
Exact Discovery of Time Series Motifs

Abdullah Mueen,
University of California – Riverside

Eamonn Keogh,
University of California – Riverside

Qiang Zhu,
University of California – Riverside

Sydney Cash,
Massachusetts General Hospital,

Harvard Medical School,

Brandon Westover
Massachusetts General Hospital,

Brigham and Women’s Hospital

Abstract

Time series motifs are pairs of individual time series, or subsequences of a longer time series,

which are very similar to each other. As with their discrete analogues in computational biology,

this similarity hints at structure which has been conserved for some reason and may therefore be of

interest. Since the formalism of time series motifs in 2002, dozens of researchers have used them

for diverse applications in many different domains.

Because the obvious algorithm for computing motifs is quadratic in the number of items, more

than a dozen approximate algorithms to discover motifs have been proposed in the literature. In

this work, for the first time, we show a tractable exact algorithm to find time series motifs. As we

shall show through extensive experiments, our algorithm is up to three orders of magnitude faster

than brute-force search in large datasets.

We further show that our algorithm is fast enough to be used as a subroutine in higher level data

mining algorithms for anytime classification, near-duplicate detection and summarization, and we

consider detailed case studies in domains as diverse as electroencephalograph interpretation and

entomological telemetry data mining.

Keywords

Time Series; Motif; Exact Algorithm; Early Abandoning

mueen@cs.ucr.edu.

HHS Public Access
Author manuscript
Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

Published in final edited form as:
Proc SIAM Int Conf Data Min. 2009 ; 2009: 473–484. doi:10.1137/1.9781611972795.41.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1 Introduction

Time series motifs are pairs of individual time series, or subsequences of a longer time

series, which are very similar to each other [19]. Figure 1 illustrates an example of a motif

discovered in an industrial dataset. Since the formalism of time series motifs in 2002, dozens

of researchers have used them in domains as diverse as medicine [1], entertainment [6],

biology [2], telemedicine [13], telepresence [3] and severe weather prediction [22].

Because the obvious algorithm for computing motifs is quadratic in m, the number of

individual time series (or the length of the single time series from which subsequences are

extracted), researchers have long abandoned the hope of computing the exact solution to the

motif discovery problem, and more than a dozen approximate algorithms to discover motifs

have been proposed [4][7][13][23][24][27][32]. Most of these algorithms are O(m) or O(m
log m) with very high constant factors.

In this work, for the first time, we show a tractable exact algorithm to find time series motifs.

While our exact algorithm is still worst case quadratic, we show that we can reduce the time

required by three orders of magnitude. In fact, under most realistic conditions our exact

algorithm is faster than the current linear time approximate algorithms, because they have

such large constant factors.

As we shall show, our algorithm allows us to tackle problems which have previously been

thought intractable, for example automatically constructing “dictionaries” of recurring

patterns from electroencephalographs.

We further show that our algorithm is fast enough to be used as a subroutine in higher level

data mining algorithms for summarization, near-duplicate detection and anytime

classification [34].

1.1 Prior and Related Work

A theoretical lower bound on finding the closest pair of points in d dimensional space is O(n
log n) [8]. However the hidden constant term with this lower bound is exponential with the

number of dimensions d. For high dimensional data (i.e. long time series) this constant

overhead dominates the running time and no known algorithm is more efficient than the

brute force one. As such, the brute force algorithm is the obvious choice to find time series

motifs exactly.

Given this, the most of the literature has focused on fast approximate algorithms for motif

discovery [4][7][13][23][24][27][32], however there is one algorithm that proposes to

exactly solve the time series motif problem. The FLAME algorithm of [33] is designed to

find motifs in discrete strings (i.e. DNA), but the authors show that time series can be

discretized and given to their algorithm. They note that their algorithm “is guaranteed to find
the motif”. However, this is only true with respect to the discrete representation of the data,

not with the raw time series itself. Thus the algorithm is approximate for real-valued time

series. Furthermore, the algorithm is reported to take about 16 seconds to find the motif of

Mueen et al. Page 2

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

length eleven in a financial time series of length 8,400, whereas our algorithm only takes

0.53 seconds (on average) to find the exact motif, with similar hardware.

Approximate algorithms fare little better. For example, a recent paper on finding

approximate motifs reports taking 343 seconds to find motifs in a dataset of length 32,260

[23], in contrast we can find exact motifs in similar datasets, and on similar hardware in

under 100 seconds. Similarly, another very recent paper reports taking 15 minutes to find

approximate motifs in a dataset of size 111,848 [4], however we can find exact motifs in

similar datasets in under 4 minutes. Finally, paper [20] reports five seconds to find

approximate motifs in a stock market dataset of size 12,500, whereas our exact algorithm

takes less than one second. Bearing these numbers in mind, we will simply ignore other

motif finding approaches for the rest of this work.

To the best of our knowledge, our algorithm is completely novel. However there are related

ideas in the literature. For example, [12] also exploits the information gained by the relative

distances to randomly chosen reference points. However they use this information to solve

the approximate similarity search problem, whereas we use it to solve the exact closest-pair

problem.

2 Background and Notation

Before describing our algorithm, we give definitions of the key terms used in this paper.

Definition 1: A Time Series is a sequence T=(t1, t2,…,tn) which is an ordered set of n real

valued numbers.

The ordering is typically temporal; however other kinds of data such as color distributions

[14], shapes [34] and spectrographs also have a well defined ordering and can fruitfully be

considered “time series” for the purpose of indexing and mining. It is possible there could be

variable time spacing between successive points in the series. For simplicity and without loss

of generality we consider only equispaced data in this work. In general, we may have many

time series to consider and thus need to define a time series database.

Definition 2: A Time Series Database (D) is an unordered set of m time series possibly of

different lengths.

Again for simplicity, we assume that all the time series are of same length and D fits in the

main memory (a disk-aware version of our algorithm is left for future work). Thus D is a

matrix of real numbers where Di is the ith row in D as well as the ith time series Ti in the

database and Di,j is the value at time j of Ti. Having a database of time series, we are now in

a position to define time series motifs.

Definition 3: The Time Series Motif of a time series database D is the unordered pair of

time series {Ti, Tj} in D which is the most similar among all possible pairs. More formally,

∀a,b,i,j the pair {Ti, Tj} is the motif iff dist(Ti, Tj) ≤ dist(Ta, Tb), i ≠ j and a ≠ b.

Mueen et al. Page 3

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that our definition excludes the trivial match of a time series with itself by not allowing

i ≠ j. There are some obvious possible generalizations of the above definition of time series

motifs.

