
Feature Selection with the logRatio Kernel

Julien Prados∗ Alexandros Kalousis* Melanie Hilario*

Abstract

In this article we present a novel kernel function,
logRatio, which was designed to address two common
problems in biological applications: data preprocessing
and attribute interaction modelling. An extension of the
SVMRFE feature selection algorithm was built around
this new kernel function and compared with the original
on a number of biological data and text classification
problems. Experiments showed that SVMRFE based
on the logRatio kernel detects relevant information
and handles attribute redundancy more effectively than
SVMRFE coupled with other kernels.

1 Introduction

Machine learning is faced with an ever increasing num-
ber of application problems involving very high dimen-
sional data. Experimental biology is a rich source of
such applications, as high throughput methods pro-
duce huge quantities of data comprising tens of thou-
sands (DNA-microarrays) or even hundreds of thou-
sands of features (mass-spectrometry). This extremely
high dimensionality poses serious computational and
data-analytical problems collectively known as the curse
of dimensionality. Different approaches have been inves-
tigated to alleviate such problems; one of these is feature
selection, which reduces dimensionality by focusing the
data mining process on a subset of relevant features.

An effective feature selection algorithm is SVM-
RFE (Support Vector Machine Recursive Feature
Elimination)[7]. It capitalises on the remarkable perfor-
mance of—usually linear—SVMs on high dimensional
problems and creates nested subsets of attributes based
on their impact on the SVM model predictions. How-
ever SVMRFE is sensitive to data normalisation and
attribute redundancy, two common issues in biological
data.

In this paper we introduce a kernel function, lo-
gRatio, which has been specifically designed for biolog-
ical problems. Its properties allow us to define an at-
tribute selection method in the spirit of SVMRFE but
without its drawbacks. In the rest of this introduction
we review some basic concepts before presenting our

∗Centre Universitaire d’Informatique, University of Geneva

method. In Section 2 we introduce the logRatio ker-
nel and the adaptation of SVMRFE to this kernel; in
Section 3 we investigate the behavior of our approach
in a number of experiments using both controlled and
real-world datasets.

1.1 Support Vector Machines (SVM) Support
Vector Machines are linear binary classifiers which find
the maximal margin hyperplane that separates posi-
tive from negative instances[2]. Through the use of
kernel functions (K(x, z) = 〈φ(x).φ(z)〉) they can im-
plicitly map instances onto a feature space where lin-
ear separation is performed which might induce non-
linear separation in the initial space, depending on the
projection function φ. For example, a polynomial ker-
nel of degree 2 implicitly converts a vector x of n at-
tributes into a vector φ(x) of n2 attributes contain-
ing all pair-wise products of attributes of x (that is,

φ(x) = (xixj)
(n,n)
(i,j)=(1,1)), and the linear separation com-

puted by SVM in that space is not linear in the original
space.

The decision function, f(x), learnt by SVM is the
equation of the separating hyperplane in the feature
space. It is expressed as a linear combination of
kernel functions, K(., .) between training instances (T =
{(xi, yi)|xi ∈ ℜn, yi ∈ {−1, 1}}) and the test instance
(x ∈ ℜn). The linear coefficients, αi, and the intercept,
b, of the hyperplane are determined during learning.
The final form of f(x) is:

(1.1) f(x) = sgn(
∑

i

yiαiK(xi,x) + b)

If K(., .) is the linear kernel, i.e. the standard dot
product, then the feature space and the initial space
coincide. In this case a simplification of f(x) is possible
where the normal vector, w =

∑

i yiαixi, of the
separating hyperplane is used:

f(x) = sgn(
∑

i

yiαi〈xi.x〉 + b)(1.2)

= sgn(〈w.x〉 + b)(1.3)

This simplification facilitates the interpretation of SVM
models because it associates a weight, wi, to each
attribute of the initial space; these weights can be used

to identify those attributes which contribute most to
the model’s prediction. The next section shows how
SVMRFE makes use of this interpretation to perform
attribute selection.

1.2 SVMRFE This feature selection algorithm was
originally proposed in [7]. It eliminates the attributes
with the lowest influence on the predictions of an SVM
model. An attribute is considered ”useless” if large
variations of its value result in small changes in the
model’s predictions. In the linear kernel case, these
attributes are easy to identify from Eq. (1.2): they are
the ones with the smallest absolute weight value, |wi|.
SVMRFE establishes an attribute ranking by repeating
the following three steps: 1) learn a linear SVM, 2)
rank attributes according to their |wi| values, and 3)
eliminate the lowest ranked attributes.

Several extensions to SVMRFE have been pro-
posed. Some of them try to relieve the computational
burden by intelligently estimating the number of at-
tributes to remove in each RFE iteration [5, 4]. In their
original article, Guyon et al. [7] proposed an extension
to non-linear kernels, in which attributes were removed
in such a manner that predictions before and after re-
moval were as close as possible. This criterion was mod-
ified to improve feature selection results in [14] and [11].
Finally, other authors decoupled feature selection from
the linear kernel by using a set of attribute-scaling pa-
rameters based on, but distinct from, the attribute coef-
ficients of the learnt SVM model. Chapelle et al.[1] use
these scaling factors to select the attributes to remove,
while Weston et al.’s [13] iterative adjustment process
approximates a 0-norm SVM which automatically dis-
cards some attributes.

