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Abstract

Time series motifs are pairs of individual time series, or subsequences of a longer time series, 

which are very similar to each other. As with their discrete analogues in computational biology, 

this similarity hints at structure which has been conserved for some reason and may therefore be of 

interest. Since the formalism of time series motifs in 2002, dozens of researchers have used them 

for diverse applications in many different domains.

Because the obvious algorithm for computing motifs is quadratic in the number of items, more 

than a dozen approximate algorithms to discover motifs have been proposed in the literature. In 

this work, for the first time, we show a tractable exact algorithm to find time series motifs. As we 

shall show through extensive experiments, our algorithm is up to three orders of magnitude faster 

than brute-force search in large datasets.

We further show that our algorithm is fast enough to be used as a subroutine in higher level data 

mining algorithms for anytime classification, near-duplicate detection and summarization, and we 

consider detailed case studies in domains as diverse as electroencephalograph interpretation and 

entomological telemetry data mining.
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1 Introduction

Time series motifs are pairs of individual time series, or subsequences of a longer time 

series, which are very similar to each other [19]. Figure 1 illustrates an example of a motif 

discovered in an industrial dataset. Since the formalism of time series motifs in 2002, dozens 

of researchers have used them in domains as diverse as medicine [1], entertainment [6], 

biology [2], telemedicine [13], telepresence [3] and severe weather prediction [22].

Because the obvious algorithm for computing motifs is quadratic in m, the number of 

individual time series (or the length of the single time series from which subsequences are 

extracted), researchers have long abandoned the hope of computing the exact solution to the 

motif discovery problem, and more than a dozen approximate algorithms to discover motifs 

have been proposed [4][7][13][23][24][27][32]. Most of these algorithms are O(m) or O(m 
log m) with very high constant factors.

In this work, for the first time, we show a tractable exact algorithm to find time series motifs. 

While our exact algorithm is still worst case quadratic, we show that we can reduce the time 

required by three orders of magnitude. In fact, under most realistic conditions our exact 

algorithm is faster than the current linear time approximate algorithms, because they have 

such large constant factors.

As we shall show, our algorithm allows us to tackle problems which have previously been 

thought intractable, for example automatically constructing “dictionaries” of recurring 

patterns from electroencephalographs.

We further show that our algorithm is fast enough to be used as a subroutine in higher level 

data mining algorithms for summarization, near-duplicate detection and anytime 

classification [34].

1.1 Prior and Related Work

A theoretical lower bound on finding the closest pair of points in d dimensional space is O(n 
log n) [8]. However the hidden constant term with this lower bound is exponential with the 

number of dimensions d. For high dimensional data (i.e. long time series) this constant 

overhead dominates the running time and no known algorithm is more efficient than the 

brute force one. As such, the brute force algorithm is the obvious choice to find time series 

motifs exactly.

Given this, the most of the literature has focused on fast approximate algorithms for motif 

discovery [4][7][13][23][24][27][32], however there is one algorithm that proposes to 

exactly solve the time series motif problem. The FLAME algorithm of [33] is designed to 

find motifs in discrete strings (i.e. DNA), but the authors show that time series can be 

discretized and given to their algorithm. They note that their algorithm “is guaranteed to find 
the motif”. However, this is only true with respect to the discrete representation of the data, 

not with the raw time series itself. Thus the algorithm is approximate for real-valued time 

series. Furthermore, the algorithm is reported to take about 16 seconds to find the motif of 
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length eleven in a financial time series of length 8,400, whereas our algorithm only takes 

0.53 seconds (on average) to find the exact motif, with similar hardware.

Approximate algorithms fare little better. For example, a recent paper on finding 

approximate motifs reports taking 343 seconds to find motifs in a dataset of length 32,260 

[23], in contrast we can find exact motifs in similar datasets, and on similar hardware in 

under 100 seconds. Similarly, another very recent paper reports taking 15 minutes to find 

approximate motifs in a dataset of size 111,848 [4], however we can find exact motifs in 

similar datasets in under 4 minutes. Finally, paper [20] reports five seconds to find 

approximate motifs in a stock market dataset of size 12,500, whereas our exact algorithm 

takes less than one second. Bearing these numbers in mind, we will simply ignore other 

motif finding approaches for the rest of this work.

To the best of our knowledge, our algorithm is completely novel. However there are related 

ideas in the literature. For example, [12] also exploits the information gained by the relative 

distances to randomly chosen reference points. However they use this information to solve 

the approximate similarity search problem, whereas we use it to solve the exact closest-pair 

problem.

2 Background and Notation

Before describing our algorithm, we give definitions of the key terms used in this paper.

Definition 1: A Time Series is a sequence T=(t1, t2,…,tn) which is an ordered set of n real 

valued numbers.

The ordering is typically temporal; however other kinds of data such as color distributions 

[14], shapes [34] and spectrographs also have a well defined ordering and can fruitfully be 

considered “time series” for the purpose of indexing and mining. It is possible there could be 

variable time spacing between successive points in the series. For simplicity and without loss 

of generality we consider only equispaced data in this work. In general, we may have many 

time series to consider and thus need to define a time series database.

Definition 2: A Time Series Database (D) is an unordered set of m time series possibly of 

different lengths.

Again for simplicity, we assume that all the time series are of same length and D fits in the 

main memory (a disk-aware version of our algorithm is left for future work). Thus D is a 

matrix of real numbers where Di is the ith row in D as well as the ith time series Ti in the 

database and Di,j is the value at time j of Ti. Having a database of time series, we are now in 

a position to define time series motifs.