We can further generalize the notion of motifs by considering a motif ranking notion. More

formally:

Definition 4: The kth-Time Series motif is the kth most similar pair in the database D. The

pair {Ti, Tj} is the kth motif iff there exists a set S of pairs of time series of size exactly k-1
such that ∀Td ∈D {Ti,Td}∉ S and {Tj,Td}∉S and ∀{Tx,Ty}∈S,{Ta,Tb}∉S dist(Tx, Ty) ≤

dist(Ti, Tj) ≤ dist(Ta, Tb).

Instead of dealing with pairs only we can also extend the notion of motifs to sets of time

series that are very similar to each other.

Definition 5: The Range motif with range r is the maximal set of time series that have the

property that the maximum distance between them is less than 2r. More formally S is a

range motif with range r iff ∀Tx,Ty ∈S dist(Tx, Ty) ≤ 2r and ∀Td ∈D-S dist(Td, Ty) > 2r.

The range motif corresponds to dense regions or high dimensional “bumps” in time series

space.

We can extend these ideas to subsequences of a very long time series by treating every

subsequences of length n (n << m) as an object in the time series database. Motifs in such a

database are subsequences that are conserved locally in the long time series. More formally:

Definition 6: A subsequence of length n of a time series T=(t1,t2,…,tm) is a time series Ti,n

= (ti,ti+1,…,ti+n-1) for 1 ≤ i ≤ m-n+1.

Definition 7: The Subsequence Motif is a pair of subsequences {Ti,n, Tj,n} of a long time

series T that are most similar. More formally, ∀a,b,i,j the pair {Ti,n, Tj,n} is the subsequence

motif iff dist(Ti,n, Tj,n) ≤ dist(Ta,n, Tb,n), |i-j| ≥ w and |a-b| ≥ w for w > 0.

Note that we impose a constraint on the relative positions of the subsequences in the motif.

This says that there should be a gap of at least w places between the subsequences. This

restriction helps to prune out the trivial subsequence motifs [19]. For example (and

considering discrete data for simplicity), if we were looking for motifs of length four in the

string:

sjdbbnvfdfpqoeutyvnABABABmbzchslfkeruyousjdq Then in this case we probably don’t

want to consider the pair {ABAB, ABAB} to be a motif, since they share 50% of their

length (i.e AB is common to both). Instead, we would find the pair {sjdb, sjdq} to be a more

interesting approximately repeated pattern. In this example, we can enforce this by setting

the parameter w = 4.

In all the definitions given above we assumed there is a meaningful way to measure the

distance between two time series. There are several such ways in the literature and our

method is valid for any distance measure that is a metric. We use Euclidean distance and

Mueen et al. Page 4

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

express it as d(A,B). Recently extensive empirical comparisons have shown that the

Euclidean distance is completive with or superior to more complex measures on a wide

variety of domains [9]. Furthermore, its competitiveness increases as the datasets get larger

(c.f. Figure 10), and it is large datasets that are of interest here.

Computing the Euclidean distance between two time series of length n takes a full pass over

the two time series and thus has O(n) time complexity. However when searching for the

nearest neighbor for a particular time series Q, it is possible to abandon the Euclidean

distance computation as soon as the cumulative sum goes beyond the current best-so-far, an

idea known as early abandoning. For example assume the current best-so-far has a Euclidean

distance of 12.0, and therefore a squared Euclidean distance of 144.0. If, as shown in Figure

2, the next item to be compared is further away, then at some point the sum of the squared

error will exceeded the current minimum distance r=12.0 (or, equivalently r2 = 144). So the

rest of the computation can be abandoned since this pair can’t have minimum distance. Note

that we work here with the squared Euclidean distance because we can avoid having to take

square roots at each of the n steps in the calculation.

It has long been known that early abandoning reduces the amortized cost of computing the

distances to less than O(n), however, in this work we show for the first time, and explain

why, early abandoning is particularly effective for motif discovery. The algorithm presented

is the next section is designed for the original definition of time series motif (Definition 3 of

this work). Once this problem can be solved quickly, the generalizations to the kth motif and

the range motif are trivial and incur only a tiny additional overhead. Therefore, for

simplicity, we will ignore these extensions in our description of the algorithm.

3 Our Algorithm

In Section 3.2 we have a detailed formal explanation of our exact motif discovery algorithm.

However, for clarity and ease of exposition the next section contains a simple visual intuition

of the underlying ideas that the algorithm exploits. We call our algorithm Mueen-Keogh

(MK).

3.1 The Intuition behind our Algorithm

In Figure 3.A we show a small dataset of two-dimensional time series objects. We are

interested in finding the motifs, which we can see here are objects O4 and O5.

Before our algorithm begins, we must assume the best-so-far distance for the motif pair to be

infinity. As shown in Figure 3.B, we can choose a random object (in this case O1), as a

reference point, and we can order all other objects by their distances to that point. As a side

effect of this step, we can use the distance between O1 and its nearest neighbor O8, to update

the best-so-far distance to be 23.0.

Note that in the act of sorting the objects we can record the distances between adjacent pairs,

as shown in Figure 3.C. It is critical to recall that these distances are not (in general) the true

distances between objects in the original space, rather they are lower bounds to those true

distances.

Mueen et al. Page 5

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The key insight of our algorithm is that this linear ordering of data provides us with some

useful heuristic information to guide our motif search. The observation is that if two objects

are close in the original space, they must also be close in the linear ordering. Note that the

contrapostive is not true. Two objects can be arbitrarily close in the linear ordering but very
far apart in the original space.

In the next stage of our algorithm we can scan across the linear ordering and measure the

true distances between adjacent pairs. If, while doing this we encounter a pair that has a

distance less than the current best-so-far, we can update it, as shown in Figure 4. In our

example we slide from left to right, updating the estimated distance between O8 and O6 of

3.0 to the correct distance of 42.0. Similarly we update the estimated distance between O6

and O4 to 49.0. In our next update, we find the true distance between O4 and O5 is only 7.0.

Since this is less than our current best-so-far (i.e 23.0), we update it.

In our contrived example, we have already found the true motif. However this may not be

true in general. Moreover, we do not know at this point that the current best-so-far refers to

the true motif. However we can now use the linear representation combined with the best-so-
far to prune off large fraction of the search space.

For example, could the pair O8 and O3 be closer than our best-so-far? We can answer that

question without having to actually measure the true distance between them. The lower

bound distance in our linear representation is 61.0, but our best-so-far is only 7.0. Given

that, we can be sure that the pair O8 and O3 is not a candidate to be the motif.

