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Abstract

Discrimination in social sense (e.g., against minorities
and disadvantaged groups) is the subject of many
laws worldwide, and it has been extensively studied
in the social and economic sciences. We tackle the
problem of determining, given a dataset of historical
decision records, a precise measure of the degree of
discrimination suffered by a given group (e.g., an etnic
minority) in a given context (e.g., a geographic area)
with respect to the decision (e.g. credit denial). In our
approach, this problem is rephrased in a classification
rule based setting, and a collection of quantitative
measures of discrimination is introduced, on the basis
of existing norms and regulations. The measures are
defined as functions of the contingency table of a
classification rule, and their statistical significance is
assessed, relying on a large body of statistical inference
methods for proportions. Based on this basic method,
we are then able to address the more general problems
of: (1) unveiling all discriminatory decision patterns
hidden in the historical data, combining discrimination
analysis with association rule mining, (2) unveiling
discrimination in classifiers that learn over training
data biased by discriminatory decisions, and (3) in the
case of rule-based classifiers, sanitizing discriminatory
rules by correcting their confidence. Our approach is
validated on the German credit dataset and on the
CPAR classifier.

1 Introduction

In social sense, discrimination refers to an action based
on prejudice resulting in unfair treatment of people,
where the distinction between people is operated on
the basis of their membership to a category or minor-
ity, without regard to individual merit or circumstances.
Examples of social discrimination include racial/ethnic,
religious, gender, sexual orientation, disability, and age-
related discrimination; a large body of international
laws and regulations [4, 5, 20, 21] prohibit discrimi-
nation in socially-sensitive decision making tasks, in-
cluding credit scoring/approval, house lending, and per-
sonnel selection. In order to prove (or disprove) a dis-
crimination charge before a court, or to perform a so-

cial analysis of discrimination in a given context, it is
clearly needed to rely on quantitative measures of the
phenomenon under study: for this reason, discrimina-
tion has been the subject of a large body of research in
legal, economic and social sciences, as well as the sub-
ject of empirical analysis in a large number of juridical
cases [12].

In this paper, we propose a systematic framework
for measuring discrimination, based on the analysis of
the historical decision records stored out of a socially-
sensitive decision task, e.g., credit approval. We gener-
alize the approach of [16] and show how a comprehensive
repertoire of discrimination measures, encompassing all
the notions that we found in the juridical literature, can
be defined in terms of the confidence (or probability) of
the decision rules that describe the phenomenon under
analysis, namely the potential discrimination of a given
group within a certain context. Clearly, the confidence
of such rules can be estimated with reference to the
available historical decision records; on this basis, we
address the crucial issue of the statistical significance of
the proposed discrimination measures, trying to find an
answer not only to: “what is an adequate estimation of
the degree of discrimination?” but also “how confident
are we on such an estimation, given the available data?”

We take a different approach with respect to our
earlier work in [16]: we now investigate whether evi-
dence of discrimination can be found in a given set of
decisions, by measuring the degree of discrimination of
a rule that formalizes an expert’s hypothesis – e.g., a
suspicious pattern that an anti-discrimination body is
interested to verify. The next natural step is to re-
peat such a procedure for all the classification rules that
emerge from the historical data, thus unveiling all the
discriminatory patterns hidden in the data. As a further
contribution, we investigate how the newly introduced
discrimination measures and significance tests can be
used to reason about classifier themselves: first, to as-
sess whether or not a classifier built over the historical
decision records is biased by the discrimination behav-
ior hidden in the data; second, to sanitize rule-based
classifiers by means of corrections to their potentially
discriminatory rules. Given that discrimination can be



induced either directly, that is on the basis of sensitive
data available to the classifier (such as gender or age),
or, much more subtly, indirectly, that is by attribute
values related to the sensitive ones (such as ZIP area
and minority race), the task of sanitizing the rules of
the classifier is quite complex. We propose and study
an approach consisting of just modifying the confidence
of the rules in the classifier.

Summarizing the contribution of this paper: (1)
we define a family of formal measures of discrimination
for classification rules (Sects. 3-4), including a notion
of statistical significance (Sect. 5); (2) we combine the
discrimination measures with association rule mining to
unveil direct and indirect discrimination in datasets of
decisions (Sect. 6) or in the output of classifiers (Sect. 7);
(3) for rule-based classifiers, we propose a discrimination
correction based on the measures (Sect. 8); and, finally,
(4) we experiment the theoretical definitions and results
on the publicly available German credit granting dataset
[15] and on the CPAR rule-based classifier [22] (Sect. 9).

2 Preliminaries

We recall the notions of itemsets, association rules
and classification rules from standard definitions [1].
Consider a relation with attributes a1, . . . , an. A class
attribute is a fixed attribute c of the relation. An a-
item is an expression a = v, where a is an attribute and
v ∈ dom(a), the domain of the values of a. We assume
that dom(a) is finite for every attribute a. A c-item is
called a class item. An item is any a-item. Let I be
the set of all items. A transaction is a subset of I, with
exactly one a-item for every attribute a. A database
of transactions, denoted by D, is a set of transactions.
An itemset X is a subset of I. We denote by 2I the
set of all itemsets. As usual in the literature, we write
X,Y for X ∪ Y, that is the set of items including both
X and Y. It is worth noting, however, that X,Y
characterizes a set of individuals who have both the
attributes in X and in Y. For a transaction T , we
say that T verifies X if X⊆ T . The support of an
itemset X w.r.t. a non-empty transaction database D is
the ratio of transactions in D verifying X with respect
to the total number of transactions: suppD(X) =
|{ T ∈ D | X ⊆ T }|/|D|, where | | is the cardinality
operator. An association rule is an expression X →Y,
where X and Y are itemsets. X is called the premise
(or the body) and Y is called the consequence (or the
head) of the association rule. We say that X→ C
is a classification rule if C is a class item and X
contains no class item. The support of X →Y w.r.t. D
is defined as: suppD(X →Y) = suppD(X,Y). The
confidence of X→ Y, defined when suppD(X) > 0, is:
confD(X →Y) = suppD(X,Y)/suppD(X). Support
and confidence range over [0, 1]. We omit the subscripts

in suppD() and confD() when clear from the context.
Also, the notation readily extends to negated itemsets
¬X. Nevertheless, when using negated itemsets in
the paper we will be able to calculate support and/or
confidence by formulas that involve itemsets without
negations. Since the seminal paper [1], a number of well
explored algorithms [10] have been designed in order to
extract frequent itemsets, i.e., itemsets with a specified
minimum support.