Definition 3: The Time Series Motif of a time series database D is the unordered pair of 

time series {Ti, Tj} in D which is the most similar among all possible pairs. More formally, 

∀a,b,i,j the pair {Ti, Tj} is the motif iff dist(Ti, Tj) ≤ dist(Ta, Tb), i ≠ j and a ≠ b.
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Note that our definition excludes the trivial match of a time series with itself by not allowing 

i ≠ j. There are some obvious possible generalizations of the above definition of time series 

motifs.

We can further generalize the notion of motifs by considering a motif ranking notion. More 

formally:

Definition 4: The kth-Time Series motif is the kth most similar pair in the database D. The 

pair {Ti, Tj} is the kth motif iff there exists a set S of pairs of time series of size exactly k-1 
such that ∀Td ∈D {Ti,Td}∉ S and {Tj,Td}∉S and ∀{Tx,Ty}∈S,{Ta,Tb}∉S dist(Tx, Ty) ≤ 

dist(Ti, Tj) ≤ dist(Ta, Tb).

Instead of dealing with pairs only we can also extend the notion of motifs to sets of time 

series that are very similar to each other.

Definition 5: The Range motif with range r is the maximal set of time series that have the 

property that the maximum distance between them is less than 2r. More formally S is a 

range motif with range r iff ∀Tx,Ty ∈S dist(Tx, Ty) ≤ 2r and ∀Td ∈D-S dist(Td, Ty) > 2r.

The range motif corresponds to dense regions or high dimensional “bumps” in time series 

space.

We can extend these ideas to subsequences of a very long time series by treating every 

subsequences of length n (n << m) as an object in the time series database. Motifs in such a 

database are subsequences that are conserved locally in the long time series. More formally:

Definition 6: A subsequence of length n of a time series T=(t1,t2,…,tm) is a time series Ti,n 

= (ti,ti+1,…,ti+n-1) for 1 ≤ i ≤ m-n+1.

Definition 7: The Subsequence Motif is a pair of subsequences {Ti,n, Tj,n} of a long time 

series T that are most similar. More formally, ∀a,b,i,j the pair {Ti,n, Tj,n} is the subsequence 

motif iff dist(Ti,n, Tj,n) ≤ dist(Ta,n, Tb,n), |i-j| ≥ w and |a-b| ≥ w for w > 0.

Note that we impose a constraint on the relative positions of the subsequences in the motif. 

This says that there should be a gap of at least w places between the subsequences. This 

restriction helps to prune out the trivial subsequence motifs [19]. For example (and 

considering discrete data for simplicity), if we were looking for motifs of length four in the 

string:

sjdbbnvfdfpqoeutyvnABABABmbzchslfkeruyousjdq Then in this case we probably don’t 

want to consider the pair {ABAB, ABAB} to be a motif, since they share 50% of their 

length (i.e AB is common to both). Instead, we would find the pair {sjdb, sjdq} to be a more 

interesting approximately repeated pattern. In this example, we can enforce this by setting 

the parameter w = 4.

In all the definitions given above we assumed there is a meaningful way to measure the 

distance between two time series. There are several such ways in the literature and our 

method is valid for any distance measure that is a metric. We use Euclidean distance and 
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express it as d(A,B). Recently extensive empirical comparisons have shown that the 

Euclidean distance is completive with or superior to more complex measures on a wide 

variety of domains [9]. Furthermore, its competitiveness increases as the datasets get larger 

(c.f. Figure 10), and it is large datasets that are of interest here.

Computing the Euclidean distance between two time series of length n takes a full pass over 

the two time series and thus has O(n) time complexity. However when searching for the 

nearest neighbor for a particular time series Q, it is possible to abandon the Euclidean 

distance computation as soon as the cumulative sum goes beyond the current best-so-far, an 

idea known as early abandoning. For example assume the current best-so-far has a Euclidean 

distance of 12.0, and therefore a squared Euclidean distance of 144.0. If, as shown in Figure 

2, the next item to be compared is further away, then at some point the sum of the squared 

error will exceeded the current minimum distance r=12.0 (or, equivalently r2 = 144). So the 

rest of the computation can be abandoned since this pair can’t have minimum distance. Note 

that we work here with the squared Euclidean distance because we can avoid having to take 

square roots at each of the n steps in the calculation.

It has long been known that early abandoning reduces the amortized cost of computing the 

distances to less than O(n), however, in this work we show for the first time, and explain 

why, early abandoning is particularly effective for motif discovery. The algorithm presented 

is the next section is designed for the original definition of time series motif (Definition 3 of 

this work). Once this problem can be solved quickly, the generalizations to the kth motif and 

the range motif are trivial and incur only a tiny additional overhead. Therefore, for 

simplicity, we will ignore these extensions in our description of the algorithm.

3 Our Algorithm

In Section 3.2 we have a detailed formal explanation of our exact motif discovery algorithm. 

However, for clarity and ease of exposition the next section contains a simple visual intuition 

of the underlying ideas that the algorithm exploits. We call our algorithm Mueen-Keogh 

(MK).

3.1 The Intuition behind our Algorithm

In Figure 3.A we show a small dataset of two-dimensional time series objects. We are 

interested in finding the motifs, which we can see here are objects O4 and O5.

Before our algorithm begins, we must assume the best-so-far distance for the motif pair to be 

infinity. As shown in Figure 3.B, we can choose a random object (in this case O1), as a 

reference point, and we can order all other objects by their distances to that point. As a side 

effect of this step, we can use the distance between O1 and its nearest neighbor O8, to update 

the best-so-far distance to be 23.0.