More generally, we can take a sliding window of exactly width 7 (the best-so-far), and slide

it across the linear order testing for possible pairs of objects that could be the true motif. As

shown in Figure 5 a necessary condition for two objects to be the motif is that both of them

intersect the sliding window at the same time.

In this example, only pairs {O8, O6} and {O4, O5} could be the true motif, but in this case

we already know the true distances for these pairs, so we are done. More generally, we may

have additional true and/or false positives not pruned by this test, and we would need to

check all of them in the original space.

This then, is the major intuition behind our approach. The full algorithm differs in several

ways:

• Not all objects are equally good as a reference point, we use a simple heuristic to

find good reference points.

• In the above exposition we did one round of pruning. However for large datasets

this may still leave a huge number of candidate pairs to check. Instead, we can

run multiple pruning steps with multiple reference points to do additional

pruning.

In the next section we consider a more formal and detailed discussion of these points.

Mueen et al. Page 6

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2 A Formal Statement of our Algorithm

For ease of exposition we will first consider the brute force motif discovery algorithm, and

then show how our algorithm can be obtained by modifying it. The brute force algorithm as

outlined in Table 1 has a time complexity of O(m2). The algorithm maintains a running

minimum best-so-far and updates it whenever the algorithm finds a pair of time series

having a smaller distance between them. The algorithm is simply a pair of nested loops

which tests every possible combination of pairs of time series, and reports the pair {L1, L2}

which has the minimum distance between them.

3.2.1 Speeding up the Brute Force Algorithm—In order to significantly speed up

the brute force algorithm we must find a way of pruning off a significant fraction of the

distance computations so that the algorithm does not need to compare all m m − 1
2 pairs of

time series. This is critical because each distance computation takes O(n) time which makes

the brute force algorithm an O(m2n) algorithm. Table 2 shows how the brute-force search in

Table 1 can be modified to achieve this. In order to admissibly prune off a distance

computation we must be sure that the pair could not be the motif pair.

Assume ref is a reference time series which may or may not be an object in D (in Figure 3.A

this ref object was O1). Let {Di,Dj} be a pair of time series objects that we hope to be able to

quickly prune off from consideration. By triangular inequality we have d(ref,Di) – d(ref,Dj)

≤ d(Di,Dj). Thus if we know the two values on the left of the inequality, we can use them as

lower bound on the d(Di,Dj) after just a single cheap subtraction. If this lower bound

happens to be larger than the best-so-far (the running minimum), we can safely avoid

computing the d(Di,Dj) (This idea is reflected in line 12 in Table 2), otherwise the pair

{Di,Dj} remain as a potential motif which must be compared.

The distances of all m time series in D to the ref time series can be computed and saved

before the search starts. We store this list of distances in a single column table called Dist.
Note that the number line shown in Figure 4 and Figure 5 is essentially this data structure.

Creating Dist requires only O(mn) time (lines 3–6 in Table 2).

Our motif search strategy is based on an ordered search of the Dist structure. Ideally if we

sort the lower bounds for every pair in ascending order and compare pairs in that order, we

can stop our search as soon as we get a pair whose lower bound is greater than the best-so-
far at that time. This is unrealistic because it will take O(m2 log m2) to sort the lower bounds

and is therefore worse than the brute force algorithm. Rather than sorting lower bounds for

every pair, we can sort the distances from just the reference time series, i.e the Dist data

structure. This sorting can be performed before the search starts and thus costs time in of

order of O(m log m) (lines 3–6 in Table 2). Because we look up the table Dist to avoid

distance computations, instead of sorting all the distances in Dist, we can simply sort the

indices to the rows of Dist. This ordered array of indices is named as I in Table 2 at line 7.

Formally, I is the sorted order of the time series in D where d(ref,DI(i)) ≤ d(ref,DI(j)) iff i≤ j.

Before considering how we will search this linear ordering, we must introduce the variable

offset. The offset is simply an integer between 1 and m−1. If we point to the jth item in the

Mueen et al. Page 7

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ordered list I, and to the jth + offset item, then we have a candidate pair of time series which

we may test. As we will see below, if we consider systematic values of j and offset, we can

guarantee that we have considered or eliminated all possible pairs of candidates.

To see how the ordering in list I will guide the search and help the search finish early, we

must first consider the following two lemmas.

Lemma 1: If DI(j+offset)-DI(j) > best-so-far for all 1≤ j ≤m-offset and offset > 0 then

DI(j+w)-DI(j) > best-so-far for all 1≤ j ≤m-w and w>offset.

In other words; for a positive integer offset and for j=1,2…,m-offset if {DI(j),DI(j+offset)} fail

to have their lower bounds less than the best-so-far then for all positive integers w>offset
and for all j=1,2,…,m-w, {DI(j),DI(j+w)} will also fail to have their lower bounds less than

the best-so-far. This is true from the definition of I,

d ref , DI j ≤ d ref , DI j + offset ≤ d ref , DI j + w .

This can be rewritten as

d ref , DI j + offset − d ref , DI j ≤ d ref , DI j + w − d ref , DI j .

So if the left part is larger than best-so-far the right part will obviously be larger.

Lemma 2: If offset=1,2,…,m-1 and j=1,2,…,m-offset then {DI(j),DI(j+offset)} generates all

the m m − 1
2 pairs.

If we search the database D for all possible offsets by which two time series can be apart in

D we must encounter all the possible pairs. Since I has no repetition, it is obvious that

{DI(j),DI(j+offset)} will generate all the pairs with no repetition. Hence this lemma states the

exactness of our search strategy.

With the help of these two lemmas we can build the search strategy. The algorithm starts

with an initial offset of 1 and searches pairs that are offset apart in the I ordering. After

searching all pairs of offset apart, it increase the offset and search again (for the next round).

The algorithm continues till it reaches an offset for which there is no pair having lower

bound larger than the best-so-far and staying offset apart in the I ordering, at that point we

can admissibly abandon the search with the exact motif pair. Lines 8 to 13 of Table 2 detail

this search strategy. Clearly this strategy has the worst case complexity O(m2), which is

equal to the brute force algorithm. However this only occurs in the cases where the motif has

distance larger than any lower bound computed using a random reference. In thousands of

experiments with real world datasets this never happened.

3.2.2 Generalization to multiple reference points—The speed up that we gained in

the previous section can be extended to consider multiple reference time series and we can

Mueen et al. Page 8

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

use them to have tighter lower bounds. Using multiple reference time series raises some

issues in our previous version. We show the final version of our algorithm in Table 3.

To get the tighter lower bounds we use multiple reference time series, which we randomly

chosen from D as before. The number of reference points is a parameter to our algorithm

represented by R. Obviously this introduction does not change the outcome of the algorithm.