3 Potentially Discriminated Groups

Civil rights laws explicitly identify the groups to be pro-
tected against discrimination, e.g., females or black peo-
ple or minorities. With the syntax of Sect. 2, those
groups can be represented as items, e.g., sex=female or
race=black. However, discrimination typically occurs
for subgroups rather than for the whole group. The
intersection of two disadvantaged minorities is a, possi-
bly empty, smaller (even more disadvantaged) minority
as well. As an example, we could be interested in dis-
crimination against elder females. With our syntax, this
group would be represented by the itemset sex=female,
age=elder. We then fix a set Id of potentially discrim-
inatory (PD) itemsets, which will be the object of the
discrimination analysis. Following [16], the only formal
property we require for Id is downward closure.

Definition 3.1. A set of itemsets I is downward
closed if when A1 ∈ I and A2 ∈ I then A1,A2 ∈ I.

The property is sufficient for uniquely splitting an
itemset X into a PD itemset A ∈ Id and a potentially
non-discriminatory (PND) itemset B = X \ A 6∈ Id by
setting A to the largest subset of X that belongs to
Id. Actually, defining A in such a way is equivalent1 to
require the downward closure property of Id.

4 Measuring Discrimination

The basic problem in the analysis of discrimination,
given a dataset of historical decision records, is precisely
to quantify the degree of discrimination suffered by a
given group (say, an ethnic group) in a given context
(say, a geographic area and/or an income range) with
respect to the decision (say, credit approval). In our
approach, we rephrase this problem in a rule based
setting: if A is the condition (i.e., the itemset) that
characterizes the group which is suspected of being
discriminated, B is the itemset that chacterizes the
context and C is the decision (class) item, then the
analysis of discrimination is pursued by studying the
rule A,B→C, together with its confidence with respect

1Assume that A1 ∈ Id and A2 ∈ Id. Since A1,A2 includes
both A1 and A2, then the largest subset of A1, A2 that is in Id

must be A1, A2 itself.



to the underlying decision dataset - namely, how often
such a rule is true in the dataset itself. On the basis
of this idea, we introduce in this section a family of
measures of the degree of discrimination of a potentially
discriminatory (PD) rule A,B →C, where A is a non-
empty PD itemset and B is a PND itemset. Our
approach in defining the family of measures consists
of translating the qualitative statements of existing
laws, regulations and legal cases into quantitative formal
counterparts over classification rules.

4.1 Ratio Measures Unfortunately, there is no uni-
formity nor general agreement on a standard definition
of discrimination by legislations. A general principle is
to consider group under-representation as a quantitative
measure of the qualitative requirement that people in a
group are treated “less favorably” [5, 20] than others,
or such that “a higher proportion of people without the
attribute comply or are able to comply” [4] to a qual-
ifying criteria. As a first proposal, we recall from [16]
the notion of extended lift, a measure of the increased
confidence in concluding an assertion C resulting from
adding (potentially discriminatory) information A to a
rule B→ C where no PD itemset appears.

Definition 4.1. Let A,B→ C be a classification rule
with conf(B→C) > 0. The extended lift of the rule is:

elift(A,B→C) =
conf(A,B→ C)

conf(B →C)
.

A rule sex=female, car=own → credit=nowith
an extended lift of 3 means that being a female increases
3 times the probability of having refused credit with
respect to the average confidence of people owning a
car. An alternative way, yet equivalent2, of defining
the extend lift is as the ratio between the proportion of
the disadvantaged group A in context B obtaining the
benefit C over the overall proportion of A in B:

conf(B,C→A)

conf(B→A)
.

This makes it clear how extended lift relates to the
principle of group representation. In addition to ex-
tended lift, other measures can be formalized starting
from different definitions of discrimination provided by
laws. According to the Anti-discrimination Act of the
Queensland State [4], discrimination on the basis of an
attribute happens if “a person treats, or proposes to
treat, a person with an attribute less favorably than an-
other person without the attribute”. Since the term of
comparison is another person without the attribute, the

2 conf(A,B → C)
conf(B → C)

=
supp(A,B,C) supp(B)
supp(A,B) supp(B,C)

=
conf(B,C → A)

conf(B → A)
.

ratio should now consider “people with” over “people
without” the attribute.

Definition 4.2. Let A,B→ C be a classification rule
with conf(¬A,B→ C) > 0. The selection lift of the
rule is:

slift(A,B→C) =
conf(A,B→ C)

conf(¬A,B →C)
.

It is immediate to observe that the selection lift is
equivalent to:

elift(A,B→C)

elift(¬A,B→ C)
.

A special case of selection lift occurs when contrasting
the sex items, i.e., A is sex = female and ¬A is sex =

male. This is the form stated in the Sex Discrimination
Act of U.K. [20]. In the literature and jurisprudence,
such a contrast is generalized to non-binary attributes
as, for instance, when comparing the credit denial
ratio of blacks to the one of whites. This yields a
third measure, which given A as a single item a = v1
(e.g., black race) compares it to the most favored item
a = v2 (e.g., white race).

Definition 4.3. Let a = v1,B→ C be a classification
rule, and v2 ∈ dom(a) with conf(a = v2,B→ C) mini-
mal and non-zero. The contrasted lift of the rule is:

clift(a = v1,B→C) =
conf(a = v1,B→ C)

conf(a = v2,B→ C)
.