Note that in the act of sorting the objects we can record the distances between adjacent pairs, 

as shown in Figure 3.C. It is critical to recall that these distances are not (in general) the true 

distances between objects in the original space, rather they are lower bounds to those true 

distances.
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The key insight of our algorithm is that this linear ordering of data provides us with some 

useful heuristic information to guide our motif search. The observation is that if two objects 

are close in the original space, they must also be close in the linear ordering. Note that the 

contrapostive is not true. Two objects can be arbitrarily close in the linear ordering but very 
far apart in the original space.

In the next stage of our algorithm we can scan across the linear ordering and measure the 

true distances between adjacent pairs. If, while doing this we encounter a pair that has a 

distance less than the current best-so-far, we can update it, as shown in Figure 4. In our 

example we slide from left to right, updating the estimated distance between O8 and O6 of 

3.0 to the correct distance of 42.0. Similarly we update the estimated distance between O6 

and O4 to 49.0. In our next update, we find the true distance between O4 and O5 is only 7.0. 

Since this is less than our current best-so-far (i.e 23.0), we update it.

In our contrived example, we have already found the true motif. However this may not be 

true in general. Moreover, we do not know at this point that the current best-so-far refers to 

the true motif. However we can now use the linear representation combined with the best-so-
far to prune off large fraction of the search space.

For example, could the pair O8 and O3 be closer than our best-so-far? We can answer that 

question without having to actually measure the true distance between them. The lower 

bound distance in our linear representation is 61.0, but our best-so-far is only 7.0. Given 

that, we can be sure that the pair O8 and O3 is not a candidate to be the motif.

More generally, we can take a sliding window of exactly width 7 (the best-so-far), and slide 

it across the linear order testing for possible pairs of objects that could be the true motif. As 

shown in Figure 5 a necessary condition for two objects to be the motif is that both of them 

intersect the sliding window at the same time.

In this example, only pairs {O8, O6} and {O4, O5} could be the true motif, but in this case 

we already know the true distances for these pairs, so we are done. More generally, we may 

have additional true and/or false positives not pruned by this test, and we would need to 

check all of them in the original space.

This then, is the major intuition behind our approach. The full algorithm differs in several 

ways:

• Not all objects are equally good as a reference point, we use a simple heuristic to 

find good reference points.

• In the above exposition we did one round of pruning. However for large datasets 

this may still leave a huge number of candidate pairs to check. Instead, we can 

run multiple pruning steps with multiple reference points to do additional 

pruning.

In the next section we consider a more formal and detailed discussion of these points.
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3.2 A Formal Statement of our Algorithm

For ease of exposition we will first consider the brute force motif discovery algorithm, and 

then show how our algorithm can be obtained by modifying it. The brute force algorithm as 

outlined in Table 1 has a time complexity of O(m2). The algorithm maintains a running 

minimum best-so-far and updates it whenever the algorithm finds a pair of time series 

having a smaller distance between them. The algorithm is simply a pair of nested loops 

which tests every possible combination of pairs of time series, and reports the pair {L1, L2} 

which has the minimum distance between them.

3.2.1 Speeding up the Brute Force Algorithm—In order to significantly speed up 

the brute force algorithm we must find a way of pruning off a significant fraction of the 

distance computations so that the algorithm does not need to compare all m m − 1
2  pairs of 

time series. This is critical because each distance computation takes O(n) time which makes 

the brute force algorithm an O(m2n) algorithm. Table 2 shows how the brute-force search in 

Table 1 can be modified to achieve this. In order to admissibly prune off a distance 

computation we must be sure that the pair could not be the motif pair.

Assume ref is a reference time series which may or may not be an object in D (in Figure 3.A 

this ref object was O1). Let {Di,Dj} be a pair of time series objects that we hope to be able to 

quickly prune off from consideration. By triangular inequality we have d(ref,Di) – d(ref,Dj) 

≤ d(Di,Dj). Thus if we know the two values on the left of the inequality, we can use them as 

lower bound on the d(Di,Dj) after just a single cheap subtraction. If this lower bound 

happens to be larger than the best-so-far (the running minimum), we can safely avoid 

computing the d(Di,Dj) (This idea is reflected in line 12 in Table 2), otherwise the pair 

{Di,Dj} remain as a potential motif which must be compared.

The distances of all m time series in D to the ref time series can be computed and saved 

before the search starts. We store this list of distances in a single column table called Dist. 
Note that the number line shown in Figure 4 and Figure 5 is essentially this data structure. 

Creating Dist requires only O(mn) time (lines 3–6 in Table 2).

Our motif search strategy is based on an ordered search of the Dist structure. Ideally if we 

sort the lower bounds for every pair in ascending order and compare pairs in that order, we 

can stop our search as soon as we get a pair whose lower bound is greater than the best-so-
far at that time. This is unrealistic because it will take O(m2 log m2) to sort the lower bounds 

and is therefore worse than the brute force algorithm. Rather than sorting lower bounds for 

every pair, we can sort the distances from just the reference time series, i.e the Dist data 

structure. This sorting can be performed before the search starts and thus costs time in of 

order of O(m log m) (lines 3–6 in Table 2). Because we look up the table Dist to avoid 

distance computations, instead of sorting all the distances in Dist, we can simply sort the 

indices to the rows of Dist. This ordered array of indices is named as I in Table 2 at line 7. 

Formally, I is the sorted order of the time series in D where d(ref,DI(i)) ≤ d(ref,DI(j)) iff i≤ j.

