,

A ≈ Are ≡ UrÃ = UrΣrrV
T
r .(3.33)

Are is the matrix whose columns are the (vectorized)
reconstructed matrices.



HOOI, on the other hand, projects M into the
core tensor B = M ×3 V T

r and then approximately
reconstructs M with B ×3 Vr. Now

B = M×3 V T
r ⇒ B(3) = V T

r M(3),(3.34)

that is,

B(3) = V T
r AT P = ΣrrU

T
r P.(3.35)

Accordingly, for the reconstructed tensor Mre,

M ≈ Mre ≡ B ×3 Vr ⇒ Mre
(3) = VrB(3).(3.36)

Using (3.35),

Mre
(3) = VrΣrrU

T
r P = AT

reP.(3.37)

In conclusion, just as M(3) = AT P , we also have
Mre

(3) = AT
reP . Although one method computes

a matrix of left singular vectors Ur and the other
computes a matrix of right singular vectors Vr, both
methods lead to the same reconstructed matrices.

4 Relation of GLRAM and HOOI

In this section we elucidate the relation of GLRAM
to HOOI applied to 3rd order tensors.

4.1 Model Problem Solved with Tensors It is
easy to see how the model problem of K size I × J

images Mk, k = 1, . . . ,K, can be compressed using
tensors. According to the tensor point of view, we
conceive of the images as arranged in a deck, like
a stack of photo-prints. With the images assembled
into a single, 3-rd order tensor Mi,j,k, 1 ≤ i ≤ I, 1 ≤
j ≤ J, 1 ≤ k ≤ K, the kth sagittal plane M(:, :, k)
becomes the image Mk.

To apply HOOI to M, we take as given numbers
r1, r2, and r3, where 1 ≤ r1 ≤ I, 1 ≤ r2 ≤ J , and
1 ≤ r3 ≤ K. The HOOI algorithm yields three
projection matrices R ∈ RI×r1 , L ∈ RJ×r2 , and
V ∈ RK×r3 , all of which have orthonormal columns,
and a core tensor B ∈ Rr1×r2×r3 such that

M ≈ B ×1 L ×2 R ×3 V.(4.38)

We can rewrite (4.38) in a form that is almost
identical to (1.14) and (1.15) for GLRAM. To do this,
define core matrices,

M̃k ≡ B ×3 V (k, :), k = 1, 2, . . . ,K,(4.39)

i. e. form K core r1×r2 matrices by taking the inner
produce of each mode-3 filament of B with the kth

row of V . Then (4.38) can be written equivalently as

Mk = LM̃kRT , k = 1, 2, . . . ,K.(4.40)

In other words, HOOI is a form of GLRAM in which
the core matrices M̃k themselves are recontructed
from B and the V (k, :)’s.

To see this in detail, note first that (4.39) means

(

M̃k

)

pq
=

r3
∑

r=1

BpqrVkr.(4.41)

Accordingly, (4.38) can successively be reworked as

Mijk =

r1
∑

p=1

r2
∑

q=1

r3
∑

r=1

BpqrLipRjqVkr(4.42)

=

r1
∑

p=1

r2
∑

q=1

Lip

(

r3
∑

r=1

BpqrVkr

)

Rjq(4.43)

=

r1
∑

p=1

r2
∑

q=1

Lip

(

M̃k

)

pq
Rjq(4.44)

=
(

LM̃kRT
)

ij
,(4.45)

which is the component-wise statement of (4.40).

4.2 GLRAM as a Special Case of HOOI

The relation between GLRAM and HOOI is further
clarified by the following theorem.

Theorem 4.1. Let M be a 3rd order tensor with
dimensions I × J × K, and let IK be the K × K

identity matrix. Then the following are equivalent:

1. Using HOOI to compute a Rank(r1, r2,K) ap-
proximation B ×1 L ×2 R ×3 IK to M, and

2. Using GLRAM to compute projection matrices
L ∈ RI×r1 , R ∈ RJ×r2 and core matrices M̃k =
B(:, :, k).

In other words, GLRAM is a special case of HOOI in
which the maximum dimension is used for r3 (i. e.,
r3 = K).

Proof. The proof consists in working out the formu-
las for HOOI when maximum rank, i. e. r3 = K, is
specified for the third dimension, and showing that
the resulting formulas coincide with GLRAM. An im-
mediate consequence of maximum rank on the 3rd di-
mension is that we can choose any orthognal K × K

matrix as the projector for the third dimension; for
simplicity, we choose the identity IK .