The formulation above is substantiated by the
Racial Equality Directive of E.U. [5], where discrim-
ination “shall be taken to occur where one person is
treated less favorably than another is in a comparable
situation on grounds of racial or ethnic origin”. Here
the comparison appears to be done between two races
(the disadvantaged one and the favored one). The U.S.
legislation goes further [21, (d) Section 4D] by stating
that “a selection rate for any race, sex, or ethnic group
which is less than four-fifths (or eighty percent) of the
rate for the group with the highest rate will generally
be regarded as evidence of adverse impact”. Since we
are considering benefit refusal (denial rate), the four-
fifths rule turns out to fix a maximum threshold value
for clift() of 5/4 = 1.25.

Let us introduce a final measure based on odds
ratios. In the gambling terminology, the odds 2/3 (2
to 3) means that for every 2 cases an event may occur
there are 3 cases the event may not occur. Stated in
terms of the probability p of the event, the odds ratio is
p/(1− p). Therefore, a fair bet would offer $3 for every
$2 one wager on the occurrence of the event. In the



Classification rule: c = A,B→ C

B C ¬C
A a1 n1 − a1

¬A a2 n2 − a2

p1 = a1/n1 p2 = a2/n2 p = (a1 + a2)/(n1 + n2)

elift(c) =
p1

p
, slift(c) =

p1

p2

, olift(c) =
p1(1 − p2)

p2(1 − p1)

eliftd(c) = p1 − p, sliftd(c) = p1 − p2

Figure 1: Contingency table for a classification rule

employment discrimination literature [8], the “event”
modelled is promotion or hiring of a person. The odds
of a classification rule A,B→ C can then be defined as:

odds(A,B → C) =
conf(A,B→ C)

1 − conf(A,B→C)
,

or, since 1 − conf(A,B→ C) = conf(A,B→¬C), as:

odds(A,B →C) =
conf(A,B→ C)

conf(A,B →¬C)
.

The odds ratio in employment hiring is the ratio be-
tween the odds of hiring a person belonging to a minor-
ity group over the odds of hiring a person not belonging
to that group. Let us extend the concept to rules.

Definition 4.4. Let A,B→ C be a classification rule
with conf(¬A,B →C) > 0 and conf(A,B→C) < 1.
The odds lift of the rule is:

olift(A,B→C) =
odds(A,B →C)

odds(¬A,B →C)
.

It is immediate to observe that the odds lift is equivalent
to:

slift(A,B→C)

slift(A,B→¬C)
.

An alternative view of the measures introduced so
far can be given starting from the contingency table of
A,B→ C shown in Fig. 1. Each cell in the table is
filled in by the number of tuples in the transactions
database D (i.e., the absolute support) satisfying B
and the coordinates. Using the notation of the figure,
confidence of A,B→ C is p1 = a1/n1. Analogously,
extended, selection and odds lifts can be defined as
shown in the figure.

The next result relates the four measures.

Lemma 4.1. Let c be a classification rule A,B →C.
Then either {olift(c), clift(c)} ≥ slift(c) ≥ elift(c) ≥
1, or {olift(c), clift(c)} ≤ slift(c) ≤ elift(c) ≤ 1.

4.2 Difference Measures Although the measures
introduced so far are defined in terms of ratios, mea-
sures based on the difference of confidences have been
considered on the legal side as well. For instance, in
the U.K., a difference of 5% in confidence between fe-
male (A is sex=female) and male (¬A is sex=female)
treatment is assumed by courts as significant of discrim-
ination against women. We define next a version of ex-
tended and selection lift using differences.

Definition 4.5. Let A,B→ C be a classification rule.
We define:

eliftd(A,B →C) = conf(A,B→ C) −

conf(B→ C)

sliftd(A,B →C) = conf(A,B→ C) −

conf(¬A,B →C)

Difference-based measures range over [−1, 1].
Lemma 4.1 readily extends to them.

Lemma 4.2. Let c be a classification rule A,B →C.
Then either sliftd(c) ≥ eliftd(c) ≥ 0 or sliftd(c) ≤
eliftd(c) ≤ 0.

4.3 Maximum Measures For a classification rule
sex = female,B→ credit = yes with a ratio mea-
sure lower than 1, the complementary decision rule
sex = female,B→ credit = no has a measure greater
than 1, and viceversa. In general, with reference
to Fig. 1, let c′ = A,B →¬C. By the property:
conf(c) + conf(c′) = 1, we have: elift(c′) = (1 −
p1)/(1−p), slift(c′) = (1−p1)/(1−p2) and olift(c′) =
1/olift(c). Similarly, for difference-based measures,
we have eliftd(c

′) = −eliftd(c) and sliftd(c
′) =

−sliftd(c). Since one is interested in detecting clas-
sification rules with high measure values, the general
approach of measuring both f(c) and f(c′) can be weak-
ened, when the class is a binary attribute, to checking
fm(c) for the adjusted measure fm() defined as follows.

Definition 4.6. Let f() be one of the measures from
Definitions 4.1-4.5, c a classification rule A,B →C,
and c′ its complementary-decision rule A,B→¬C. We
define the measure fm() as:

fm(c) =







max{f(c), f(c′)} if f(c), f(c′) are defined,
f(c) if only f(c) is defined,
f(c′) if only f(c′) is defined.

Intuitively, fm(sex = female,B→ credit = no)
measures the degree of discrimination against or of fa-
voritism in assigning credit to females in context B.
Notice that favoritism versus minorities, such as reserv-
ing quotas in employment selection procedures, is often



supported by the law, with the name of affirmative ac-
tions, as a means to compensate for past discrimination
against the minority. fm(c) is greater or equal than 1
(resp., 0) for ratio measures (resp., difference measures)
when both f(c) and f(c′) are defined. Lemma 4.1 sim-
plifies to the following form.