One problem of SVMRFE and its extensions is
their sensitivity to data preprocessing, in particular to
data normalisation. If no normalisation is performed,
each element wi of the weight vector comprises both
a corrective normalisation factor and a factor related
to the actual importance of the ith attribute. The
normalisation factor distorts SVMRFE’s interpretation
of attribute importance. It is thus indispensable to
perform attribute normalisation in order to allow for
meaningful comparison of attributes. Unfortunately,
there are diverse ways of normalising attributes, and
it is not clear which of these methods fully cancels out
the corrective factor. Moreover, the result of attribute
normalisation is affected by instance normalisation,
which plays an important role in biological applications.
Biological data often arise from experiments which are
liable to errors (e.g. non-intended variations in sample
quantities) that affect the reported values. In order to
produce attribute values which are comparable across

instances (e.g., when the same experiment is repeated
several times, or the same measurement is taken from
different individuals), a multiplicative factor is typically
applied to instances that sets their norm to one (e.g.
total ion current in mass spectrometry[9]). Once again,
this does not necessarily yield the ideal normalisation
coefficients.

In the next section we describe the logRatio ker-
nel function, whose properties allow us to define an at-
tribute selection algorithm, based on SVMRFE, that
overcomes the data normalisation problems.

2 Method

2.1 logRatio kernel The feature space of the logRa-
tio kernel is defined by the function φ that projects an
instance x, with n attributes, onto the vector φ(x), with
n2 features, which contains the logarithms of all pair-
wise ratios of the attributes of x:

(2.4) φ(x) =

(

log
xi

xj

)(n,n)

(i,j)=(1,1)

Our interest in this representation comes from the fact
that biologists make heavy use of a similar quantity,
also based on logs of ratios, in their comparative analy-
sis of expression data, and in particular in DNA mi-
croarray analysis[10] (although it has recently been
criticised[12]). However our use of logs of ratios is fun-
damentally different. In comparative DNA microar-
ray experiments, log ratios are taken over the values
of a given attribute in two different specimens, one of
which is the reference specimen. By contrast, we de-
fine log ratios between different attributes of a single
specimen; each attribute is expressed relatively to every
other attribute, thus rendering normalisation unneces-
sary, whether through the use of reference specimens
or some other procedure. The only assumption is that
all attributes represent commensurate quantities, e.g.
concentrations of genes, frequencies of words, etc. The
log of a ratio has the interesting property that its sign
is related to the result of the comparison between the
numerator and the denominator, and its value changes
according to the magnitude of the difference. The lo-
gRatio representation is interesting because it combines
attributes pairwise (as does the polynomial kernel of de-
gree 2) and hence focuses learning on attribute-attribute
interactions, a central issue in biology. It is also clear
that the logRatio mapping is insensitive to instance nor-
malisation because ∀α > 0 : φ(αx) = φ(x).

A similar representation was proposed in [6], where
the authors defined new attributes whose values result
from attribute comparisons in the form of I(xi >
xj), where I(true) = 1 otherwise 0. However their
representation was defined explicitly, and not through a

Figure 1: Example of visualisation of 64 components
of φ(x) vector in logRatio feature space, by plotting
logarithms of the 8 components of (log(x)).

kernel function, rendering learning on it intractable as
the number of initial attributes increased.

The logRatio representation is easy to visualise and
interpret. Because log xi

xj
= log xi − log xj , it is possible

to visualise all the n2 components of the vector φ(x) by
plotting only the n components of logx, and considering
all differences between the components (see figure 1).

It is relatively easy to show that the logRatio
kernel is actually the covariance of the log-transformed
instances:

K(x,y) =
∑

i,j

log
xi

xj
log

yi

yj
(2.5)

= 2n(n − 1) cov(log(x), log(y))(2.6)

Covariance is simply the dot product of two vectors from
which their corresponding mean values have been sub-
tracted. Thus learning with the logRatio is equivalent
to: 1) transforming the dataset values to their loga-
rithm; 2) subtracting the mean from each instance; 3)
learning with the linear kernel. At first glance, this is
very similar to linear learning, but we will see that in
reality the logRatio representation changes our interpre-
tation of the results, leading to an interesting strategy
of attribute selection when the logRatio is integrated
into the SVM algorithm.

Properties: The following properties of the logRa-
tio kernel are easy to prove; they are also not surprising
because of the analogy with the linear kernel. The nota-

tions xα and y⊗z, denote, respectively, component-wise
exponentiation and division of vector elements.

K(αx,y) = K(x,y)(2.7)

K(x,y) + K(x, z) = K(x,y ⊗ z)(2.8)

αK(x,y) = K(x,yα) = K(xα,y)(2.9)

Note that attribute normalisation in the initial space
is equivalent to a translation in the feature space. If
attribute i is scaled by a factor βi, then φ(x) =
(

log βixi

βjxj

)

=
(

log xi

xj
+ log βi

βj

)

, that is, each feature

ij is translated by log βi

βj
. This property of the kernel

implies that the Euclidean distance of two instances in
the logRatio feature space does not change, no matter
how we normalise the attributes. Thus the logRatio
kernel could be used to implement a nearest neighbour
classifier that is insensitive to attribute and instance
normalisation. In the following, we will see that the
SVM classifier learnt with the logRatio is also insensitive
to any normalisation.