With U (1) = L, U (2) = R, and U (3) = IK , con-
sider first the calculation of L. Using the eigenvalue
formulation of HOOI, we have for the L update:

C =
(

M×2 RT ×3 IT
K

)

(1)
(4.46)

L = EIG(r1, CCT ).(4.47)



Let C = M×2 RT ×3 IT
K . Then, from the definition

of mode-n products,

Cipq =

r2
∑

s=1

K
∑

t=1

Mist(R
T )psδtq(4.48)

=

r2
∑

s=1

MisqRsp = (MqR)ip ,(4.49)

where δtq is the Kronkecker delta function and where
we have written Mq = M(:, :, q) for the matrices used
in GLRAM.

Since C is the mode-1 unfolding of C,

(CCT )ij =
J
∑

p=1

K
∑

q=1

CipqCjpq(4.50)

=

J
∑

p=1

K
∑

q=1

(MqR)ip (MqR)jp(4.51)

=

K
∑

q=1

(MqRRT MT
q )ij .(4.52)

In HOOI, the columns of L are set to the leading
eigenvectors of CCT ; in GLRAM, they are set to the
leading eigenvectors of

∑K
q=1 MqRRT MT

q . But we
have just shown that these matrices are the same.

In a similar way, HOOI updates R from

D =
(

M×1 LT ×3 IT
K

)

(2)
(4.53)

R = EIG(r2,DDT ).(4.54)

By interchanging the roles of the first and second
modes, a similar argument shows that

DDT =

K
∑

q=1

MT
q LLT Mq;(4.55)

the R computed by HOOI will therefore be the same
as the R computed by GLRAM.

Our earlier remark that 2DPCA amounts to
GLRAM with the left projection matrix L set to
the identity II establishes the following immediate
collorary of the above theorem.

Corollary 4.1. The 2DPCA algorithm can be con-
sidered to be a Rank(I, r2,K) HOOI.

4.3 GLRAM Plus SVD The identification of the
GLRAM algorithm as a special case of HOOI leads
to some practical consequences. For example, just
as a HOOI implementation can be based on either
eigenvalue or SVD computations, so can GLRAM. In
[20] only the eigenvalue approach is presented. The
following algorithm indicates how GLRAM can also
be carried out using SVD decompositions.

Algorithm 4.1. SVD-based GLRAM

Input: Mk, k = 1, 2, . . . ,K; intergers r1, r2.
Output: L ∈ RI×r1 , R ∈ RJ×r2 .
Choose initial R with orthonormal columns.
Until Converged Do

Form tensor C defined by C(:, :, q) = MqR

L = SV D(r1, C(1))
Form tensor D defined by D(:, :, q) = LT Mq

R = SV D(r2,D(2))
EndDo

In terms of tensor notation, C = M ×2 RT and
D = M×1 LT .

In [20], Ye et al. consider in some detail a
composite algorithm GLRAM+SVD consisting of the
following steps:

1. Apply GLRAM to generate feature matrices
M̃k = LT MkR.

2. Vectorize the feature matrices: x̃k =
vec(M̃k), k = 1, 2, . . . . ,K.

3. Compute an rth order truncated SVD of Ã =
[x̃1, . . . , x̃K ], i. e. Ã ≈ UrΣrVr.

4. Approximate x̃k by Urx̂k, where x̂k = UT
r x̃k,

k = 1, 2, . . . ,K.

Not surprisingly, GLRAM+SVD is intimately related
to HOOI, as is made clear by the following theorem.

Theorem 4.2. Let M be a 3rd order tensor and
define matrices Mk = M(:, :, k). Assume that the

matrices Mk are centered, i. e., µ = 1
K

∑K
k=1 Mk = 0.

Then the following are equivalent:

1. Use HOOI to compute a Rank(r1, r2, r3) approx-
imation B ×1 L ×2 R ×3 V to M, provided one
uses a restricted iteration scheme that only it-
erates between L and R until convergence, and
then calculates V without further iteration.

2. First use GLRAM to compute projection matri-
ces L ∈ RI×r1 , R ∈ RJ×r2 and feature matrices
M̃k = LT MiR; second, follow GLAM with an
rth
3 order PCA applied to the vectorized M̃k.

In other words, GLRAM+SVD is HOOI with a
restricted iteration that does not go back to update
L and R after computing V .

Proof. This theorem follows directly from theorems
(4.1) and (3.1). By theorem (4.1), the HOOI iteration
on the first and second dimensions leads to the same
projection matices L and R as GLRAM. Further,



by the definition of mode-n products, one has the
correspondences

M̃i = LT MiR ↔ B = M×1 LT ×2 RT(4.56)

Mre
i = LM̃iR

T ↔ Mre = B ×1 L ×2 R(4.57)

where M̃i = B(:, :, i) and Mre
i = Mre(:, :, i).