Lemma 4.3. Let c be a classification rule A,B →C,
with contingency table as in Fig. 1. If p1, p2 6= 0, 1,
then: oliftm(c) ≥ sliftm(c) ≥ eliftm(c) ≥ 1.

4.4 Discriminatory Classification Rules We gen-
eralize the notion of discriminatory classification rules
from [16] as follows.

Definition 4.7. (a-protection) Let f() be one of
the measures from Definitions 4.1-4.6, and a ∈ R a
fixed threshold. A classification rule c = A,B →C is
a-protective w.r.t. f() if f(c) < a. Otherwise, c is a-
discriminatory.

Intuitively, a is a fixed threshold stating an accept-
able level of discrimination accordingly to laws, regu-
lations, and jurisprudence. Classification rules below
such a level are considered safe, whilst rules whose mea-
sure is greater or equal than such a level are considered
a prima facie evidence of discrimination. The notion
of a-protection is parametric to a measure f(). When
considering f() as elift(), it falls down to the original
notion of α-protection3 [16].

5 Statistical Significance of the Measures

While a high value of a discrimination measure for a
classification rule can represent a prima-facie evidence
of discrimination against a minority, the statistical
significance of such a value has to be considered. This
approach is customary in legal cases before courts [8,
17]. A confidence interval for a statistical parameter θ
(in our case, difference, ratio or odds of two proportions)
is an interval [L1, L2] that reasonably contains the true
value for the parameter. Typically the interval is stated
in the form θ̂±d, where θ̂ is a point estimate and d is the
margin of error. Given an observed contingency table,
a confidence interval [L1, L2] returned by some method
at 100(1−α)% level of significance is such that [L1, L2]
contains the true value of θ in at least 100(1 − α)%
of cases. Stated in terms of statistical tests, this means
that the null hypothesis θ = θ0 cannot be rejected at the
significance level of 100(1−α)% for every θ0 in [L1, L2].

In our context, we are given a classification rule
c = A,B →C, and a reference measure f(). We can

3We use the name “a-protection” instead of “α-protection” in
order not to generate confusion later on when confidence intervals
at the significance level of 100(1 − α)% will be considered.

then interpret the contingency table of c (Fig. 1) as the
result of an experiment, which returned a value f(c)
for the data at hand (the historical decision records).
What is the chance that past decisions were affected by
randomness rather than explicit discrimination against
minority A? A confidence interval provides us with
a range for the true value of f(c) over the entire
population (of decisions), at a certain significance level.
We will exploit this parallel to revise the definition of
a-discrimination.

5.1 From Measures to Tests on Proportions
Consider the contingency table for a classification rule
c = A,B →C in Fig. 1. We observe that the ratio and
difference measures introduced in Sec. 4.1-4.2 have been
the subject of extensive studies in the field of statistical
inference:

• slift(c) is the ratio p1/p2 of two proportions, also
known as the risk ratio or relative risk (RR) [2];

• sliftd(c) is the difference p1−p2 of two proportions,
also known as the risk difference (RD) [2, 7];

• olift(c) is the odds ratio (OR) p1(1 − p2)/(p2(1 −
p1)) of two proportions [2, 7];

• elift(c) is the ratio p1/p related to the population
attributable risk (PAR) defined as PAR = (p −
p1)/p by the formula elift(c) = 1 − PAR;

• eliftd(c) is the difference p1 − p related to the
attributable risk (AR) [7, 9] defined as AR = p−p1

by the formula eliftd(c) = −AR.

Statistical tests and confidence intervals for the
difference, ratio, and odds of proportions have been
proposed throughout the last 50 years. Let us denote
by π1 and π2 the true proportions of p1 and p2.
Difference, ratio and odds of π1 and π2 follow discrete
distribution probabilities. However, when numbers in
the contingency table are large, the distributions can
be asymptotically approximated by a normal or a log-
normal distribution. Based on this, Wald confidence
intervals can be calculated [2, 6, 7] as follows.

Let Zα denote the critical value of the normal
distribution cutting off probability α, namely Φ(Zα) =
α where Φ() is the cumulative normal distribution.

RD: Called p̂ = p1 − p2, the confidence interval for
π1 − π2 is [p̂ − d, p̂ + d] where:

d = Z1−α/2

√

p(1 − p)(
1

n1

+
1

n2

).

RR: Called r̂ = p1/p2, the confidence interval for
π1/π2 is [r̂/ed, r̂ed] where:

d = Z1−α/2

√

1

a1

−
1

n1

+
1

a2

−
1

n2

.(5.1)



We refer the reader to [7, page 102] for Wald
intervals of OR; to [7, page 132] for the ones of PAR;
and to [13] for the ones of AR. In addition to the Wald
confidence intervals outlined before, other asymptotic
methods have been proposed in the statistical inference
literature. We refer the reader to survey and comparison
papers [6, 13, 14, 19]. Moreover, in order to improve
the approximation of a discrete distribution by the
normal or log-normal distribution several corrections
for continuity have been proposed, such as Yates’s
correction and the Mid-p method [2]. Later on, we
will consider the simple but effective plus-4 method
[3], consisting of adding Z2

α/4 cases to each cell in the
contingency table.

When numbers in a contingency table are very low,
the approximation to normal distribution becomes im-
precise. This is a critical issue not only from a theo-
retical point of view, but also in practice under a legal
profile (see [17] for a discussion). Exact methods have
been proposed in the statistic literature, where “exact”
means that the actual discrete distribution of the statis-
tical parameter is adopted in computing the confidence
intervals. The original work on the subject traces back
to Fisher’s exact method for a single proportion, and
it is currently a research topic in the statistical infer-
ence area. The issues here are twofold and contrasting.
On the one hand, one looks for intervals whose width
is as strict as possible. On the other hand, calculations
of discrete distributions are computationally expensive.
We anticipate that our use of confidence intervals will
mostly be independent from the method used to derive
them. Nevertheless, the more precise intervals we have
the more significative discrimination conclusions we can
derive. In the experiments (see Sect. 9), we will use
the Wald confidence intervals corrected with the plus-4
method when n1 + n2 > 30 (see Fig. 1), and a recent
exact method based on an extension of the Sterne’s test
[18] otherwise.