2.2 logRatio-SVM and logRatio-SVMRFE The
properties of the logRatio kernel allow a simplification
of the SVM decision function similar to the linear-SVM
simplification. Using properties (2.8), (2.9), Eq. (1.1),
and defining w =

∏

i xi
yiαi , the decision function

becomes:

f(x) = sgn(K(
∏

i

xi
yiαi ,x) + b)(2.10)

= sgn(K(w,x) + b)(2.11)

which is identical to the linear-SVM expression,
Eq. (1.2), except that the scalar product is replaced by
the logRatio kernel. The resulting expression is simpler
because w contains all the model information, and a
single computation of the kernel is required to make a
prediction. Again, this should not come as a surprise
because of the analogy with the linear kernel.

However, the interpretations of logRatio-SVM and
linear-SVM models are different. In both cases, φ(w)
is a normal vector of the maximal margin hyperplane;
however, in the linear case, φ(w) = w contains n linear
coefficients associated with the attributes of the initial
space, while in the logRatio case, φ(w) contains n2

linear coefficients associated with the features of the
logRatio space. The n2 linear coefficients of φ(w) in
logRatio space can be visualised similarly to Figure 1
by plotting the values of the log(w) vector. With such a
visualisation, we identify the most important coefficient
of φ(w) in absolute value as the one which combines the
two most extreme values (maximum and minimum). It
is even possible to rank the n2 features of the logRatio

space considering all the differences among the elements
of vector log(w). However this is of no interest to us,
first because it is time consuming, and second because
our goal is to rank the attributes of the initial space.

Recall that recursive feature elimination succes-
sively eliminates attributes deemed irrelevant. The
question is: how can we identify the attribute of the
initial space that has the smallest effect on the predic-
tions produced by logRatio-SVM? It is clear that this
is the attribute that produces the smallest linear coeffi-
cient when combined with all the others via the logRa-
tio transform, that is, the attribute k that minimises
∑n

i=1(| log(wi) − log(wk)|). In short, it is the attribute
k that has the median value of log(wk). If we rank
attributes k in increasing order of log(w), with the me-
dian in rank n/2, we can then rerank them according to
relevance based on their distance to (their rank wrt)
the median. The most relevant attributes are those
whose log(wk) values are farthest from the median—
either the minimum (rank 1) or the maximum (rank
n). By inserting this ranking strategy in an RFE loop,
we define the attribute selection algorithm logRatio-
SVMRFE (pseudo code given in algorithm 1).

Algorithm 1 logRatio-SVMRFE
1: Input: the dataset X
2: Output: r[] attribute ranking from worst to best
3: while X contains more than 1 attribute do

4: w ← train logRatio-SVM over X
5: Sort vector log w

6: F ← { attribute with median value in log(w) whose rank is
n/2 in the sorted vector plus, eventually, attributes with ranks
close to n/2 }

7: Eliminate from X the attributes in F
8: r ← r ∪ F
9: end while

Insensitivity to normalisation: SVM-logRatio
and SVMRFE-logRatio are insensitive to both instance
and attribute scaling, thus rendering data normalisa-
tion unnecessary. They are clearly insensitive to in-
stance normalisation because the logRatio kernel is
(property (2.7)). Concerning insensitivity to attribute
normalisation, we saw that attribute normalisation in
the initial space is equivalent to a translation of the
feature space, and distances between instances are in-
variant to such a transformation. As a consequence, the
maximal margin hyperplane learnt by logRatio-SVM is
just translated, but its direction is preserved. In other
words, the hyperplane’s intercept b changes, but its lin-
ear coefficients φ(w) remain identical. Hence attribute
normalisation has no impact on our interpretation of
logRatio-SVM models.

We performed the following experiment to verify
that the logRatio kernel is insensitive to and in fact
requires no normalisation. For a given dataset, we gen-
erated a denormalised version by multiplying each in-

stance and each attribute by a random positive number.
We then trained logRatio-SVM on both the original and
the denormalised versions. The models built on the two
version were identical. By contrast, we know that linear-
SVM requires data normalisation[7]. We therefore nor-
malised the dataset (using for instance L1-norm and at-
tribute standardisation), then trained linear-SVM mod-
els on both the original and the normalised versions.
The models obtained on the two datasets were differ-
ent.

Attribute redundancy in logRatio-SVM
models: A comment is in order concerning the effect of
attribute redundancy on the models learnt by logRatio-
SVM. In figure 1 we see the visual representation of
a vector w learnt with logRatio-SVM on some dataset;
consider the first three attributes a1, a2, a3, the values of
their weights are log w1 = −4, log w2 = 7, log w3 = −5.
The smallest linear coefficient of this model in the fea-
ture space is associated with the attribute combination
a1a3 (weight difference is only 1), i.e. this feature only
marginally influences the model’s decisions. On the
other hand, the combinations a2a3 (difference 12) and
a2a1 (difference 11) influence the model’s decisions con-
siderably. So, a1 and a3 are relevant when they are
combined with a2, but not when they are combined to-
gether.

This pattern of behaviour will appear when a1 and
a3 are redundant. In this case, the same information is
combined twice in a1a3, and so, logRatio-SVM learning
will assign it a small coefficient to the benefit of other
more informative attribute combinations such as a2a1

and a2a3. By generalising this observation, we can say
that if two attributes ai and aj are redundant, then
their values log wi and log wj are similar. However, the
opposite is not necessarily true: if two values log wi and
log wj are close, it is not necessarily because attributes
ai and aj are redundant.