Note that the projected matrices M̃i will also be
centered, since

µ̃ =
1

K

K
∑

k=1

M̃k = LT

(

1

K

K
∑

k=1

Mk

)

R = LT µR

(4.58)

and µ = 0 by assumption.
The final step in the HOOI algorithm calculates

matrix V ∈ R
K×r and forms a new reconstruction

tensor

(

Mre ×3 V T
)

×3 V.(4.59)

By theorem (3.1), this process is equivalent to PCA
applied to Are = [xre

1 , . . . , xre
K ], each xre

i being the
vectorized Mre

i from the GLRAM step.

Because the standard HOOI goes back and ad-
justs L and R after V has been calculated, one ex-
pects that the resulting reconstruction error will be
smaller than with GLRAM-SVD. The amount of im-
provement in reconstruction error may not be much
in practice, however, as we shall see.

5 Application to Dimension Reduction

In light of the relationships uncovered in this paper,
we might consider PCA, 2DPCA, GLRAM, and
HOOI as belonging to the same family or class
of techniques, which, for want of a better name,
we might call Alternating Least Squares Projection
(ALSP) Methods. The relation between these various
methods is summarized in Figure 3.

The papers in the bibliography evidence the ef-
fectiveness of ALSP techniques applied to dimension
reduction and recognition problems. We focus here
on dimension reduction. HOOI is useful for dimen-
sion reduction because the memory required to store
projection matrices L, R, and V and the core matrix
B , i. e.,

Ir1 + Jr2 + Kr3 + r1r2r3

is often significantly less than the storage IJK re-
quired for the original I × J ×K tensor. For a given
choice for r1, r2, r3, PCA, 2DPCA, and GLRAM
achieve less compression of the core tensor (compared
to HOOI), but benefit from not having to store three

projection matrices. The storage for PCA, for exam-
ple, is 1

Kr3 + IJr3

and that for GLRAM is

Ir1 + Jr2 + r1r2K.

The storage for GLRAM+SVD will be the same as
HOOI. If centering is desired, an addition storage of
IJ is required for any of the ALSP methods.

Figure 4: Three representative face images from the
Yale Face Database. The first column shows the orig-
inal images as they appear in the Yale Database.
The remaining columns, from left to right, are
reconstructed images using HOOI, GLRAM+SVD,
GLRAM, and GLRAM + CENTERING, respec-
tively. For the reconstructed images, r1 = 20 and
r2 = 20. HOOI and GLRAM+SVD used r3 = 20
as well. GLRAM and its centered variant do not
project along the 3rd dimension, and for these, in ef-
fect, r3 = 165.

5.1 Example Let us briefly consider an example
of dimension reduction and reconstruction of images
using HOOI and GLRAM.

Figure 4 shows a selection of three re-
constructed face images obtained by apply-
ing HOOI, GLRAM+SVD, GLRAM, and
GLRAM+CENTERING to the entire set of images
in the Yale Face Database. This publically available
database consists of 165 GIF images of 15 subjects,
each in 11 poses 2. In this example, the original

1It is interesting to note that for the standard version of

PCA as outlined in section 1.1, projection matrix Ur3 uses

storage IJr3 and the ‘feature’ vectors x̃j , j = 1, 2, . . . , K take

up storage Kr3. For the HOOI version of PCA, the situation

is reversed: the projection matrix V requires Kr3 for storage

and the core tensor requires IJr3.
2The 11 poses are: centerlight, glassees, happy, leftlight,

noglasses, normal, rightlight, sad, sleepy, surprised, and wink.
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Figure 3: Relation of ALSP methods for reducing a I × J × K tensor. HOOI reduces all dimensions. PCA
reduces only the 3rd dimension. GLRAM reduces the 1st and 2nd dimensions; as a special case, 2DPCA
reduces only the 2nd. GLRAM+SVD reduces first on the 1st and 2nd dimensions, then reduces on the 3rd.

image tensor M had dimensions I = 112, J = 92,
and K = 165. All the reconstructed images used
r1 = 20 and r2 = 20 for the projectors L and R.
For the projector along the third dimension (V
or U), HOOI and GLRAM+SVD used r3 = 20.
GLRAM and GLRAM+CENTERING, of course,
used the trivial full-dimension projector r3 = 165.
By GLRAM+CENTERING we mean subtracting
away and later adding back the average image µ as
in equation (1.16). Table 1 gives some statistics for
this example. In the table, Root-Mean-Squared-Error
or RMSE is defined by

RMSE =

√

√

√

√

K
∑

k=1

‖Mk − M̃k‖2
F .(5.61)