5.2 Revisiting a-protection We revisit the notions
of a-protection and a-discrimination by relativizing
them to a significance level. We assume that a method
for computing the confidence interval for a measure f()

is fixed, and we write [Lf
1 (c), Lf

2(c)] to denote the con-
fidence interval for the contingency table of rule c.

Definition 5.1. (a-protection) Let f() be one of
the measures from Definitions 4.1-4.6, and a ∈ R a
fixed threshold. A classification rule c = A,B→ C
is a-protective w.r.t. f() at the significance level of

100(1 − α)% if Lf
2 (c) < a. c is a-discriminatory at

the significance level of 100(1 − α)% if Lf
1 (c) ≥ a.

At the significance level of 0%, we have Z1−α/2 =
Z1/2 = 0 and then the (Wald) confidence intervals fall

down to Lf
1 (c) = Lf

2 (c) = f(c). Therefore, the definition
above is a conservative extension of Def. 4.7. In general,
the higher the significance level is, the wider is the
confidence interval. At 100% significance level, the
confidence interval is the whole set of reals. Certainly
the true value of the measure belongs to this interval,
but this information is of no use.

Finally, notice that when Lf
1(c) < a ≤ Lf

2 (c)
the rule c is neither a-discriminatory nor a-protective.
Intuitively, there is no sufficient statistical evidence
to conclude anything. On the basis of the analysis
objectives, one would treat such rules as those a-
discriminatory (and then, for instance, start conducting
further investigation on them) or as those a-protective
(and then stop the analysis since statistical significance
could not be used as an evidence before a court).

6 Unveiling Discrimination in Datasets

We introduced in Sect. 4 and 5 various measures of
discrimination and their associated significance tests,
with the purpose of analyzing the discriminatory power
of a specific classification rule; we are now in the position
of extending this method to the broader problem of
unveiling all discriminatory decision patterns hidden in
a decision dataset. This goal can be achieved combining
a-discrimination and association rule mining, i.e., by
extracting classification rules that are a-discriminatory
(at some fixed confidence level). When the dataset
contains itemsets in Id, such as for gender and age
items, checking a-discrimination can be done directly
on extracted PD classification rules. When the dataset
does not contain PD itemsets, as in the case of the race
attribute, the check can be done indirectly. The next
two subsections discuss the two cases.

6.1 Direct Discrimination Classification rules can
be extracted from a dataset as a post-processing phase
of frequent pattern extraction, a task largely stud-
ied and with a large number of competing algorithms
[10]. Fig. 2 shows how to extract PD classification
rules and check for a-discrimination using their con-
tingency tables. The DirectDiscriminationCheck()
procedure scans frequent patterns (having a specified
minimum support threshold) of size k. Each pattern
R give rises to a rule c = A,B→ C. If A, the PD
part, is not empty we can build the contingency ta-
ble of c. The values a1 and n1 in Fig. 1 are read-
ily available by looking up at frequent patterns of size
k − 1. Concerning a2 and n2, we have to compute
supp(¬A,B,C) and supp(¬A,B). However, negated
itemsets are typically not extracted by frequent pattern
mining algorithms. Still, we can resort to support and
confidence of B →C by noting that supp(¬A,B,C) =
supp(B→ C) − supp(A,B,C) and supp(¬A,B) =



DirectDiscriminationCheck()
N = |D|, C = { class items }, L = ∅
ForEach k s.t. there exists k-frequent itemsets

Fk = { k-frequent itemsets }
delete from L unmarked elements and unmark all the marked ones
ForEach R ∈ Fk with R ∩ C 6= ∅

C = R ∩ C, X = R \C
a1 = supp(R)
n1 = supp(X) // X found in Fk−1

A = largest subset of X in Id

B = X \ A
If |A| = 0

add marked B → C to L with supp = a1 and conf = a1/n1

Else
mark B → C in L // B → C found in L
a2 = supp(B→ C) − a1

n2 = supp(B→ C)/conf(B → C) − n1

called c = A,B → C, check Lf
1 (c) ≥ a

using the contingency table

(

a1N (n1 − a1)N
a2N (n2 − a2)N

)

EndIf
EndForEach

EndForEach

Figure 2: Extraction and a-discrimination checking of PD classification rules.

supp(B)−supp(A,B) = supp(B→ C)/conf(B→C)−
supp(A,B). To this end, during the scans we maintain
the set L of rules of the form B→ C such that either
B,C is a frequent pattern of size k or A′,B,C is a fre-
quent pattern of size k for some A′. Rules B,C in the
set L which do not satisfy this invariant property (they
remain unmarked during the pass) are deleted at the
beginning of iteration k + 1.

6.2 Indirect Discrimination Assume that the
dataset does not contain some PD itemsets or it does
not contain any PD itemset at all. For instance, the
information on a person’s race is typically not available
(unless the dataset has been explicitly enriched with
such an information in order to check for discrimina-
tion). Can the set of rules D,B→ C, where D,B is a
PND itemset, extracted from such a dataset unveil, at
least partially, discriminatory patterns? This issue has
been considered in [16], where those rules are called
potentially non-discriminatory (PND) and an inference
model is proposed exploiting background knowledge
(e.g., census data) with respect to the elift() measure.
Let us now generalize the approach. Consider the
following contingency tables for a PND classification
rule D,B →C (left-hand side) and for the PD rule
A,B→ C (right-hand side), where A is a PD itemset:

B C ¬C
D b1 m1 − b1

¬D b2 m2 − b2

B C ¬C
A a1 n1 − a1

¬A a2 n2 − a2

Given the left-hand side contingency table, we want
to derive lower and upper bounds for p1 = a1/n1

and p2 = a2/n2, and then for their difference, ratio
and odds. The idea is to consider itemsets A that
are approximatively equivalent to D in the context B,
namely such that:

β1 = conf(A,B →D) β2 = conf(D,B→A)

are near to 1. β1 and β2 are typically provided as
background knowledge (e.g., census data on distribution
of races over the territory). A lower bound for a1 is
obtained by considering that, in the worst case, there
are at least β2m1 tuples satisfying A,B (those satisfying
D,B multiplied by β2), of which at most m1−b1 do not
satisfy C. Summarizing, a1 ≥ β2m1 − (m1 − b1), and
then:

p1 ≥ β2m1/n1 − (m1/n1 − b1/n1).