3 Results

Two series of experiments were conducted on the logRa-
tio kernel. The first explored the behaviour of logRatio-
SVMRFE on small artificial datasets. The second eval-
uated the performance of logRatio-SVM and logRatio-
SVMRFE on high-dimensional datasets from the biolog-
ical domain. Note also that, unlike to Guyon et al.[7],
we implemented SVMRFE using ν-SVM[2] instead of C-
SVM. The advantage is that ν parameter is more consis-
tent from one RFE iteration to another whereas the C
parameter should be retuned at each RFE iteration[2].
Experiments were performed using package e1071 of R

language(http://www.r-project.org) which contains
a wrapper to libsvm-2.83 (http://www.csie.ntu.edu.
tw/~cjlin/libsvm). ν was fixed to ν = 0.3 in all ex-

periments.

3.1 Preliminary experiments The goal of these
exploratory experiments is to investigate the impact
of attribute redundancy and noise on the relative per-
formance of linear-SVMRFE and logRatio-SVMRFE.
In order to zoom in more precisely on the ex-
pected/observed effects, we chose to work on small sam-
ples derived from the “Iris” dataset (http://www.ics.
uci.edu/~mlearn/MLRepository.html). This study is
limited to the task of classifying the 100 instances of
the virginica and versicolor classes, the most difficult
to distinguish. Each flower is characterised by four at-
tributes that represent its petal/sepal length/width ex-
pressed in centimetres (henceforth cm-attributes). To
introduce redundancy, four attributes were added which
simply reexpressed the original attributes in millimetres
(henceforth mm-attributes). Noise was also injected
by adding a random number from the normal distri-
bution N (0, δmm) to each mm-attribute value, and a
random number from N (0, δcm) to each cm-attribute
value. This simulated two independent measurements
of the same value in different units. This repetition
of information is not necessarily useless because by av-
eraging noisy attributes expressed in centimetres with
those expressed in millimetres, we can expect a reduc-
tion in noise and an increase in measure precision. Thus,
the ideal behaviour of attribute selection algorithms on
this dataset depends on the parameters controlling the
noise (δ). Three dataset variants were studied in our
experiments: iris(δmm=0,δcm=0), iris(δmm=0,δcm=0.5), and
iris(δmm=5,δcm=0.5).

logRatio-SVM model analysis: We start
by analysing the logRatio-SVM model learnt on
iris(δmm=0,δcm=0). Figure 2 visualises the w vector
learnt by logRatio-SVM. Note the symmetry of the
mm and cm attributes which have similar weights.
This is in keeping with the expected behaviour and
correctly reflects their redundancy. It is interesting to
compare the model of Figure 2 with the correlation
coefficients of the attributes (Table 1). We can see that
Petal Length and Petal Width are highly correlated
(correlation coefficient of 0.96); thus as expected,
their weight values in the logRatio model are close.
However although Petal Length and Sepal Length are
also correlated, their distance in the model is high, i.e.
their combined feature has a high coefficient. Thus
logRatio-SVM is able to distinguish and utilize pairs
of attributes that contain important discriminative
information despite a high degree of redundancy. This
type of analysis of the logRatio-SVM models provides
end users with interesting feed-back that is especially
attractive in biological applications, where attribute

Sepal
Length
(cm)

Sepal
Width
(cm)

Petal
Length
(cm)

Petal
Width
(cm)

Sepal
Length
(mm)

Sepal
Width
(mm)

Petal
Length
(mm)

Petal
Width
(mm)

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Figure 2: logRatio-SVM model trained with
iris(δmm=0,δcm=0)

Sepal
Length

Sepal
Width

Petal
Length

Sepal Width -0.11
Petal Length 0.87 -0.42
Petal Width 0.81 -0.36 0.96

Table 1: Pearson correlation coefficients of all pair-wise
combinations of Iris attributes

interactions and associations are important.
Attribute selection results: We ran Linear-

SVMRFE and logRatio-SVMRFE on the three datasets,
removing a single attribute at each iteration of the
RFE loop. In the linear-SVMRFE case, attributes were
standardised beforehand whereas in logRatio-SVMRFE
case, no preprocessing was performed. Table 2 shows
the attribute rankings obtained.

Iris(δmm=0,δcm=0) contains no noise, that is, it de-
livers exactly the same information twice, though ex-
pressed in different units. An ideal attribute selection
algorithm should then eliminate one of the redundant
attributes independently of its unit. Table 2 shows that
logRatio-SVMRFE perfectly fulfils this task by top-
ranking four mutually non-redundant variables, whereas
linear-SVMRFE selects two variants of the same at-
tribute. This difference in behaviour certainly comes
from the fact that the linear kernel considers attributes
individually whereas the logRatio kernel examines at-
tributes by pairs and therefore readily captures at-
tribute redundancy.