Before considering how we will search this linear ordering, we must introduce the variable 

offset. The offset is simply an integer between 1 and m−1. If we point to the jth item in the 
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ordered list I, and to the jth + offset item, then we have a candidate pair of time series which 

we may test. As we will see below, if we consider systematic values of j and offset, we can 

guarantee that we have considered or eliminated all possible pairs of candidates.

To see how the ordering in list I will guide the search and help the search finish early, we 

must first consider the following two lemmas.

Lemma 1: If DI(j+offset)-DI(j) > best-so-far for all 1≤ j ≤m-offset and offset > 0 then 

DI(j+w)-DI(j) > best-so-far for all 1≤ j ≤m-w and w>offset.

In other words; for a positive integer offset and for j=1,2…,m-offset if {DI(j),DI(j+offset)} fail 

to have their lower bounds less than the best-so-far then for all positive integers w>offset 
and for all j=1,2,…,m-w, {DI(j),DI(j+w)} will also fail to have their lower bounds less than 

the best-so-far. This is true from the definition of I,

d ref , DI j ≤ d ref , DI j + offset ≤ d ref , DI j + w .

This can be rewritten as

d ref , DI j + offset − d ref , DI j ≤ d ref , DI j + w − d ref , DI j .

So if the left part is larger than best-so-far the right part will obviously be larger.

Lemma 2: If offset=1,2,…,m-1 and j=1,2,…,m-offset then {DI(j),DI(j+offset)} generates all 

the m m − 1
2  pairs.

If we search the database D for all possible offsets by which two time series can be apart in 

D we must encounter all the possible pairs. Since I has no repetition, it is obvious that 

{DI(j),DI(j+offset)} will generate all the pairs with no repetition. Hence this lemma states the 

exactness of our search strategy.

With the help of these two lemmas we can build the search strategy. The algorithm starts 

with an initial offset of 1 and searches pairs that are offset apart in the I ordering. After 

searching all pairs of offset apart, it increase the offset and search again (for the next round). 

The algorithm continues till it reaches an offset for which there is no pair having lower 

bound larger than the best-so-far and staying offset apart in the I ordering, at that point we 

can admissibly abandon the search with the exact motif pair. Lines 8 to 13 of Table 2 detail 

this search strategy. Clearly this strategy has the worst case complexity O(m2), which is 

equal to the brute force algorithm. However this only occurs in the cases where the motif has 

distance larger than any lower bound computed using a random reference. In thousands of 

experiments with real world datasets this never happened.

3.2.2 Generalization to multiple reference points—The speed up that we gained in 

the previous section can be extended to consider multiple reference time series and we can 
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use them to have tighter lower bounds. Using multiple reference time series raises some 

issues in our previous version. We show the final version of our algorithm in Table 3.

To get the tighter lower bounds we use multiple reference time series, which we randomly 

chosen from D as before. The number of reference points is a parameter to our algorithm 

represented by R. Obviously this introduction does not change the outcome of the algorithm. 

As we will later see (cf. Figure 8), once this number is greater than 5 or 6, its exact value 

does not even change the running time.

As a consequence of using multiple references, Dist becomes a two dimensional table that 

stores distances between any reference time series to any time series in D. The way multiple 

references help tightening the lower bounds is very simple. We simply use the maximum of 

the lower bounds. This is correct because if one lower bound is larger than best-so-far the 

maximum would also be larger and there is no way the pair would become a motif. Since the 

lower bounds are not stored anywhere, the algorithm needs to compute all the R lower 

bounds for every single pair (lines 16–17 in Table 3). Rather than computing the maximum 

which would take O(R) time, we compare each bound with the current best-so-far and reject 

(line 19 in Table 3) computing the true distance as soon as one bound is higher than the best-
so-far. Thus amortized cost of the combined lower bound is smaller than O(R).

Although multiple reference time series tighten the lower bounds, we cannot use all of them 

in ordering the search strategy. This is because we need to follow exactly one ordering 

(Lemma 2) to guide our search (lines 20–21 in Table 3). To choose a reference time series 

for ordering the time series in D, we select the one (Z(1) in line 10) with the largest standard 

deviation in the distances from itself to others in D (lines 9–10 in Table 3). The intuition 

behind this is simply that the larger the standard deviation is, the larger the lower bounds 

will be.

4 Scalability Experiments

We begin by stating our experimental philosophy. We have designed all experiments such 

that they are not only reproducible, but easily reproducible. To this end, we have built a 

webpage (http://www.cs.ucr.edu/~mueen/MK) which contains all datasets and code used in 

this work, together with spreadsheets which contain the raw numbers displayed in all the 

figures. In addition, the webpage contains many additional experiments which we could not 

fit into this work; however, we note that this paper is completely self-contained.

We performed the scalability experiments on both synthetic and real data. All the 

experiments are performed on a computer with an AMD 2.1GHz Turion X2 Ultra ZM-80 

processor and 3.0GB of DDR2 memory. The algorithm is coded in C and compiled with gcc.

As we noted in Section 1.1, our exact algorithm is faster than all current approximate 

algorithms (that choose to report time), so we only compare to two variants of exact search.
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4.1 Performance Comparison

As a starting point we use random walk time series to test our algorithm. Random walk data 

is a difficult case for our algorithm, since we should not expect a very close motif pair to 

exist in the data.

We produced 10 sets of random walks of different sizes containing from 10,000 to 100,000 

time series, all of length 1024. We ran our algorithm 10 times on each of these datasets and 

took the average of the execution times. Figure 6 shows a comparison of the brute force 

algorithm with our MK algorithm in terms of the execution time.