Since β1/β2 = supp(D,B)/supp(A,B) = m1/n1, the
inequality can be rewritten as:

p1 ≥ β1/β2(β2 + b1/m1 − 1).

Analogously, n1 − a1 ≥ β2m1 − b1, which leads to:

1 − β1 + (b1/m1)(β1/β2) ≥ p1.

Similarly, we derive upper and lower bounds for p2:

1−β′

1 +(b2/m2)(β
′

1/β′

2) ≥ p2 ≥ β′

1/β′

2(β
′

2 + b2/m2 − 1),

where: β′

1 = conf(¬A,B→¬D) and β′

2 =
conf(¬D,B→¬A). Notice that these two values can



be calculated from β1, β2 as follows. First, calculate:

n1 = m1β2/β1 n2 = m1 + m2 − n1,(6.2)

then:

β′

1 = conf(¬A,B →¬D)(6.3)

= 1 − conf(¬A,B →D)

= 1 −
supp(D,B) − supp(D,B,A)

supp(¬A,B)

= 1 − (1 − β2)m1/n2,

β′

2 = conf(¬D,B →¬A)(6.4)

= 1 − conf(¬D,B →A)

= 1 −
supp(A,B) − supp(D,B,A)

supp(¬D,B)

= 1 − (1 − β1)n1/m2.

Using the derived upper and lower bounds for p1

and p2, one can easily derive upper and lower bounds
for p1−p2, p1/p2 and for the other measures introduced.
The approach applies to Wald confidence intervals as
well. As an example, observing that (5.1) can be re-
written as d = Z1−α/2

√

(1/p1 − 1)/n1 + (1/p2 − 1)/n2,
an upper bound for d is:

d ≤ Z1−α/2

√

(1/LB1 − 1)/n1 + (1/LB2 − 1)/n2,

where LB1 is any lower bound for p1 and LB2 is any
lower bound for p2.

7 Unveiling Discrimination in Classifiers

Since a classifier is trained on past decision records, pos-
sibly including discriminatory decisions, it may learn to
behave discriminatorily. Let us introduce some termi-
nology and notation. An attribute is called predictive
if it is not the class attribute. For our purposes, a clas-
sifier is a (automatically built/trained) procedure that
implements a function cl() assigning to a transaction T
over predictive attributes a class item cl(T ), the pre-
dicted class. We define the output of a classifier over an
input set of transactions T as {(T, cl(T )) | T ∈ T }.

We say that a classifier is discriminatory over an
input set T if the classifier output over T contains
discriminatory decisions. Such decisions can be unveiled
as described in Sect. 6.

8 Correcting Rule-based Classifiers

In rule based classifiers, cl(T ) is computed from the
confidences of a set of classification rules R extracted
from a training set. As an example, the CPAR [22]
classifier first considers for each class item the average
confidence of the top (with respect to confidence) k rules
in R such that T satisfies the rule premise. The class

value for which the averaged confidence is the highest is
returned as cl(T ).

For rule-based classifiers, we are in the position to
calculate the degree of discrimination of rules in R. Ob-
viously, adopting a set of discriminatory rules lead the
classifier to yield outputs that contain discriminatory
decisions. The converse is not necessarily true, as we
will discuss in Sect. 8.3, namely an output can contain
discriminatory decision even if R does not contain any
discriminatory rule. In this section, we propose a simple
approach for correcting rules in R as a means to prevent
discriminatory decisions in the output of a rule-based
classifier using R. The approach consists of correcting
(reducing or increasing) the confidence of rules in R.
This is a minimal modification of the structure of the
classifier: we do not add nor remove rules in R, we do
not change the logics of computing cl(T ), we do not
act on the learning algorithm nor on the training set.
The change in confidence, however, must be kept as low
as possible in order not to degrade the accuracy of the
classifier. By setting confidence of rules with class item
credit=no to 100%, and confidence of rules with class
item credit=yes to 0%, we end up with a classifier
denying credit to everybody. It is not discriminatory,
but it is of no use.

We mention here that an orthogonal approach,
based on massaging the training set, is presented in [11].

8.1 Correcting Direct Discrimination Consider
a PD classification rule c = A,B →C in R and its
contingency table (see Fig. 1) calculated on the training
set used to build the classifier. Assume that for a ref-
erence discrimination measure f , c is a-discriminatory
at the level of 100(1 − α)%, i.e., a ≤ Lf

1 (c). In order to
correct the discriminatory behavior of the rule, we first
modify its contingency table as follows:

B C ¬C
A a1 − ∆ n1 − a1 + ∆
¬A a2 n2 − a2

where abs(∆) is the minimum integer such that a >

Lf
1(c) when considering such a revised contingency

table for c. Then, we change the confidence of c to
(a1 − ∆)/n1. Let us detail the method for slift(). The
approach is similar for the other measures introduced.

Using the Wald interval for ratio of proportions
(RR), we set ∆ to the minimum integer such that:

(a1 − ∆)/(n1p2)

e
Z1−α/2

√

1
(a1−∆)

−
1

n1
+ 1

a2
−

1
n2

< a,

which, after elementary algebra, is:

a1 − ∆ < an1p2e
Z1−α/2

√

1
(a1−∆)

−
1

n1
+ 1

a2
−

1
n2 .