As we will later see (cf. Figure 8), once this number is greater than 5 or 6, its exact value

does not even change the running time.

As a consequence of using multiple references, Dist becomes a two dimensional table that

stores distances between any reference time series to any time series in D. The way multiple

references help tightening the lower bounds is very simple. We simply use the maximum of

the lower bounds. This is correct because if one lower bound is larger than best-so-far the

maximum would also be larger and there is no way the pair would become a motif. Since the

lower bounds are not stored anywhere, the algorithm needs to compute all the R lower

bounds for every single pair (lines 16–17 in Table 3). Rather than computing the maximum

which would take O(R) time, we compare each bound with the current best-so-far and reject

(line 19 in Table 3) computing the true distance as soon as one bound is higher than the best-
so-far. Thus amortized cost of the combined lower bound is smaller than O(R).

Although multiple reference time series tighten the lower bounds, we cannot use all of them

in ordering the search strategy. This is because we need to follow exactly one ordering

(Lemma 2) to guide our search (lines 20–21 in Table 3). To choose a reference time series

for ordering the time series in D, we select the one (Z(1) in line 10) with the largest standard

deviation in the distances from itself to others in D (lines 9–10 in Table 3). The intuition

behind this is simply that the larger the standard deviation is, the larger the lower bounds

will be.

4 Scalability Experiments

We begin by stating our experimental philosophy. We have designed all experiments such

that they are not only reproducible, but easily reproducible. To this end, we have built a

webpage (http://www.cs.ucr.edu/~mueen/MK) which contains all datasets and code used in

this work, together with spreadsheets which contain the raw numbers displayed in all the

figures. In addition, the webpage contains many additional experiments which we could not

fit into this work; however, we note that this paper is completely self-contained.

We performed the scalability experiments on both synthetic and real data. All the

experiments are performed on a computer with an AMD 2.1GHz Turion X2 Ultra ZM-80

processor and 3.0GB of DDR2 memory. The algorithm is coded in C and compiled with gcc.

As we noted in Section 1.1, our exact algorithm is faster than all current approximate

algorithms (that choose to report time), so we only compare to two variants of exact search.

Mueen et al. Page 9

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.ucr.edu/~mueen/MK

4.1 Performance Comparison

As a starting point we use random walk time series to test our algorithm. Random walk data

is a difficult case for our algorithm, since we should not expect a very close motif pair to

exist in the data.

We produced 10 sets of random walks of different sizes containing from 10,000 to 100,000

time series, all of length 1024. We ran our algorithm 10 times on each of these datasets and

took the average of the execution times. Figure 6 shows a comparison of the brute force

algorithm with our MK algorithm in terms of the execution time.

The difference in execution times is quite dramatic, for 100,000 objects brute force takes

12.7 hours, but our algorithm takes only 12.4 minutes (with a standard deviation of 55

seconds).

As dramatic as this speedup is, it is in fact the worst case for our algorithm. This is because

there is no reason to expect a particularly close pair of objects in a random walk dataset.

This means the difference between MK and early abandoning brute force will be the

smallest (c.f. Section 4.3.1). In real datasets the two algorithms are significantly different.

For example, we repeated the experiment with an electroencephalograph dataset (cf. Section

5.3) as shown in Figure 7.

Note that all algorithms are faster, because the motif length is just 128. Here the brute force

time is 74 minutes, but the time for our algorithm is only 2.1 minutes (with a standard

deviation of 13.5 seconds).

4.2 Choosing the number of reference points

Our algorithm has one input parameter, the number of reference time series used. Up to this

point we have not discussed the parameter in detail, however it is natural to ask how critical

its setting is. A simple thought experiment tells us that a too small or too large value should

produce a slower algorithm. In the former case, if few reference time series are used, most

candidate pairs are not pruned, and must be examined by brute force. In the latter case, we

may have only O(m) pairs of candidates left to check, but the time to create a one-

dimensional representation from a reference time series is O(m), so we may not break even

and we may have been better off to just brute force the remaining time series. This reasoning

tells us that a plot of execution time vs. number of reference time series should be a U-

shaped curve, and we should target a parameter that gives us the bottom of the curve.

In Figure 8 we illustrate this observation with an experiment in varying the number of

reference points and measuring the execution time. Note that the leftmost value,

corresponding to zero reference point is equivalent to the special case of brute force search.

This plot suggests that the input parameter is not critical. Any value from five to sixty gives

two orders of magnitude speedup. Moreover, this is true if we change the length of the time

series, the size of the database (i.e m) or the data type. For this reason, we fixed the number

of reference points to be eight in all the experiments in this paper.

Mueen et al. Page 10

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.3 Discussion and Interpretation of Results

In the following sections we interpret and explain the results of the scalability results in

more detail.

4.3.1 Why is Early-Abandoning so Effective?—While the results in the previous

section bode well for the MK algorithm, a perhaps unexpected result is that just using early-

abandoning can make brute force search significantly faster. While it has been known for

some time that early-abandoning can speed up nearest neighbor search; most work suggests

that the speedup is a small constant, in the range of two to three [18]. However, at least for

the random walk experiment shown in Figure 6 it appears early-abandoning can produce at

least a ten-fold speed up. It is informative to consider why this is so.

The power of early-abandoning comes from the (relative) value of the best-so-far variable

during search. If it has a small value early on in a search, then most items can be abandoned

very early. However, we typically have no control over how fast the best-so-far decreases;

we simply hope that a relatively similar object will be encountered early in the search.

The key insight into explaining why early-abandoning works so well for motif discovery is

that there are simply many more possibilities for the best-so-far to decrease early in the

(quadratic) search for a motif, than during the (linear) search for a nearest neighbor. To see

this we performed a simple experiment. We measured the average distance between two time

series, the average nearest neighbor distance for ten randomly chosen time series, and the

motif distance, all for increasingly large instantiations of a database of EEG data of length

128 (c.f. Section 5.3). The results are shown in Figure 9.

Note that average distance is essentially independent of the dataset size. The mean distance

of a query to its nearest neighbor decreases with database size as we would expect, however

note that the motif distance decreases more dramatically, and is significantly smaller.

This effect is like a real-valued version of the familiar birthday paradox. In a dataset

consisting of 23 people, the chance that one of them will share your birthday (the analogue

to linear nearest neighbor search) is just 6.1%. However, the chance of any two people

sharing a birthday (the analogue to quadratic motif search) is 50.7%. There are simply many

more possibilities in the latter case. Likewise, for motif search, there are so many possible

ways for pairs to be similar that we can be confident to find a very low best-so-far early on,

and therefore extract the most benefit out of early abandoning.