The difference in execution times is quite dramatic, for 100,000 objects brute force takes 

12.7 hours, but our algorithm takes only 12.4 minutes (with a standard deviation of 55 

seconds).

As dramatic as this speedup is, it is in fact the worst case for our algorithm. This is because 

there is no reason to expect a particularly close pair of objects in a random walk dataset. 

This means the difference between MK and early abandoning brute force will be the 

smallest (c.f. Section 4.3.1). In real datasets the two algorithms are significantly different. 

For example, we repeated the experiment with an electroencephalograph dataset (cf. Section 

5.3) as shown in Figure 7.

Note that all algorithms are faster, because the motif length is just 128. Here the brute force 

time is 74 minutes, but the time for our algorithm is only 2.1 minutes (with a standard 

deviation of 13.5 seconds).

4.2 Choosing the number of reference points

Our algorithm has one input parameter, the number of reference time series used. Up to this 

point we have not discussed the parameter in detail, however it is natural to ask how critical 

its setting is. A simple thought experiment tells us that a too small or too large value should 

produce a slower algorithm. In the former case, if few reference time series are used, most 

candidate pairs are not pruned, and must be examined by brute force. In the latter case, we 

may have only O(m) pairs of candidates left to check, but the time to create a one-

dimensional representation from a reference time series is O(m), so we may not break even 

and we may have been better off to just brute force the remaining time series. This reasoning 

tells us that a plot of execution time vs. number of reference time series should be a U-

shaped curve, and we should target a parameter that gives us the bottom of the curve.

In Figure 8 we illustrate this observation with an experiment in varying the number of 

reference points and measuring the execution time. Note that the leftmost value, 

corresponding to zero reference point is equivalent to the special case of brute force search.

This plot suggests that the input parameter is not critical. Any value from five to sixty gives 

two orders of magnitude speedup. Moreover, this is true if we change the length of the time 

series, the size of the database (i.e m) or the data type. For this reason, we fixed the number 

of reference points to be eight in all the experiments in this paper.
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4.3 Discussion and Interpretation of Results

In the following sections we interpret and explain the results of the scalability results in 

more detail.

4.3.1 Why is Early-Abandoning so Effective?—While the results in the previous 

section bode well for the MK algorithm, a perhaps unexpected result is that just using early-

abandoning can make brute force search significantly faster. While it has been known for 

some time that early-abandoning can speed up nearest neighbor search; most work suggests 

that the speedup is a small constant, in the range of two to three [18]. However, at least for 

the random walk experiment shown in Figure 6 it appears early-abandoning can produce at 

least a ten-fold speed up. It is informative to consider why this is so.

The power of early-abandoning comes from the (relative) value of the best-so-far variable 

during search. If it has a small value early on in a search, then most items can be abandoned 

very early. However, we typically have no control over how fast the best-so-far decreases; 

we simply hope that a relatively similar object will be encountered early in the search.

The key insight into explaining why early-abandoning works so well for motif discovery is 

that there are simply many more possibilities for the best-so-far to decrease early in the 

(quadratic) search for a motif, than during the (linear) search for a nearest neighbor. To see 

this we performed a simple experiment. We measured the average distance between two time 

series, the average nearest neighbor distance for ten randomly chosen time series, and the 

motif distance, all for increasingly large instantiations of a database of EEG data of length 

128 (c.f. Section 5.3). The results are shown in Figure 9.

Note that average distance is essentially independent of the dataset size. The mean distance 

of a query to its nearest neighbor decreases with database size as we would expect, however 

note that the motif distance decreases more dramatically, and is significantly smaller.

This effect is like a real-valued version of the familiar birthday paradox. In a dataset 

consisting of 23 people, the chance that one of them will share your birthday (the analogue 

to linear nearest neighbor search) is just 6.1%. However, the chance of any two people 

sharing a birthday (the analogue to quadratic motif search) is 50.7%. There are simply many 

more possibilities in the latter case. Likewise, for motif search, there are so many possible 

ways for pairs to be similar that we can be confident to find a very low best-so-far early on, 

and therefore extract the most benefit out of early abandoning.

4.3.2 Why not use DTW or Uniform Scaling?—In this work we have used the 

classic Euclidean distance as the underlying distance measure. However one could imagine 

using Dynamic Time Warping (DTW) or Uniform Scaling Euclidean distance (US) instead. 

In many independent works it has been shown that DTW and US can produce superior 

classification/clustering accuracy and superior subjective judgments of similarity in diverse 

time series domains [18][34].

However recent work has forcefully shown that for DTW, its superiority over Euclidean 

distance for nearest neighbor classification is an inverse function of the dataset size. As the 
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dataset gets larger, the difference between DTW and Euclidean distance rapidly decreases 

[28]. To see this, we performed 1NN classification with both DTW and Euclidean distance 

for increasing large instantiations of the Two-Pattern dataset, a highly “warped” publicly 

available time series dataset. Figure 10 shows the results.

We have performed similar experiments on 20 other time series datasets, this example is 

interesting only in that it is the slowest to converge1. Upon reflection, this result is 

unsurprising, as the datasets get larger, the expected distance (under any measure) to the 

nearest neighbor will decrease (cf. Figure 9.). Given this fact, the Euclidean distance is more 

likely to find a nearest neighbor so near that “warping” the distance (and therefore 

decreasing the distance) is unlikely to change the rankings of nearest neighbors, and 

therefore unlikely to change the class prediction.