Albeit the solutions of the inequality cannot be ex-
pressed in solved form, we observe that the func-
tion a1 − ∆ is monotonic decreasing in ∆, while

an1p2e
Z1−α/2

√

1
(a1−∆)

−
1

n1
+ 1

a2
−

1
n2 is monotonic increas-

ing in ∆. For ∆ = 0, the inequality is false (oth-
erwise, the rule would not be a-discriminatory). For
∆ = ∆0 = a1 − (a − 1)n1p2, we have:

a1 − ∆0 = (a − 1)n1p2 < an1p2e
x

since ex ≥ 1 for any x ≥ 0, and p2 > 0 by definition of
slift(). Hence the inequality above holds4. Summariz-
ing, there is one and only one solution of the inequality
above in the range [0, ∆0] (or [∆0, 0] depending on the
sign of ∆0]). Since we are interested in the ceiling in-
teger of such a solution, a simple binary search over
integers in the range [0, ⌈∆0⌉] is sufficient.

8.2 Correcting Indirect Discrimination PND
classification rules in R have to be corrected as well.
In fact, a PND rule D,B→ C such that D is “almost
equivalent” to a PD itemset A has “almost the same
effect” on people from the minority group A as the PD
rule A,B→ C. A typical example is the redlining situa-
tion, where A is a minority group, and D is a specific zip
code locating people of the minority group among the
people in B. We distinguish two cases. In semi-indirect
discrimination, we correct PND rules that are related
to itemsets A which occur in the dataset (e.g., itemsets
over gender and age), while in indirect discrimination
the PD information A is not available in the data (e.g.,
itemsets over race). In semi-indirect discrimination, we
are in the position to calculate:

β1 = conf(A,B→ D) β2 = conf(D,B→ A),

since the information A is available in the training
set. In indirect discrimination, this is not possible and
then β1, β2 have to be provided by external background
knowledge (as in the case discussed in Sect. 6.2). The
correction proceeds in both cases as follows. Consider
the following contingency table (w.r.t. the training set)
for D,B→ C:

B C ¬C
D b1 m1 − b1

¬D b2 m2 − b2

and let p′1 = b1/m1, p′2 = b2/m2. What would the
effect of this rule over a minority A be? In the extreme
case that D and A are equivalent over the people

4Notice that ∆0 is the value for which Lslift
1 (c) ≤ (a1 −

∆0)/(n1p2) = a − 1, i.e., Lslift
1 (c) < a, and then such that c

is certainly non a-discriminatory.

satisfying context B, we could replace above D by A.
In such a case, we should correct D,B→ C in the same
way as we did for A,B→ C in the last subsection.
In general, however, D can be only approximatively
equivalent to a PND itemset A. With reference to
Fig. 1, we can estimate the probability that an element
in B satisfying A (say, the minority group) is assigned
class C (say, credit denial) by the rule D,B→ C as
p1 = a1/n1 ≈ β1p

′

1 + (1 − β1)p
′

2, since the element
satisfies D with probability β1 (and then it has chance
p′1 of being assigned class C) and it satisfies ¬D with
probability 1 − β1 (and then it has chance p′2 of being
assigned class C).

Concerning an element in B satisfying ¬A
(say, the advantaged group), we assume instead
p2 = a2/n2 ≈ p′2, i.e., a member of an advantaged
group is assigned class C with the advantageous
probability p′2. Using the calculations (6.2) for n1, and
n2, the contingency table estimated as the effect of
applying the classification rule D,B→ C over elements
in B that may/may not satisfy A is:

B C ¬C
A n1(β1p

′

1 + (1 − β1)p
′

2) n1(1 − β1p
′

1−
−(1 − β1)p

′

2)
¬A n2p

′

2 n2(1 − p′2)

We can apply the reasoning for correcting PD
classification rules to this contingency table by setting
p′1 = (b1 − ∆)/m1. The value of ∆ for which the
contingency table above leads to non a-discrimination
(at a fixed confidence level) will determine the revised
confidence for classification rule D,B→C.

Finally, since a same rule D,B →C can be written
in many ways (just fix B to any subset of the premise,
and let D be the rest of the premise), the most conser-
vative correction should be chosen, for any possible split
of the premise and for any A. Practically, however, we
restrict to A such that A,B →D satisfy a minimum
support threshold over the training set.

8.3 Discussion On the theoretical side, should we
expect that correcting confidence of rules in R will com-
pletely remove discriminatory decisions in the output of
the rule-based classifier? The answer is negative. Since
we act on each rule in isolation, the combined effects of
two or more rules is ignored. As an example, assume R
consisting of two rules: (i) own car = yes → credit

= no; and (ii) driver = yes → credit = yes. The
actual confidence of the rules will be irrelevant for what
follows, so we can assume they have been already cor-
rected w.r.t. the threshold a = 2 and the slift() mea-
sure. Using the CPAR classification algorithm, the fol-
lowing output would be produced:
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Figure 3: Distributions of slift() and olift() measures vs. classification rule minimum support.
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Figure 4: Left: distributions of elift(), slift() and olift() measures. Right: distribution of slift() vs. base rule
minimum confidence. Using the notation of Fig. 1, conf(base-c) = p.

sex driver own car ZIP credit
male no yes 101 no

female no yes 101 no
female yes no 100 yes
male yes no 101 yes

The first two cases are handled by rule (i), and
the last two cases by rule (ii). However, the output
dataset contains discriminatory decisions, since the
following 2-discriminatory (w.r.t. slift()) classification
rule can be extracted from it: sex = female, ZIP =

101 → credit = no. This is just one of the theoretical
open problems that have to be further investigated.