In iris(δmm=0,δcm=0.5), only cm-attributes are noisy.

iris(δmm=0,δcm=0) iris(δmm=0,δcm=0.5) iris(δmm=5,δcm=0.5)

linear logRatio linear logRatio linear logRatio
1 PWmm SLmm PWmm SLmm PLcm PLcm

2 PLmm PLmm PLmm PLmm PWcm SLcm

3 PWcm PWcm PLcm PWmm PLmm PLmm

4 PLcm SWcm SWmm SWmm PWmm SWcm

5 SWcm SLcm PWcm PLcm SLmm PWcm

6 SWmm PLcm SLmm SLcm SLcm SLmm

7 SLmm PWmm SLcm SWcm SWcm PWmm

8 SLcm SWmm SWcm PWcm SWmm SWmm

Table 2: linear-SVMRFE and logRatio-SVMRFE rank-
ings on Iris. PL:Petal Length; PW:Petal Width;
SL:Sepal Length; SW:Sepal Width

The ideal attribute selection algorithm should eliminate
all cm-attributes and preserve mm-attributes, which
contain the original information. Table 2 shows again
that logRatio-SVMRFE behaves perfectly, as it places
the four mm-attributes on top of its ranking. Linear-
SVMRFE puts a cm-attribute in rank 3. This spurious
behaviour is certainly due to the impact of noise on
attribute normalisation. Since noise was added to
the cm-attributes, their standard deviation is greater
than that of the mm-attributes. As a consequence,
different normalisation coefficients are assigned to the
same information expressed differently, thus distorting
the weights and the ranking produced by linear-SVM
models. logRatio-SVMRFE doesn’t suffer from this
problem because it builds identical models whatever the
normalisation performed.

Finally, in iris(δmm=5,δcm=0.5), all attributes have
identical noise levels (δmm=5mm is equivalent to
δcm=0.5cm). Two variables expressed in different units
are complementary because by averaging them we can
reduce the impact of noise and improve precision of the
real value. Thus no specific behaviour of the ideal at-
tribute selection algorithm is expected a priori. How-
ever, we expect redundant attributes to be normalised
by the same factor since they convey the same informa-
tion and have identical noise levels. This is not what
linear-SVMRFE does, as noise perturbs estimation of
the attributes’ standard deviation; e.g. SLcm has a stan-
dard deviation of 1.3 but SLmm has a standard deviation
of 9.8. As previously, such normalisation differences can
bias interpretation of linear-SVM but not of logRatio-
SVM models.

To conclude, experiments on variants of the Iris
dataset clearly show advantages of logRatio-SVMRFE
and the inability of linear-SVMRFE to distinguish re-
dundant variables. logRatio-SVMRFE displays the
expected behaviour, which is not the case of linear-
SVMRFE. This advantage certainly comes from the
insensitivity of the method to data normalisation and
from the pairwise combination of attributes which al-

#Pos #Neg #Attribute Data Type
Alt 1425 2732 2112 Text
Structure 2621 927 2368 Text
Disease 2606 631 2376 Text
Function 3089 818 2708 Text
Breast 46 51 24481 DNA-microarray
StrokeRaw 101 107 28664 Mass Spectra
OvarianRaw 162 91 15154 Mass Spectra
ProstateRaw 69 253 15154 Mass Spectra

Table 3: Real datasets summaries. Columns #Pos
and #Neg indicate number of positive and negative
instances. MS: mass spectrometry

Kernel logRatio lin logLin poly logPoly
Alt 10.17 13.80 12.53 28.57 16.55

Disease 17.11 19.74 17.76 19.15 18.13
Structure 18.09 19.44 19.41 22.35 19.89
Function 19.17 19.98 19.91 20.78 20.01
Breast 28.86 29.89 32.98 40.20 41.23
StrokeRaw 18.26 15.38 16.34 36.05 39.42

OvarianRaw 0 1.18 0.39 7.50 0.79
ProstateRaw 7.45 6.52 7.76 10.24 10.24

Table 4: Classification error of SVM classifier estimated
by 10-fold-cross-validation for several kernel functions.
Bold characters show errors significantly higher than
logRatio; no error is significantly lower (according to
McNemar’s test[3] with 0.05 significance level).

lows a more accurate detection of redundancy. However
two questions remain open. The first concerns the rel-
evance of selected attributes: we focused mainly on re-
dundancy and still need to check the selected attributes’
discriminatory power. The second issue concerns the
ability of the logRatio kernel to deal with dimensionality
higher than that of Iris. These questions are discussed
in the next section where we study the classification er-
ror of the logRatio kernel on biological datasets of very
high dimensionality.

3.2 logRatio for biological data/text mining
Our biological data/text mining experiments concern
8 high-dimensional datasets involving binary classi-
fication problems (Table 3). Four text classifica-
tion datasets (Alt, Function, Disease and Structure)
were constructed from biological corpora[8]. Three
datasets contain raw mass spectrometry information
(ovarian cancer, prostate cancer and stroke)[9]. Fi-
nally, Breast contains gene expression data from DNA
microarrays (http://sdmc.lit.org.sg/GEDatasets/
Datasets.html).

The instances of the mass spectrometry datasets are
normalised by the ”total ion current” in accordance with
standard practice in the field. This is equivalent to set-
ting the L1-norm of the instances to a constant value.
The text datasets use the tf.idf representation, which

already takes into account the size of the documents;
thus we don’t perform instance normalisation on this
datasets. In the microarray dataset (Breast), each in-
stance originally contained log ratios of DNA expression
levels of an analysed sample to those of the reference
sample. To remove negative values we applied the ex-
ponential function so that the resulting dataset simply
contains ratios of expression levels.

All numerical values of these datasets are non-
negative, but the presence of null values hinders the
application of the logRatio kernel. In particular text
datasets are very sparse: instances of Alt, Function,
Structure and Disease have on average only 12 non
null attributes. We eliminated null values by each of
them replacing them with a positive value, ǫ, small
compared to all others. More precisely, all values under
the threshold ǫ were replaced by ǫ. The value ǫ = 0.01
was found to be appropriate for all the datasets.