Given that this is true for 1NN classification, we can expect it to be even more of a factor for 

motif discovery, since motif discovery allows many more distance comparisons, and the 

smallest of them (the motif distance) is likely to be so small that DTW and Euclidean 

distance will be essentially identical. To see this, we randomly created 300 pairs of random 

walks of length 64, and measured the distance between them using DTW and Euclidean 

distance. The results are shown in a scatter plot in Figure 11.

We can see that if two objects are relatively far apart under the Euclidean distance, then 

using DTW can make them appear closer, and possibly change the nearest neighbor ranking. 

However, as objects get relatively close under the Euclidean distance, the difference between 

the Euclidean distance and DTW diminishes. In this example, for values under 1.0, both 

measures are near perfectly correlated. Empirically we find that for random walks of this 

length, by the time we have a mere 100,000 objects in the dataset, the average motif distance 

is usually much less than 0.25.

Given these facts, we can now succinctly answer the question as to why we do not use the 

DTW distance to find motifs. The answer is that for the very large datasets we consider, it 

empirically does not make any difference to the result. Identical remarks apply to uniform 

scaling.

5 Experimental Case Studies

Having demonstrated the scalability of our algorithm in the previous section, we now turn 

our attention to demonstrate the utility of time series motifs in various domains.

5.1 Finding Repeated Insect Behavior

In the arid to semi-arid regions of North America, the Beet leafhopper (Circulifer tenellus) 

shown in Figure 12, is the only known vector (carrier) of curly top virus, which causes major 

economic losses in a number of crops including sugarbeet, tomato, and beans [16]. In order 

to mitigate these financial losses, entomologists at the University of California, Riverside are 

attempting to model and understand the behavior of this insect [29].

1In this case, the error-rate approaches zero for large datasets, so convergence seems inevitable. However on other datasets the two 
approaches converge on a non-zero error-rate.
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It is known that the insects feed by sucking sap from living plants; much like the mosquito 

sucks blood from mammals and birds. In order to understand the insect’s behaviors, 

entomologists glue a thin wire to the insect’s back, complete the circuit through a host plant 

and then measure fluctuations in voltage level to create an Electrical Penetration Graph 

(EPG) as shown in Figure 12.

This method of data collection produces large amounts of data, in Figure 13 we see about a 

quarter hour of data, however the entomologists data archive currently contains thousands of 

hours of such data, collected in a variety of conditions. Up to this point, the only analysis of 

this data has been some Fourier analyses, which has produced some suggestive results [29]. 

However Fourier analysis is somewhat indirect and removed from the raw data. In contrast 

motif discovery operates on the raw data itself and can potentiality produce more intuitive 

and useful knowledge. In Figure 14 we show the motif of length 480 discovered in the entire 

33,021 length time series shown in Figure 13.

As we can see, the motifs are uncannily similar, even though they occur minutes apart. 

Having discovered such a potentially interesting pattern, we followed up to see if it is really 

significant. The first thing to do is to see if it occurs in other datasets. We have indexed the 

entire archive with an iSAX index [28] so we quickly determined the answer to be 

affirmative, this pattern does appear in many other datasets, although the “plateau” region 

(approximately from 300 to 380 in Figure 14) may be linearly scaled by a small amount 

[29]. We recorded the time of occurrence and looked at the companion video streams which 

were recorded synchronously with the EPGs. It appears that the motif occurs immediately 

after phloem (plant sap) ingestion has taken place.

The motif discovered in this stream happens to be usually smooth and highly structured, 

however motifs can be very complex and noisy. Consider Figure 15 which shows a motif 

extracted from a different trace of length 18,667.

In this case, examination of the video suggests that this is a highly ritualized grooming 

behavior. In particular, the feeding insect must get rid of honeydew (a sticky secretion, 

which is by-product of sap feeding). As a bead of honeydew is ejected, it temporarily forms 

a highly conductive bridge between the insect and the plant, drastically affecting the signal.

Note that these examples are just a starting point for entomological research. It would be 

interesting to see if there are other motifs in the data. Having discovered such motifs we can 

label them, and then pose various hypotheses. For example: “Does motif A occur more 
frequently for males than females?”. Furthermore, an understanding of which motifs 

correlate with which behaviors suggests further avenues for additional data collection and 

experiments. For example, it is widely believed that Beet leafhoppers are repelled by the 

presence of marigold plants (Tagetes). It may be possible to use the frequency of (now) 

known motifs to detect if there really is a difference between the behavior of insect with and 

without the presence of marigolds. We defer further discussion of such issues to future and 

ongoing work.
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5.2 Near Duplication Detection

Algorithms for near-duplicate detection in images are useful for finding copyright violations, 

detecting forged images, and summarizing large image collections (by showing only one 

example from a set of near duplicates). These algorithms can be seen as two-dimensional 

analogues of time series motif discovery.

While many specialized algorithms exist for this problem, it is clear that time series motif 

discovery could be used for this task, if we can find a way to meaningfully represent images 

as “time series”. While there are many possible ways to convert two-dimensional images to 

a one-dimensional signal, the most obvious is the classic trick of treating the color 

distribution histogram as a time series [14].

We tested this idea by doing duplicate detection in a dataset of 100,018 small images, which 

were collected by Fergus and colleagues as a test bed for a variety of algorithms [11]. Figure 

16 shows some representative images from the collection.

The images have already been downsampled to 32-by-32 pixels. From these images we 

extract three (primary color) vectors of length 256. We then concatenated the vectors to form 

a time series of length 768.