9 Experimental Results

We will report some analyses over the public domain
German credit dataset [15], consisting of 1000 trans-
actions representing the good/bad credit class of bank
account holders. The dataset includes nominal (or dis-
cretized) attributes on personal properties: checking ac-
count status, duration, savings status, property magni-
tude, type of housing; on past/current credits and re-
quested credit: credit history, credit request purpose,
credit request amount, installment commitment, exist-

ing credits, other parties, other payment plan; on em-
ployment status: job type, employment since, number of
dependents, own telephone; and on personal attributes:
personal status and gender, age, resident since, foreign
worker. We fix Id to include all itemsets built on the fol-
lowing items: personal status=female div/sep/mar

(female and not single), age=(52.6-inf) (senior peo-
ple), job=unemp/unskilled non res (unskilled or un-
employed non-resident), and foreign worker=yes (for-
eign workers). High values of the discrimination mea-
sures will occur when people in one or more of those
categories is denied credit more often than people not
in those categories.

9.1 Unveiling Discrimination in the German
Credit Dataset The German Credit dataset contains
discriminatory decisions w.r.t. all of the measures in-
troduced in this paper. By means of the DirectDis-
criminationCheck() procedure of Fig. 2, we proceed
by extracting patterns of discrimination in the form of
PD classification rules (with a fixed minimum support
threshold) with high values of the measures. Fig. 4 (left)
shows the distributions of a-protective rules w.r.t. ex-
tended, selection and odds lift. We observe that, if clas-
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Figure 5: Left: distributions of slift() statistically greater or equal than 2 at various confidence levels. Right:
distributions of slift() greater or equal than a at various confidence levels.
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Figure 6: Distributions of slift() for German credit test set, CPAR output, and corrected CPAR output.

sification rules with a minimum support ms are con-
sidered, the extended lift ranges over [0, 1/ms]. This
property does not extend to selection lift nor to odds lift,
which in general are unbound from above. Nevertheless,
Fig. 3 shows that, in practice, the lower minimum sup-
port threshold the more niches of discrimination can be
unveiled. A similar reasoning can be done for the min-
imum confidence threshold of the base rule, where the
base rule of A,B →C is B→ C. Fig. 4 (right) shows
that we should look for contexts B where the credit de-
nial rate is low in order to find the most discriminatory
decisions. Consider now the notion of a-discrimination
at a certain confidence level. Fig. 5 (left) shows the
distributions of the PD rules that are 2-discriminatory
w.r.t. their slift() value at various confidence levels.
Intuitively, the higher the confidence level, the lower
is the number of 2-discriminatory rules. Rules with
very high selection lift will remain 2-discriminatory un-
til high confidence levels. Fig. 5 (right) shows the total
number of PD rules that are a-discriminatory at vari-
ous confidence levels. At 90% confidence level, no rule
is 5-discriminatory. Intuitively, higher confidence lev-
els greatly reduce the number of statistically significant
discriminatory rules.

9.2 Unveiling Discrimination in CPAR In order
to study discrimination in the output of CPAR, we
split the German credit dataset into a 60% training
set, used to train a CPAR classifier, and into a 40%
test set. The trained classifier consists of a set R
of 189 classification rules. Given a transaction T in
the test set, where the actual class is omitted, the
CPAR classification algorithm consists of finding for
each possible class the top k (with k = 5) rules in R
whose premise is satisfied by T . The class with the
highest average confidence of the k rules is returned as
the predicted class cl(T ). The CPAR output over the
test set is then the set of transactions (T, cl(T )). In
order to unveil discrimination in the test set and/or in
the CPAR output, we proceed as in the last subsection
by extracting from those sets patterns of discrimination
in the form of PD classification rules. Fig. 6 (left) shows
the distribution of the slift() measure on the test set,
unveiling PD rules with a selection lift of up to 20, and
on the CPAR output over the test set, unveiling PD
rules with lower selection lift. Intuitively, the output of
CPAR is “less discriminatory” than the test set. We
motivate this by two reasons. First, as expected by any
classifier, CPAR try to be accurate but not to overfit the



data. This leads to a model that does not reproduce all
niches of discrimination. Second, more specific to CPAR
internals, since classification averages the confidence of
5 rules, the effects of one discriminatory rule out of 5 is
mitigated. Fig. 6 (right) shows the distributions of PD
rules that are 1.5-discriminatory at the 90% confidence
level both on the test set and on the CPAR output
over the test set. The beneficial effect of CPAR is
homogeneous along the whole range of slift() values.

9.3 Correcting CPAR We have implemented the
correction of direct and semi-indirect discrimination
described in Sect. 8. Let us denote by CPAR(a, CL)
the CPAR classification algorithm on a set of rules
corrected for a-discrimination at the CL confidence
level. Correcting the set of rules of CPAR for 1.5-
discrimination at the confidence level of 0% changed
the accuracy of 87 rules in R (46% of the total), and
it resulted in no loss of classification accuracy w.r.t. the
test set. Fig. 6 (left) shows the distribution of the slift()
measure for the CPAR(1.5, 0%) output over the test
set. We observe that the improvement over the raw
CPAR output is considerable. For a = 10, we have 13
a-discriminatory PD rules extracted from the output of
CPAR(1.5, 0%), which is a good improvement over the
122 extracted from the raw CPAR output. Nevertheless,
we point out that, for the reasons discussed in Sect. 8.3,
the discriminatory decisions in the output dataset are
not totally removed. Finally, consider CPAR(1.5, 90%),
and its output over the test set. The distribution of PD
rules that are 1.5-discriminatory at 90% confidence level
is shown in Fig. 6 (right). Compared to the raw CPAR,
the total number of discriminatory rules is lowered from
3236 to 1317, and the improvement is constant almost
over the whole range of selection lift values.

10 Conclusions

On the basis of a review of existing laws, we have
formalized and studied a family of discrimination
measures for classification rules, including a notion of
statistical significance. Discriminatory classification
rules are the basic tool for unveiling direct and indi-
rect discriminatory decisions in datasets of historical
records, and in the output of classifiers. Also, the
measures of discrimination provided the basis for a
correction method for rule-based classifiers.
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