As expected from our theory, HOOI and
GLRAM+SVD yield images of essentially the same
quality. The quality of the GLRAM images (and
GLRAM+CENTER) is much better of course, but
this is due to the much lower compression ratios of
these latter methods (24 and 21, respectively, com-
pared to 111). Referring to the RMSE row in ta-
ble 1, we see that the reconstruction error is slightly
lower for HOOI compared to GLRAM+SVD. This
is because HOOI goes back and computes new val-
ues for L and R based on the V computed from the
previous iteration; GLRAM+SVD does not. The re-
duction in error from this is negligibly small, how-
ever, and it is done at a cost: HOOI has significantly
greater run time than GLRAM+SVD. (The question
of run-time efficiency bears closer scrutiny, but is be-
yond the scope of this paper.) Looking at the last
two columns of Table 1, we see that centering also

improves the RMSE, but again the amount of im-
provement is small, and the need to store the average
image µ brings down the compression ratio from 24
for GLRAM to 21 for GLRAM+µ. Judging from the
example with the YALE Faces Database, it seems
that centering is not a particularly useful operation
for image reconstruction.

Given the range of choices available for the
selection of r1, r2, and r3, one may ask whether it is
possible for HOOI to outperform GLRAM in terms
of cost for the same resulting accuracy. Though the
issue of cost is beyond the scope of this paper, we
consider the more limited question of whether, for a
given accuracy, HOOI may lead to better compression
than GLRAM. To investigate this question, we apply
HOOI to the Yale Faces Database using a wide
variety of choices for r1, r2, and r3, taking care that
the compression ratio remains fixed at 24, which is
the compression attained by GLRAM in Table 1; for
this level of compression, GLRAM has a RMSE of
0.09689. What sort of accuracies can HOOI achieve
at this compression ratio?

The results are given in Table 2. Surprisingly,
HOOI yields only a slight improvement in accuracy
when r1, r2, r3 are favorably chosen (the decrease in
RMSE is only about 1.9% when r1, r2, r3 = 24, 24, 89,
the best choice of the cases we tried). Part of the
reason for this lackluster improvement is that HOOI,
vis-a-vis GLRAM, has the additional overhead of
storing a projection matrix for the third dimension,
and the storage cost of V not negligible since K and
r3 are both relatively large.

Specializations of HOOI which only project along
a subset of a tensor’s dimensions have the advantage



HOOI GLRAM+SVD GLRAM GLRAM+µ

r1, r2, r3 20x20x20 20x20x20 20x20x165 20x20x165
run time(s) 2.93 1.66 1.17 1.18
compression ratio 111 111 24 21
RMSE 0.17324 0.17348 0.09689 0.09636

Table 1: Statistics for Yale Faces Database. I × J × K = 112 × 92 × 165. HOOI used 2 iterations, and
the projection matrices R and V were initialized to matrices with random element taken from a uniform
distribution.

of needing to store fewer projectors. In our example,
the advantage of economization of projectors largely
offsets the cost of GLRAM’s larger core matrices. In
other examples the tradeoff may tip differently to one
or the other method.

6 Conclusion

This paper provides a taxonomy of Alternating Least-
Squares Projection methods in which a variety of
recently published techniques—2D-PCA, GLRAM,
CLRAM+SVD, G2DPCA, Coupled Subspace Analy-
sis (CSA)—are all shown to be special cases of HOOI.
The contribution of this paper, then, is not the dis-
covery of a new method; rather, it consists in the sys-
temization of an outcropping of new methods, show-
ing that what was thought to be a multitude is really
an organized unity, this unity being achieved through
the concept of tensors.

Certain connections between the algorithms dis-
cussed in this paper have been pointed out by others.
The authors of GLRAM, G2DPCA, and CSA (essen-
tially the same algorithm) were certainly aware of 2D-
PCA, and it is likely that they were lead to the dis-
covery of their own algorithms by attempting to gen-
eralize 2D-PCA; hence, the connection of GLRAM
(G2DPCA, CSA) to 2D-PCA is not new. Likewise,
the authors in [18] explicitly discuss the relation of
CSA to PCA. Yet none of these authors draws a link
between their algorithms and the tensor-reduction al-
gorithm HOOI.

The elucidation of these links bears some prac-
tical fruit. For example, the relation of GLRAM to
HOOI has suggested a way to do GLRAM using SVD
rather than eigenvalue computations. While we have
shown GLRAM+SVD to be equivalent to HOOI with
a restricted iteration scheme, the drop in RMSE by
going back and updating L and R after V is com-
puted, in fact, was found to be negligible, at least
for our example. Moreover, GLRAM+SVD seemed
to be significantly more efficient than HOOI, and
it is phrased entirely in the familiar terms of ma-
trices, a pedagogical advantage. Tensor proponents
should not, therefore, scoff at GLRAM+SVD: it can

be thought of as a judicous specialization of HOOI
that is more efficient and more easily understood.
Nevertheless, without climbing the hill to the ten-
sor vantage point, we suspect other ‘new’ algorithms
will be discovered that turn out to be specializations
of HOOI in disguise.
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