Our first experimental run only took approximately 230 seconds to discover 880 pairs of 

exact duplicates. Exact duplicates can be discovered by even simpler algorithms such as 

hashing, so we remove one of each duplicated image and ran the algorithm again. In the 

second run we discovered the top-forty near duplicates, again in about 230 seconds. Figure 

17 shows a selection of the results.

Using brute-force search to find these, it takes 37 minutes using the early abandoning 

optimization and approximately 6 hours without the early abandoning.

5.3 Automatically Constructing EEG Dictionaries

In this example of the utility of time series motifs we discuss an ongoing joint project 

between the authors and Physicians at Massachusetts General Hospital (MGH) in 

automatically constructing “dictionaries” of recurring patterns from electroencephalographs.

The electroencephalogram (EEG) measures voltage differences across the scalp and reflects 

the activity of large populations of neurons underlying the recording electrode [26]. Figure 

18 shows a sample snippet of EEG data.

Medical situations in which EEG plays an important role include, diagnosing and treating 

epilepsy; planning brain surgery for patients with intractable epilepsy, monitoring brain 

activity during cardiac surgery and in certain comatose patients; and distinguishing epileptic 

seizures from other medical conditions (e.g. “psudoseizures”).

The interpretation of EEG data involves inferring information about the brain (e.g. presence 

and location of a brain lesion) or brain state (e.g. awake, sleeping, having a seizure) from 

various temporal and spatial patterns, or graphoelements (which we see as motifs), within 

the EEG data stream. Over the roughly 100 years since its invention in the early 1900s, 
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electroencephalographers have identified a small collection of clinically meaningful motifs, 

including entities named “spike-and-wave complexes”, “wicket spikes”, “K-complexes”, 

“sleep spindles” and “alpha waves”, among many other examples. However, the full 

“dictionary” of motifs that comprise the EEG contains potentially many yet-undiscovered 

motifs. In addition, the current, known motifs have been determined based on subjective 

analysis rather than a principled search. A more complete knowledge of the full complement 

of EEG motifs may well lead to new insights into the structure of cortical activity in both 

normal circumstances and in pathological situations including epilepsy, dementia and coma.

Much of the recent research effort has focus on finding typical patterns that may be 

associated with various conditions and maladies. For example, [31] attempts to be an “Atlas 
of EEG patterns”. However, thus far, all such attempts at finding typical patterns have been 

done manually and in an ad-hoc fashion.

A major challenge for the automated discovery of EEG motifs is large data volumes. To see 

this, consider the following experiment. We conducted a search for the motif of length 4 

seconds, within a one hour EEG from a single channel in a sleeping patient. The data 

collection rate was 500 Hz, yielding approximately 2 million data points, after domain 

standard smoothing and filtering, an 180,000 data point signal was produced. Using the 

brute force algorithm (c.f. Table 1), finding the motif required over 24 hours of CPU time. 

By contrast, using the MK algorithm described in this paper, the same result requires 2.1 

minutes, a speedup of about factor of about 700. Such improvements in processing speed are 

crucial for tackling the high data volume involved in large-scale EEG analysis. This is 

especially the case in attempting to complete a dictionary of EEG motifs which incorporates 

multi-channel data and a wide variety of normal situations and disease states.

Having shown that automatic exploration of large EEG datasets is tractable, our attention 

turns to the question, is it useful? Figure 19.left shows the result of our first run of our 

algorithm and Figure 19.right shows a pattern discussed in a recent paper [30].

It appears that this automatically detected motif corresponds to a well-known pattern, the K-

complex. K-complexes were identified in 1938 [26][21] as a characteristic event during the 

sleep.

This figure is at least highly suggestive that in this domain, motif discovery can really find 

patterns that are of interest to the medical community. In ongoing work we are attempting to 

see if there are currently unknown patterns hiding in the data.

5.4 Motif-based Anytime Time Series Classification

We conclude our experimental section with an example of a novel use for time series motifs. 

There has been recent interest in converting classic batch data mining algorithms to anytime 
versions [34]. In some cases this is trivial, for example we can frame the nearest-neighbor 

classification algorithm as an anytime algorithm simply by conducting a sequential search 

for the unlabeled item’s nearest neighbor in the labeled dataset [34]. If the algorithm is 

interrupted before completing the full search, then the label of the best-so-far nearest 

neighbor is returned as the class label.
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This simple idea can be enhanced by sorting the labeled instances such that the most useful 

instances are seen early in the sequential search. In all works that we are aware of, “most 
useful” is determined by some estimate of how often each instance is used to correctly 

predict, as opposed to incorrectly predict, unknown instances [34][35]. The astute reader 

will immediately see a potential weakness here. Suppose we happen to have two nearly 

identical instances with the same class label in the training dataset. Furthermore, suppose 

they both happen to be useful instances (in the sense discussed above). In this case, both of 

the instances will be pushed to the head of the sequential search array. However, this is 

clearly redundant; we should push either one, but not both top, of the sequential search array.

Time series motifs potentially allow a fix for this problem. We can discover the 1st motif, 

and then move one of the pair to the head of the sequential search array. Then we can rerun 

motif discovery on the remaining m−1 time series (excluding the recently moved object) 

again move one of the motif pair to the front, and begin motif discovery on m-2 objects etc. 

This strategy should ensure high diversity of the first few training examples encountered by 

the anytime classification algorithm.

We tested this simple idea against random ordering, and a well known ordering algorithm 

called Drop3 [35]. We considered two publicly available datasets, CBF and Face4.

The results are quite surprising. The motif ordering algorithm is significantly better than 

Drop3, even though it does not consider any information about how useful any individual 

instance is; it is merely enhancing the diversity seen by the classifier in the early part of the 

nearest neighbor search. While we found similar results for other datasets, the difference 

between motif ordering and Drop3 diminishes as we consider larger training sets. 

Nevertheless, these results do suggest a promising avenue for future research. Could a 

hybrid of motif ordering and Drop3 outperform either one?

6 Conclusions And Future Work

We have introduced the first exact motif search algorithm which is significantly faster than 

brute force search. We have further demonstrated the utility of motif discovery in a variety 

of data mining tasks.

Our work focuses on a single, simple definition of motif. However we argue that this 

definition can be used to efficiently find any other reasonable definition. For example, if 

“motif” is defined as a set of K time series, all within r of each other, or a set of K time 

series each within r of at least one other, then it is clear that both definitions require at least 

one pair of time series to be within r of each other. We can therefore use MK to find such a 

pair, then use similarity search to fill in the missing K-2 time series that complete the set 

under the respective definitions.

The question of the best definition for motifs is probably not as important as it might seem. 

The entomological, electroencephalograph and image motifs shown in Section 5 are 

essentially unchanged under different definitions of motif. There has been some work on 

alterative definitions of motifs, for example [20] promises to “significantly improve the 
quality of motifs”. However, our floccinaucinihilipilification of this work is based on the fact 
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that the evaluation metric used was tautological, there is simply zero evidence to show the 

alternative definition is useful in any sense.

Future and ongoing work includes extensive case studies in several domains, including space 

telemetry, entomology and electroencephalography, and creating a disk aware version of our 

algorithm to allow the exploration of truly massive datasets.
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Figure 1: 
(top) The output steam flow telemetry of the Steamgen dataset has a motif of length 640 

beginning at locations 589 and 8,895. (bottom) by overlaying the two motifs we can see how 

remarkably similar they are to each other
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Figure 2: 
A visual intuition of early abandoning. Once the squared sum of the accumulated gray hatch 

lines exceeds r2, we can be sure the full Euclidean distance exceeds r
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Figure 3: 
A) A small database of two-dimensional time series objects. B) The time series objects can 

be arranged in a one-dimensional representation by measuring their distance to a randomly 

chosen point, in this case O1. C) The distances between adjacent pairs along the linear 

projection is a (generally weak) lower bound to the true distance between them
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Figure 4: 
We scan the objects from left to right, measuring the true distances between them. Note that 

just for the first pair {O1, O8} the linear distance is the true distance. In all other cases the 

linear distance is a lower bound. For example, the lower bound distance between {O8, O6} is 

3, but our test of the true distance reveals d(O8, O6) = 42.0

Mueen et al. Page 22

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
A necessary condition for two objects to be the motif is that both of them intersect a sliding 

window, of width best-so-far, at the same time. Only pairs {O8, O6} and {O4, O5} survive 

the sliding window pruning test.
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Figure 6: 
A comparison of three algorithms in the time taken to find the motif pair in increasingly 

large random walk databases. For the brute force algorithm, values for dataset sizes beyond 

30,000 are extrapolated
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Figure 7: 
A comparison of three algorithms in the time taken to find the motif pair in increasingly 

large electroencephalograph databases (all subsets of dataset LSF5_10). For the brute force 

algorithm, values for dataset sizes beyond 70,000 are extrapolated
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Figure 8: 
A plot of execution time vs. the number of reference points. Note that once the number of 

reference points is beyond say five, its exact value makes little difference. Note the log scale 

of the time axis
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Figure 9: 
How the size of the dataset effects the average, nearest neighbor and motif distances
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Figure 10: 
The error rate of DTW and ED on increasingly large instantiations of the Two-Pat problem
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Figure 11: 
(left) A scatter plot where each point represents the Euclidean distance (x-axis) and the 

DTW distance (y-axis) of a pair of time series. Some data points had values greater than 12, 

they were truncated for clarity (right) a zoom-in of the plot on the left
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Figure 12: 
A schematic diagram showing the apparatus used to record insect behavior
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Figure 13: 
An Electrical Penetration Graph of insect behavior. The data is complex and highly 

nonstationary, with wandering baseline, noise, dropouts etc
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Figure 14: 
The motif of length 480 found in the insect telemetry shown in Figure 13. Although the two 

instances occur minutes apart they are uncannily similar
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Figure 15: 
The motif of length 400 found in an EPG trace of length 18,667. (inset) Using the motifs as 

templates, we can find several other occurrences in the same dataset
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Figure 16: 
A section of randomly chosen images from the set of 100,018 images created by Fergus et. 

al [11].
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Figure 17: 
Seven near-duplicate pairs discovered by our algorithm. In every case the images are very 

similar, but not identical
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Figure 18: 
The first ten seconds of an EEG trace. In the experiment discussed below, we consider a full 

hour of this data
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Figure 19: 
(left) Bold Lines: The first motif found in one hour of EEG trace LSF5. Light Lines: The ten 

nearest neighbors to the motif. (right) A screen dump of Figure 6.A from paper [30]
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Figure 20: 
The out-of-sample accuracy of three different ordering techniques on two benchmark time 

series datasets. The y-axis shows the accuracy of 1NN if the algorithm is interrupted after 

seeing x objects
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Table 1:

Brute force motif discovery
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Table 2:

Speeded up brute force motif discovery
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Table 3:

MK motif Discovery
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