4.3.2 Why not use DTW or Uniform Scaling?—In this work we have used the

classic Euclidean distance as the underlying distance measure. However one could imagine

using Dynamic Time Warping (DTW) or Uniform Scaling Euclidean distance (US) instead.

In many independent works it has been shown that DTW and US can produce superior

classification/clustering accuracy and superior subjective judgments of similarity in diverse

time series domains [18][34].

However recent work has forcefully shown that for DTW, its superiority over Euclidean

distance for nearest neighbor classification is an inverse function of the dataset size. As the

Mueen et al. Page 11

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dataset gets larger, the difference between DTW and Euclidean distance rapidly decreases

[28]. To see this, we performed 1NN classification with both DTW and Euclidean distance

for increasing large instantiations of the Two-Pattern dataset, a highly “warped” publicly

available time series dataset. Figure 10 shows the results.

We have performed similar experiments on 20 other time series datasets, this example is

interesting only in that it is the slowest to converge1. Upon reflection, this result is

unsurprising, as the datasets get larger, the expected distance (under any measure) to the

nearest neighbor will decrease (cf. Figure 9.). Given this fact, the Euclidean distance is more

likely to find a nearest neighbor so near that “warping” the distance (and therefore

decreasing the distance) is unlikely to change the rankings of nearest neighbors, and

therefore unlikely to change the class prediction.

Given that this is true for 1NN classification, we can expect it to be even more of a factor for

motif discovery, since motif discovery allows many more distance comparisons, and the

smallest of them (the motif distance) is likely to be so small that DTW and Euclidean

distance will be essentially identical. To see this, we randomly created 300 pairs of random

walks of length 64, and measured the distance between them using DTW and Euclidean

distance. The results are shown in a scatter plot in Figure 11.

We can see that if two objects are relatively far apart under the Euclidean distance, then

using DTW can make them appear closer, and possibly change the nearest neighbor ranking.

However, as objects get relatively close under the Euclidean distance, the difference between

the Euclidean distance and DTW diminishes. In this example, for values under 1.0, both

measures are near perfectly correlated. Empirically we find that for random walks of this

length, by the time we have a mere 100,000 objects in the dataset, the average motif distance

is usually much less than 0.25.

Given these facts, we can now succinctly answer the question as to why we do not use the

DTW distance to find motifs. The answer is that for the very large datasets we consider, it

empirically does not make any difference to the result. Identical remarks apply to uniform

scaling.

5 Experimental Case Studies

Having demonstrated the scalability of our algorithm in the previous section, we now turn

our attention to demonstrate the utility of time series motifs in various domains.

5.1 Finding Repeated Insect Behavior

In the arid to semi-arid regions of North America, the Beet leafhopper (Circulifer tenellus)

shown in Figure 12, is the only known vector (carrier) of curly top virus, which causes major

economic losses in a number of crops including sugarbeet, tomato, and beans [16]. In order

to mitigate these financial losses, entomologists at the University of California, Riverside are

attempting to model and understand the behavior of this insect [29].

1In this case, the error-rate approaches zero for large datasets, so convergence seems inevitable. However on other datasets the two
approaches converge on a non-zero error-rate.

Mueen et al. Page 12

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

It is known that the insects feed by sucking sap from living plants; much like the mosquito

sucks blood from mammals and birds. In order to understand the insect’s behaviors,

entomologists glue a thin wire to the insect’s back, complete the circuit through a host plant

and then measure fluctuations in voltage level to create an Electrical Penetration Graph

(EPG) as shown in Figure 12.

This method of data collection produces large amounts of data, in Figure 13 we see about a

quarter hour of data, however the entomologists data archive currently contains thousands of

hours of such data, collected in a variety of conditions. Up to this point, the only analysis of

this data has been some Fourier analyses, which has produced some suggestive results [29].

However Fourier analysis is somewhat indirect and removed from the raw data. In contrast

motif discovery operates on the raw data itself and can potentiality produce more intuitive

and useful knowledge. In Figure 14 we show the motif of length 480 discovered in the entire

33,021 length time series shown in Figure 13.

As we can see, the motifs are uncannily similar, even though they occur minutes apart.

Having discovered such a potentially interesting pattern, we followed up to see if it is really

significant. The first thing to do is to see if it occurs in other datasets. We have indexed the

entire archive with an iSAX index [28] so we quickly determined the answer to be

affirmative, this pattern does appear in many other datasets, although the “plateau” region

(approximately from 300 to 380 in Figure 14) may be linearly scaled by a small amount

[29]. We recorded the time of occurrence and looked at the companion video streams which

were recorded synchronously with the EPGs. It appears that the motif occurs immediately

after phloem (plant sap) ingestion has taken place.

The motif discovered in this stream happens to be usually smooth and highly structured,

however motifs can be very complex and noisy. Consider Figure 15 which shows a motif

extracted from a different trace of length 18,667.

In this case, examination of the video suggests that this is a highly ritualized grooming

behavior. In particular, the feeding insect must get rid of honeydew (a sticky secretion,

which is by-product of sap feeding). As a bead of honeydew is ejected, it temporarily forms

a highly conductive bridge between the insect and the plant, drastically affecting the signal.

Note that these examples are just a starting point for entomological research. It would be

interesting to see if there are other motifs in the data. Having discovered such motifs we can

label them, and then pose various hypotheses. For example: “Does motif A occur more
frequently for males than females?”. Furthermore, an understanding of which motifs

correlate with which behaviors suggests further avenues for additional data collection and

experiments. For example, it is widely believed that Beet leafhoppers are repelled by the

presence of marigold plants (Tagetes). It may be possible to use the frequency of (now)

known motifs to detect if there really is a difference between the behavior of insect with and

without the presence of marigolds. We defer further discussion of such issues to future and

ongoing work.

Mueen et al. Page 13

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2 Near Duplication Detection

Algorithms for near-duplicate detection in images are useful for finding copyright violations,

detecting forged images, and summarizing large image collections (by showing only one

example from a set of near duplicates). These algorithms can be seen as two-dimensional

analogues of time series motif discovery.

While many specialized algorithms exist for this problem, it is clear that time series motif

discovery could be used for this task, if we can find a way to meaningfully represent images

as “time series”. While there are many possible ways to convert two-dimensional images to

a one-dimensional signal, the most obvious is the classic trick of treating the color

distribution histogram as a time series [14].