Experiments on these datasets had two goals. The
first was to study the ability of logRatio to capture
relevant information in high dimensional data; this
was done by measuring logRatio-SVM’s classification
performance. At the same time we also get an indication
of the quality of the representation that the logRatio
uses. The second goal was to estimate the quality of our
interpretation of SVM-logRatio models; this was done
by measuring classification performance attained using
attributes selected with logRatio-SVMRFE.

3.2.1 SVM-logRatio Classification performance
achieved by logRatio-SVM is summarised in Table 4
and compared to that of lin-SVM and poly-SVM. The
latter two were built respectively with a linear and a
polynomial kernel of degree 2, and are similar in many
ways to logRatio. Additionally, to further increase
the similarity between the kernels, we effected a
logarithmic transformation of the data before applying
lin-SVM and poly-SVM (columns logLin and logPoly in
Table 4). Attributes were standardised within the cross
validation loop for all but the logRatio-based method,
which has not need for this transformation. The table
shows logRatio-SVM’s excellent performance: its error
rates are never significantly higher than those of the
other kernels, but always equal or significantly lower.
logRatio is particularly effective for text classification
tasks, on which it consistently achieves the lowest
errors (on Alt, significantly lower than the others).
This comes as a surprise given the initial abundance of
null values in these text datasets.

We see several reasons for these excellent results.
First, logarithmic transformation of the values seems to
play a beneficial role, as can be gathered by observing
the significant error decrease of logLin vs lin and of log-

200 500 1000 2000

0
10

20
30

40
50

feature

cv
 e

rr
or

 (
%

)

linear−SVMRFE + linear−SVM
logRatio−SVMRFE + logRatio−SVM
logLin−SVMRFE + loglin−SVM

200 500 1000 2000

0.0
0.2

0.4
0.6

0.8
1.0

feature

mc
ne

ma
r te

st

Alt

200 500 1000 2000

0
10

20
30

40
50

feature

cv
 e

rr
or

 (
%

)

linear−SVMRFE + linear−SVM
logRatio−SVMRFE + logRatio−SVM
logLin−SVMRFE + loglin−SVM

200 500 1000 2000

0.0
0.2

0.4
0.6

0.8
1.0

feature

mc
ne

ma
r te

st

Disease

200 500 1000 2000

0
10

20
30

40
50

feature

cv
 e

rr
or

 (
%

)
linear−SVMRFE + linear−SVM
logRatio−SVMRFE + logRatio−SVM
logLin−SVMRFE + loglin−SVM

200 500 1000 2000

0.0
0.2

0.4
0.6

0.8
1.0

feature

mc
ne

ma
r te

st

Structure

200 500 1000 2000

0
10

20
30

40
50

feature

cv
 e

rr
or

 (
%

)

linear−SVMRFE + linear−SVM
logRatio−SVMRFE + logRatio−SVM
logLin−SVMRFE + loglin−SVM

200 500 1000 2000

0.0
0.2

0.4
0.6

0.8
1.0

feature

mc
ne

ma
r te

st

Function

Figure 3: Results of the evaluation of SVMRFE per-
formance on text datasets. Top graphs show the evo-
lution of classification errors as the number of selected
attributes (n) increases; bottom graphs plot the signifi-
cance level of differences in error between the logRatio
kernel and the other two kernels (using McNemar test).
When a point is below the horizontal line at 0.05, errors
are considered significantly different.

5 10 50 100 500 1000 5000

0
10

20
30

40
50

feature

cv
 e

rr
or

 (
%

)

linear−SVMRFE + linear−SVM
logRatio−SVMRFE + logRatio−SVM
logLin−SVMRFE + loglin−SVM

5 10 50 500 5000

0.0
0.2

0.4
0.6

0.8
1.0

feature

mc
ne

ma
r te

st

OvarianRaw

5 10 50 100 500 1000 5000

0
10

20
30

40
50

feature

cv
 e

rr
or

 (
%

)

linear−SVMRFE + linear−SVM
logRatio−SVMRFE + logRatio−SVM
logLin−SVMRFE + loglin−SVM

5 10 50 100 500 5000

0.0
0.2

0.4
0.6

0.8
1.0

feature

mc
ne

ma
r te

st

ProstateRaw

5 10 50 100 500 1000 5000

0
10

20
30

40
50

feature

cv
 e

rr
or

 (
%

)

linear−SVMRFE + linear−SVM
logRatio−SVMRFE + logRatio−SVM
logLin−SVMRFE + loglin−SVM

5 10 50 500 5000

0.0
0.2

0.4
0.6

0.8
1.0

feature

mc
ne

ma
r te

st

StrokeRaw

5 10 50 100 500 1000 5000

0
10

20
30

40
50

feature

cv
 e

rr
or

 (
%

)

linear−SVMRFE + linear−SVM
logRatio−SVMRFE + logRatio−SVM
logLin−SVMRFE + loglin−SVM

5 10 50 500 5000

0.0
0.2

0.4
0.6

0.8
1.0

feature

mc
ne

ma
r te

st

Breast

Figure 4: Results of the evaluation of SVMRFE perfor-
mance on expression dataset.

Poly vs poly. Pairwise attribute combination also seems
important, since logRatio-SVM performs better than
linear kernels, which do not combine attributes. How-
ever, the way in which attributes are combined should
also be taken into account: poly-SVM and logPoly-
SVM, which consider pairwise products of attribute val-
ues, perform worse than logRatio-SVM. It is apparently
better to use ratios of attributes, which nullify normali-
sation errors, rather than their products, which tend to
amplify them.