We tested this idea by doing duplicate detection in a dataset of 100,018 small images, which

were collected by Fergus and colleagues as a test bed for a variety of algorithms [11]. Figure

16 shows some representative images from the collection.

The images have already been downsampled to 32-by-32 pixels. From these images we

extract three (primary color) vectors of length 256. We then concatenated the vectors to form

a time series of length 768.

Our first experimental run only took approximately 230 seconds to discover 880 pairs of

exact duplicates. Exact duplicates can be discovered by even simpler algorithms such as

hashing, so we remove one of each duplicated image and ran the algorithm again. In the

second run we discovered the top-forty near duplicates, again in about 230 seconds. Figure

17 shows a selection of the results.

Using brute-force search to find these, it takes 37 minutes using the early abandoning

optimization and approximately 6 hours without the early abandoning.

5.3 Automatically Constructing EEG Dictionaries

In this example of the utility of time series motifs we discuss an ongoing joint project

between the authors and Physicians at Massachusetts General Hospital (MGH) in

automatically constructing “dictionaries” of recurring patterns from electroencephalographs.

The electroencephalogram (EEG) measures voltage differences across the scalp and reflects

the activity of large populations of neurons underlying the recording electrode [26]. Figure

18 shows a sample snippet of EEG data.

Medical situations in which EEG plays an important role include, diagnosing and treating

epilepsy; planning brain surgery for patients with intractable epilepsy, monitoring brain

activity during cardiac surgery and in certain comatose patients; and distinguishing epileptic

seizures from other medical conditions (e.g. “psudoseizures”).

The interpretation of EEG data involves inferring information about the brain (e.g. presence

and location of a brain lesion) or brain state (e.g. awake, sleeping, having a seizure) from

various temporal and spatial patterns, or graphoelements (which we see as motifs), within

the EEG data stream. Over the roughly 100 years since its invention in the early 1900s,

Mueen et al. Page 14

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

electroencephalographers have identified a small collection of clinically meaningful motifs,

including entities named “spike-and-wave complexes”, “wicket spikes”, “K-complexes”,

“sleep spindles” and “alpha waves”, among many other examples. However, the full

“dictionary” of motifs that comprise the EEG contains potentially many yet-undiscovered

motifs. In addition, the current, known motifs have been determined based on subjective

analysis rather than a principled search. A more complete knowledge of the full complement

of EEG motifs may well lead to new insights into the structure of cortical activity in both

normal circumstances and in pathological situations including epilepsy, dementia and coma.

Much of the recent research effort has focus on finding typical patterns that may be

associated with various conditions and maladies. For example, [31] attempts to be an “Atlas
of EEG patterns”. However, thus far, all such attempts at finding typical patterns have been

done manually and in an ad-hoc fashion.

A major challenge for the automated discovery of EEG motifs is large data volumes. To see

this, consider the following experiment. We conducted a search for the motif of length 4

seconds, within a one hour EEG from a single channel in a sleeping patient. The data

collection rate was 500 Hz, yielding approximately 2 million data points, after domain

standard smoothing and filtering, an 180,000 data point signal was produced. Using the

brute force algorithm (c.f. Table 1), finding the motif required over 24 hours of CPU time.

By contrast, using the MK algorithm described in this paper, the same result requires 2.1

minutes, a speedup of about factor of about 700. Such improvements in processing speed are

crucial for tackling the high data volume involved in large-scale EEG analysis. This is

especially the case in attempting to complete a dictionary of EEG motifs which incorporates

multi-channel data and a wide variety of normal situations and disease states.

Having shown that automatic exploration of large EEG datasets is tractable, our attention

turns to the question, is it useful? Figure 19.left shows the result of our first run of our

algorithm and Figure 19.right shows a pattern discussed in a recent paper [30].

It appears that this automatically detected motif corresponds to a well-known pattern, the K-

complex. K-complexes were identified in 1938 [26][21] as a characteristic event during the

sleep.

This figure is at least highly suggestive that in this domain, motif discovery can really find

patterns that are of interest to the medical community. In ongoing work we are attempting to

see if there are currently unknown patterns hiding in the data.

5.4 Motif-based Anytime Time Series Classification

We conclude our experimental section with an example of a novel use for time series motifs.

There has been recent interest in converting classic batch data mining algorithms to anytime
versions [34]. In some cases this is trivial, for example we can frame the nearest-neighbor

classification algorithm as an anytime algorithm simply by conducting a sequential search

for the unlabeled item’s nearest neighbor in the labeled dataset [34]. If the algorithm is

interrupted before completing the full search, then the label of the best-so-far nearest

neighbor is returned as the class label.

Mueen et al. Page 15

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This simple idea can be enhanced by sorting the labeled instances such that the most useful

instances are seen early in the sequential search. In all works that we are aware of, “most
useful” is determined by some estimate of how often each instance is used to correctly

predict, as opposed to incorrectly predict, unknown instances [34][35]. The astute reader

will immediately see a potential weakness here. Suppose we happen to have two nearly

identical instances with the same class label in the training dataset. Furthermore, suppose

they both happen to be useful instances (in the sense discussed above). In this case, both of

the instances will be pushed to the head of the sequential search array. However, this is

clearly redundant; we should push either one, but not both top, of the sequential search array.

Time series motifs potentially allow a fix for this problem. We can discover the 1st motif,

and then move one of the pair to the head of the sequential search array. Then we can rerun

motif discovery on the remaining m−1 time series (excluding the recently moved object)

again move one of the motif pair to the front, and begin motif discovery on m-2 objects etc.

This strategy should ensure high diversity of the first few training examples encountered by

the anytime classification algorithm.

We tested this simple idea against random ordering, and a well known ordering algorithm

called Drop3 [35]. We considered two publicly available datasets, CBF and Face4.

The results are quite surprising. The motif ordering algorithm is significantly better than

Drop3, even though it does not consider any information about how useful any individual

instance is; it is merely enhancing the diversity seen by the classifier in the early part of the

nearest neighbor search. While we found similar results for other datasets, the difference

between motif ordering and Drop3 diminishes as we consider larger training sets.

Nevertheless, these results do suggest a promising avenue for future research. Could a

hybrid of motif ordering and Drop3 outperform either one?

6 Conclusions And Future Work

We have introduced the first exact motif search algorithm which is significantly faster than

brute force search. We have further demonstrated the utility of motif discovery in a variety

of data mining tasks.

Our work focuses on a single, simple definition of motif. However we argue that this

definition can be used to efficiently find any other reasonable definition. For example, if

“motif” is defined as a set of K time series, all within r of each other, or a set of K time

series each within r of at least one other, then it is clear that both definitions require at least

one pair of time series to be within r of each other. We can therefore use MK to find such a

pair, then use similarity search to fill in the missing K-2 time series that complete the set

under the respective definitions.

The question of the best definition for motifs is probably not as important as it might seem.

The entomological, electroencephalograph and image motifs shown in Section 5 are

essentially unchanged under different definitions of motif. There has been some work on

alterative definitions of motifs, for example [20] promises to “significantly improve the
quality of motifs”. However, our floccinaucinihilipilification of this work is based on the fact

Mueen et al. Page 16

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that the evaluation metric used was tautological, there is simply zero evidence to show the

alternative definition is useful in any sense.

Future and ongoing work includes extensive case studies in several domains, including space

telemetry, entomology and electroencephalography, and creating a disk aware version of our

algorithm to allow the exploration of truly massive datasets.

Acknowledgements:

We would like to thank all the donors of datasets. We particularly thank Candice Stafford and Gregory P. Walker of
the Entomological Dept. of UCR for their assistance with interpreting the Beet leafhopper data. This work was
funded by NSF awards 0803410 and NSF 0808770. We are also grateful to them.

Reference

[1]. Abe H and Yamaguchi T, Implementing an integrated time-series data mining environment – a
case study of medical kdd on chronic hepatitis, presented at the 1st International Conference on
Complex Medical Engineering (CME2005), 2005.

[2]. Androulakis I, Wu J, Vitolo J and Roth C, Selecting maximally informative genes to enable
temporal expression profiling analysis, Proc. of Foundations of Systems Biology in Engineering,
2005.

[3]. Arita D, Yoshimatsu H, and Taniguchi R, Frequent motion pattern extraction for motion
recognition in real-time human proxy, Proc. of JSAI Workshop on Conversational Informatics,
pp. 25–30, 2005.

[4]. Beaudoin P, van de Panne M, Poulin P and Coros S, Motion-Motif Graphs, Symposium on
Computer Animation 2008.

[5]. Böhm C and Krebs F, High Performance Data Mining Using the Nearest Neighbor Join, Proc. of
2nd IEEE International Conference on Data Mining (ICDM), pp. 43–50, 2002.

[6]. Celly B and Zordan V, Animated people textures, Proc. of 17th International Conference on
Computer Animation and Social Agents (CASA), 2004.

[7]. Chiu B, Keogh E, and Lonardi S, Probabilistic discovery of time series motifs, Proc. of the 9th
International Conference on Knowledge Discovery and Data mining (KDD’03), pp. 493–498,
2003.

[8]. Cormen TH, Leiserson CE, Rivest RL, Stein C, Introduction to Algorithms, 2nd Edition, The MIT
Press, McGraw Hill Book Company, 2001.

[9]. Ding H, Trajcevski G, Scheuermann P, Wang X and Keogh E, Querying and Mining of Time
Series Data: Experimental Comparison of Representations and Distance Measures, VLDB 2008.

[10]. Duchêne F, Garbay C and Rialle V, Learning recurrent behaviors from heterogeneous multivariate
time-series, Artificial Intelligence in Medicine 39(1): 25–47 (2007). [PubMed: 16935482]

[11]. Torralba A, Fergus R and Freeman WT, 80 million Tiny Images: a Large Database for Non-
Parametric Object and Scene Recognition, IEEE PAMI, 30(11):1958–1970, 11, 2008.

[12]. Gonzalez EC, Figueroa K and Navarro G, Effective Proximity Retrieval by Ordering
Permutations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(9):1647–
1658, 2008. [PubMed: 18617721]

[13]. Guyet T, Garbay C and Dojat M, Knowledge construction from time series data using a
collaborative exploration system, Journal of Biomedical Informatics 40(6): 672–687 (2007).
[PubMed: 17988953]

[14]. Hafner J, Sawhney H, et al., Efficient color histogram indexing for quadratic form distance
functions, IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(7):729–736, 1995.

[15]. Hamid R, Maddi S, Johnson A, Bobick A, Essa I, and Isbell C. Unsupervised activity discovery
and characterization from event-streams, Proc. of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI05), 2005.

Mueen et al. Page 17

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[16]. Kaffka S, Wintermantel B, Burk M, and Peterson G, Protecting high-yielding sugarbeet varieties
from loss to curly top, 2000 http://sugarbeet.ucdavis.edu/Notes/Nov00a.htm

[17]. Keogh EJ, Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases,
Proc. of the 7th European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD), pp. 253–265, 2003.

[18]. Keogh EJ, Wei L, Xi X, S-H Lee and M Vlachos: LB_Keogh Supports Exact Indexing of Shapes
under Rotation Invariance with Arbitrary Representations and Distance Measures, pp. 882–893,
VLDB 2006.

[19]. Lin J, Keogh E, Lonardi S, and Patel P, Finding motifs in time series, Proc. of 2nd Workshop on
Temporal Data Mining (KDD’02), 2002.

[20]. Liu Z, Yu JX, Lin X, Lu H and Wang W, Locating Motifs in Time-Series Data, Pacific-Asia
Conference on Knowledge Discovery and Data Mining. 2005.

[21]. Loomis AL, Harvey E, and Hobart G, Disturbance patterns in sleep, J. Neurophysiol, 2 (1938)
413–430.

[22]. McGovern A, Rosendahl D, Kruger A, Beaton M, Brown R, and Droegemeier K, Understanding
the formation of tornadoes through data mining, 5th Conference on Artificial Intelligence and its
Applications to Environmental Sciences at the American Meteorological Society, 2007.

[23]. Meng J, Yuan J, Hans M and Wu Y, Mining Motifs from Human Motion, Proc. of
EUROGRAPHICS, 2008.

[24]. Minnen D, Isbell CL, Essa I, and Starner T, Discovering Multivariate Motifs using Subsequence
Density Estimation and Greedy Mixture Learning, 22nd Conf. on Artificial Intelligence
(AAAI’07), 2007.

[25]. Murakami K, Doki S, Okuma S, and Yano Y, A study of extraction method of motion patterns
observed frequently from time-series posture data, Proc. of IEEE International Conference on
Systems, Man and Cybernetics (SMC), pp. 3610–3615, 2005.

[26]. Niedermeyer E. and Lopes da Silva F. (). Electroencephalography: Basic Principles, Clinical
Applications and Related Fields. Baltimore, MD: Williams and Wilkins, 1999.

[27]. Rombo S and Terracina G, Discovering representative models in large time series databases,
Proc. of the 6th International Conference on Flexible Query Answering Systems, pp. 84–97,
2004.