SVM-logRatio’s edge over the other methods on the
text datasets is most likely related to data normalisation
problems in the presence of sparse data. In particular,
attribute standardisation is certainly not adapted to the
numerous null values (that we replace by ǫ) contained
in the datasets because it biases the estimation of the
standard deviation. It might be better to ignore those
values in the estimation of the standard deviation.
Note also that the number of instances in text datasets
is much higher than in the gene/protein expression
datasets; this allows us to distinguish classification
algorithms with very close performance results.

The above results give us reasons to expect good
behaviour from logRatio-SVMRFE: 1) logRatio-SVM
shows the best classification performance; 2) it has per-
fectly eliminated redundancy on Iris; 3) interpretation
of logRatio-SVM models should be more accurate than
interpretation of lin-SVM models because logRatio is
not sensitive to data normalisation. To check these ex-
pectations, the next section is devoted to a comparison
of attribute selection algorithms based on the logRatio
and linear kernels.

3.2.2 Attribute Selection with logRatio We now
focus on the evaluation of logRatio-SVMRFE and com-
pare its performance to that of lin-SVMRFE and logLin-
SVMRFE (obtained by applying lin-SVMRFE after
logarithmic transformation of the data). In each it-
eration of the RFE loop, 10% of the attributes are
removed to produce the rankings, then the n most
relevant attributes are selected. Classification algo-
rithms logRatio-SVM, lin-SVM and logLin-SVM are
then trained on the subset of n best attributes selected
by each method, and tested on a distinct validation set.
The whole process is repeated ten times producing an
estimation of the classification error by the resulting
ten-fold cross validation procedure. Again, attributes
are standardised within the cross validation loop for all
but the logRatio kernel, which does not require this pre-
caution. The classification error provides an estimation
of the quality of attribute selection: the smaller the er-
ror, the more discriminatory the selected attributes.

To simplify results, we limit our study to three

combinations of attribute selection and classifica-
tion algorithms: logRatio-SVMRFE+logRatio-SVM,
lin-SVMRFE+lin-SVM and logLin-SVMRFE+logLin-
SVM. Each attribute selection algorithm is coupled with
the classification algorithm for which it is expected to
select appropriate attributes. We provide results for all
the 8 datasets on Fig. 3 and Fig. 4. Finally, note that
in the case of big datasets (Alt, Disease, Structure and
Function), we were not able to compute results on sub-
sets of fewer than 200 attributes due to excessive learn-
ing time. The algorithm implemented in libsvm to find
the maximal margin hyperplane apparently fails to con-
verge when fewer than 200 attributes are selected using
logRatio kernel.

Figure 3 shows an interesting result on the Alt
dataset: with more than 30% of attributes left (around
600 over 2112), logRatio is still significantly better than
linear kernels. However, its performance remains stable
as the number of attributes decreases whereas that of
the linear kernels improves until the three performance
levels almost coincide. On Disease, logRatio’s perfor-
mance also remains stable at acceptable levels whereas
the error of the loglinear kernel increases abruptly with
300 selected attributes.

Despite satisfactory results on text datasets, we
observed a tendency of logRatio-SVMRFE to perform
worse than lin-SVMRFE when selecting attribute sub-
sets of less than 10 attributes (e.g. OvarianRaw,
ProstateRaw). This is due to a deterioration of lo-
gRatio’s performance rather than an improvement of
the linear kernel. Two reasons can explain this phe-
nomenon. First, our method of ranking attributes from
the logRatio-SVM model is inappropriate and leads to
elimination of informative attributes. This hypothesis
does not explain the good results obtained when select-
ing subsets of more than 10 attributes. The second,
more plausible explanation is that, when fewer than 10
attributes are selected, they are all individually infor-
mative. Of all possible pairwise combinations of the 10
selected attributes, only 5 mutually disjoint pairs convey
the full information, and all other pairs are of no use.
Thus logRatio has to work with 5 information sources
whereas the linear kernel can exploit 10.

4 Discussion and future work

There is yet another simpler alternative to the logRatio
kernel; it is based on the observation that the logRatio
kernel can be decomposed into a simpler kernel function,
Kcov, applied to the log-transformed training instances.
The mapping function, φcov, of the Kcov kernel, pro-
duces a vector of n2 features containing all pair-wise dif-
ferences of the n attributes of the initial log-transformed

space:

(4.12) φcov(x) = (xi − xj)
(n,n)
(i,j)=(1,1)

Then the Kcov kernel of two instances x, z is given by:

Kcov(x, z) =
∑

i,j

(xi − xj)(zi − zj)

= 2n(n − 1) cov(x, z)

The final kernel is simply given by:

K(x, z) = Kcov(logx, log z)

where logx is the component-wise application of the log
function on each of the features of x. The similarity of
the K kernel with the logRatio allows us to follow the
same reasoning and reach similar conclusions: 1) we can
visualise the feature space in the same way that we did
with logRatio, by plotting components of the w vector
(without log transformation); 2) it is possible to perform
feature selection in the same way as logRatio-SVMRFE,
by removing attributes according to their distance to
the median value. Furthermore, K has the advantage of
not being limited to strictly positive values; but, unlike
logRatio, K is sensitive to data normalisation. This
drawback was the main reason we did not consider it
further in our experiments.

The logRatio kernel offers several advantages in re-
lation to the biological domain: it requires no data nor-
malisation; it focuses learning on attribute-attribute in-
teraction; it is simple to visualise and interpret; and
finally it provides useful feed-back on redundancy of
the attributes. Moreover, the logRatio-SVMRFE at-
tribute selection algorithm is able to eliminate redun-
dancy. The classification performance of logRatio-SVM
is never lower than that of other tested kernels but sys-
tematically equal or higher. These results highlight the
quality of the logRatio data representation.

On the other hand, classification performance ob-
tained with attributes selected by logRatio-SVMRFE is
low when we select attribute subsets of small cardinal-
ity. This finding calls into question the way we interpret
logRatio-SVM models in order to rank attributes as well
as the utility of the pairwise combination of attributes in
real-world datasets. In future work, we intend to study
alternative interpretations of the logRatio-SVM model
in order to rank attributes, possibly in line with recent
extensions to lin-SVMRFE[14].

An interesting feature of the models learnt by the
logRatio-SVM is the clustering of the attributes accord-
ing to their weight values in the models. Redundant at-
tributes have similar weight values, i.e. cluster together,
while non-redundant and relevant attributes have quite

−40 −20 0 20 40

−
20

0
20

40

x

y

1

2

3

4

5

6

w13

Figure 5: Example of attribute interaction map we
would like to build from an SVM model. Each point
should represent one of the 6 attributes of the initial
space, and the distances the 62 linear coefficients of the
SVM model for each feature of the feature space.

different weight values, i.e. do not cluster together. We
would like to exploit further this model interpretation;
however, the expressive power of logRatio visualisation
is limited to a single dimension. Suppose we can pro-
pose an extension of the logRatio kernel in which the
learnt model can be visualised in two (or more) dimen-
sions. Each point will represent an attribute of the ini-
tial space, and the distance between two of them should
be equal to the linear coefficient associated to the cor-
responding attribute combination. Figure 5 shows an
example of the expected visualisation. Redundant at-
tributes would be displayed close to each other, and
relevant and non-redundant attributes far away. With
a second degree of freedom, the visualisation would in-
deed convey more information.

This kind of technique would be an ideal bioinfor-
matics tool for plotting gene/protein expression data
(e.g. Breast, Stroke, Ovarian, Prostate we used in this
article). Such visualisation provides simple and pre-
cious information to a biologist because it organises
protein-protein (or gene-gene) interactions: attributes
(e.g., genes or proteins) involved in interactions that
are relevant to class prediction will be located far from
each other, while those involved in interactions that are
not relevant would be located close to each other.

This kind of visualisation is also specially interest-
ing because it allows the end user to build his own clas-
sification model by selecting some of the attributes in
the displayed clusters. In Figure 5, for example, we can

remove two of the attributes in {1, 2, 4} without ad-
versely affecting predictive performance, since they are
close to each and thus probably redundant. Ultimately,
what is proposed to the user is not just a classification
model but an attribute configuration that can be ma-
nipulated and adjusted in accordance with the user’s
domain knowledge.

References

[1] Olivier Chapelle and Vladimir Vapnik. Choosing mul-
tiple parameters for support vector machines. AT&T

Labs Technical Report, 2000.
[2] N. et al. Cristianini. An Introduction to Support Vector

Machines and other kernel-based learning methods.
Cambridge University Press, 2002.

[3] T.G. Dietterich. Approximate statistical tests for com-
paring supervised classification learning algorithms.
Neural Computation, 10(7):1895–1923, 1998.

[4] Yuanyuan Ding and Wilkins Dawn. Improving the
performance of svm-rfe to select genes in microarray
data. BMC Bioinformatics, 7, 2006.

[5] C. Furlanello, M. Serafini, S. Merler, and G. Jurman.
Entropy-based gene ranking without selection bias for
the predictive classification of microarray data. BMC

Bioinformatics, 6, 2003.
[6] Donald Geman, Christian d’Avigon, Daniel Q.

Naiman, and Raimond L. Winslow. Classifying gene
expression profiles from pairwise mrna comparison.
Statistical Applications in Genetics and Molecular Bi-

ology, 3(1), 2004.
[7] Isabelle Guyon, Jason Weston, and Stephen Barnhill.

Gene selection for cancer classification using support
vector machines. Machine Learning, 46, 2002.

[8] A. Kalousis, J. Prados, and M. Hilario. Stability
of feature selection algorithms: a study on high-
dimensional spaces. Know. Inf. Sys., 2006.

[9] Julien Prados, Alexandros Kalousis, and Melanie Hi-
lario. On preprocessing of SELDI-MS data and its
evaluation. In CBMS, 2006.

[10] J. Quackenbush. Computational analysis of microarray
data. Nature Reviews — Genetics, 2, 2001.

[11] Rakotomamonjy. Variable selection using svm-based
criteria. Journal of Machine Learning Research, 3,
2003.

[12] A. Ultsch. Is log ratio a good value for identifying
differential expressed genes in microarray experiments?
Statistical Computing 2006, 2006.

[13] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil,
T. Poggio, and V. Vapnik. Feature selection for svms.
Proceedings of NIPS, 13, 2000.

[14] X. Zhang, X. Lu, and Q. et al. Shi. Recursive svm
feature selection and sample classificatio for mass-
spectrometry and microarray data. BMC Bioinformat-

ics, 7(197), 2006.