[28]. Shieh J and Keogh E, iSAX: Indexing and Mining Terabyte Sized Time Series, SIGKDD. pp
623–631 2008.

[29]. Stafford C and Walker G, Characterization and correlation of DC electrical penetration graph
waveforms with feeding behavior of beet leafhopper, under submission, 2008.

[30]. Stefanovic BJ, Schwindt W, Hoehn M and Silva AC, Functional uncoupling of hemodynamic
from neuronal response by inhibition of neuronal nitric oxide synthase, Journal of Cerebral Blood
Flow & Metabolism, 27: 741–754, 2007. [PubMed: 16883353]

[31]. Stern JM and Engel J Jr., Atlas of EEG patterns, Lippincott, Williams & Wilkins, 2004.

[32]. Tanaka Y, Iwamoto K, and Uehara K, Discovery of time-series motif from multi-dimensional
data based on MDL principle, Machine Learning, 58(2–3):269–300, 2005.

[33]. Tata S, Declarative Querying For Biological Sequences, Ph.d Thesis, The University of
Michigan, 2007 (Advisor Patel Jignesh M.).

[34]. Ueno K, Xi X, Keogh E and Lee D, Anytime Classification Using the Nearest Neighbor
Algorithm with Applications to Stream Mining, Proc. of IEEE International Conference on Data
Mining (ICDM), 2006.

[35]. Wilson DR and Martinez TR, Reduction techniques for instance-based learning algorithms,
Machine Learning, Vol 38, pages 257–286, Kluwer Acadamic Publishers, 2000.

Mueen et al. Page 18

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sugarbeet.ucdavis.edu/Notes/Nov00a.htm

Figure 1:
(top) The output steam flow telemetry of the Steamgen dataset has a motif of length 640

beginning at locations 589 and 8,895. (bottom) by overlaying the two motifs we can see how

remarkably similar they are to each other

Mueen et al. Page 19

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
A visual intuition of early abandoning. Once the squared sum of the accumulated gray hatch

lines exceeds r2, we can be sure the full Euclidean distance exceeds r

Mueen et al. Page 20

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
A) A small database of two-dimensional time series objects. B) The time series objects can

be arranged in a one-dimensional representation by measuring their distance to a randomly

chosen point, in this case O1. C) The distances between adjacent pairs along the linear

projection is a (generally weak) lower bound to the true distance between them

Mueen et al. Page 21

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
We scan the objects from left to right, measuring the true distances between them. Note that

just for the first pair {O1, O8} the linear distance is the true distance. In all other cases the

linear distance is a lower bound. For example, the lower bound distance between {O8, O6} is

3, but our test of the true distance reveals d(O8, O6) = 42.0

Mueen et al. Page 22

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
A necessary condition for two objects to be the motif is that both of them intersect a sliding

window, of width best-so-far, at the same time. Only pairs {O8, O6} and {O4, O5} survive

the sliding window pruning test.

Mueen et al. Page 23

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
A comparison of three algorithms in the time taken to find the motif pair in increasingly

large random walk databases. For the brute force algorithm, values for dataset sizes beyond

30,000 are extrapolated

Mueen et al. Page 24

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
A comparison of three algorithms in the time taken to find the motif pair in increasingly

large electroencephalograph databases (all subsets of dataset LSF5_10). For the brute force

algorithm, values for dataset sizes beyond 70,000 are extrapolated

Mueen et al. Page 25

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8:
A plot of execution time vs. the number of reference points. Note that once the number of

reference points is beyond say five, its exact value makes little difference. Note the log scale

of the time axis

Mueen et al. Page 26

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9:
How the size of the dataset effects the average, nearest neighbor and motif distances

Mueen et al. Page 27

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10:
The error rate of DTW and ED on increasingly large instantiations of the Two-Pat problem

Mueen et al. Page 28

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11:
(left) A scatter plot where each point represents the Euclidean distance (x-axis) and the

DTW distance (y-axis) of a pair of time series. Some data points had values greater than 12,

they were truncated for clarity (right) a zoom-in of the plot on the left

Mueen et al. Page 29

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12:
A schematic diagram showing the apparatus used to record insect behavior

Mueen et al. Page 30

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13:
An Electrical Penetration Graph of insect behavior. The data is complex and highly

nonstationary, with wandering baseline, noise, dropouts etc

Mueen et al. Page 31

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 14:
The motif of length 480 found in the insect telemetry shown in Figure 13. Although the two

instances occur minutes apart they are uncannily similar

Mueen et al. Page 32

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 15:
The motif of length 400 found in an EPG trace of length 18,667. (inset) Using the motifs as

templates, we can find several other occurrences in the same dataset

Mueen et al. Page 33

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 16:
A section of randomly chosen images from the set of 100,018 images created by Fergus et.

al [11].

Mueen et al. Page 34

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 17:
Seven near-duplicate pairs discovered by our algorithm. In every case the images are very

similar, but not identical

Mueen et al. Page 35

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 18:
The first ten seconds of an EEG trace. In the experiment discussed below, we consider a full

hour of this data

Mueen et al. Page 36

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 19:
(left) Bold Lines: The first motif found in one hour of EEG trace LSF5. Light Lines: The ten

nearest neighbors to the motif. (right) A screen dump of Figure 6.A from paper [30]

Mueen et al. Page 37

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 20:
The out-of-sample accuracy of three different ordering techniques on two benchmark time

series datasets. The y-axis shows the accuracy of 1NN if the algorithm is interrupted after

seeing x objects

Mueen et al. Page 38

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mueen et al. Page 39

Table 1:

Brute force motif discovery

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mueen et al. Page 40

Table 2:

Speeded up brute force motif discovery

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mueen et al. Page 41

Table 3:

MK motif Discovery

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 October 25.

	Abstract
	Introduction
	Prior and Related Work

	Background and Notation
	Our Algorithm
	The Intuition behind our Algorithm
	A Formal Statement of our Algorithm
	Speeding up the Brute Force Algorithm
	Generalization to multiple reference points

	Scalability Experiments
	Performance Comparison
	Choosing the number of reference points
	Discussion and Interpretation of Results
	Why is Early-Abandoning so Effective?
	Why not use DTW or Uniform Scaling?

	Experimental Case Studies
	Finding Repeated Insect Behavior
	Near Duplication Detection
	Automatically Constructing EEG Dictionaries
	Motif-based Anytime Time Series Classification

	Conclusions And Future Work
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Figure 12:
	Figure 13:
	Figure 14:
	Figure 15:
	Figure 16:
	Figure 17:
	Figure 18:
	Figure 19:
	Figure 20:
	Table 1:
	Table 2:
	Table 3:

