
Autocannibalistic and Anyspace Indexing Algorithms
with Applications to Sensor Data Mining

Lexiang Ye Xiaoyue Wang Eamonn Keogh Agenor Mafra-Neto1

Dept. of Computer Science & Eng.

University of California, Riverside, USA
1ISCA Technologies, Riverside, California 92517

{lexiangy, xwang, eamonn}@cs.ucr.edu, 1president@iscatech.com

ABSTRACT
Efficient indexing is at the heart of many data mining
algorithms. A simple and extremely effective algorithm for
indexing under any metric space was introduced in 1991 by
Orchard. Orchard’s algorithm has not received much
attention in the data mining and database community
because of a fatal flaw; it requires quadratic space. In this
work we show that we can produce a reduced version of
Orchard’s algorithm that requires much less space, but
produces nearly identical speedup. We achieve this by
casting the algorithm in an anyspace framework, allowing
deployed applications to take as much of an index as their
main memory/sensor can afford. As we shall demonstrate,
this ability to create an anyspace algorithm also allows us
to create auto-cannibalistic algorithms. Auto-cannibalistic
algorithms are algorithms which initially require a certain
amount of space to index or classify data, but if unexpected
circumstances require them to store additional information,
they can dynamically delete parts of themselves to make
room for the new data. We demonstrate the utility of auto-
cannibalistic algorithms in a fielded project on insect
monitoring with low power sensors, and a simple
autonomous robot application.

Keywords
Indexing, Anyspace Algorithms, Data Mining, Sensors.

1. INTRODUCTION
Efficient indexing is at the heart of many data mining
algorithms. A simple and extremely effective algorithm for
indexing under any metric space was introduced in 1991 by
Orchard [11]. The algorithm is commonly known as
Orchard’s algorithm, however Charles Elkan points out
that a nearly identical algorithm was proposed by Hodgson
in 1988 [9], [5]. While Orchard’s algorithm is currently
used in some specialized domains such as vector
quantization [6] and compression [20], it has not received
much attention in the data mining and database community
because of a fatal flaw; it requires quadratic space. In this
work we show that we can produce a reduced version of
Orchard’s algorithm which requires much less space, but

produces nearly identical speedup. We further show that
we can cast our ideas in an anyspace framework [21],
allowing deployed applications to take as much of an index
as their main memory/sensor can afford. It is important to
note that our reduced space algorithms produce exactly the
same results as the full algorithm, they simply trade freeing
up (a lot of) space for (very little) reduction in speed.

As we shall demonstrate, the ability to cast indexing as an
anyspace algorithm allows us to create auto-cannibalistic
algorithms. Auto-cannibalistic algorithms are algorithms
which initially require a certain amount of space to index or
classify data, but if unexpected circumstances require them
to store additional information, they can dynamically delete
(“eat”) parts of themselves to make room for the new data.
This allows the algorithm to be extremely efficient for a
given memory allocation at the beginning of its life, and
then gracefully degrade as it encounters outliers which it
must store. We demonstrate the utility of auto-cannibalistic
algorithms in a fielded project on insect monitoring with
low power sensors and show that it can greatly extend the
battery life of field deployed sensors.

The rest of the paper is organized as follows. Section 2
reviews the classic Orchard's algorithm and Section 3
introduces our extensions and modifications. We conduct a
detailed empirical evaluation in Section 4, and in Section 5
we consider two concrete applications, including one
which is already being tested in the field. We conclude
with a discussion of related and future work in Section 6.

2. CLASSIC ORCHARD'S ALGORIHM
In order to help the reader understand Orchard’s algorithm,
and our extensions and modifications to it, we will
introduce a simple example dataset in Figure 1 as a running
example.

Dataset A
 X Y

a1 1 10

a2 1 2

a3 2 2

a4 6 5

a5 9 8

a6 6 10

a7 9 10

Figure 1: A small dataset A containing 7 items, used
as a running example in this work

The preprocessing for Orchard’s algorithm requires that we
build for each item ai in our dataset A, a sorted list of its
neighbors, annotated with the actual distances to ai in
ascending order. We denote a sorted list for instance ai as
P[ai], and the full set of these lists for the entire dataset A
as P[A]. Table 1 shows this data structure for our running
example. Note that even for our small running example, the
size of the ranked lists data structure is considerable, and
would clearly be untenable for real world problems.

Table 1: Orchard's Algorithm Ranked Lists P[A]
Item 1st NN

{dist}
2nd NN
{dist}

3rd NN
{dist}

4th NN
{dist}

5th NN
{dist}

6th NN
{dist}

a1 6 {5.0} 4 {7.1} 2 {8.0} 7 {8.0} 3 {8.1} 5 {8.2}
a2 3 {1.0} 4 {5.8} 1 {8.0} 6 {9.4} 5 {10.0} 7 {11.3}
a3 2 {1.0} 4 {5.0} 1 {8.1} 6 {8.9} 5 {9.2} 7 {10.6}
a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1}
a5 7 {2.0} 6 {3.6} 4 {4.2} 1 {8.2} 3 {9.2} 2 {10.0}
a6 7 {3.0} 5 {3.6} 1 {5.0} 4 {5.0} 3 {8.9} 2 {9.4}
a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3}

The basic intuition behind Orchard’s algorithm is to prune
non-nearest neighbors based on the triangular inequality
[5]. Suppose we have a dataset A = {a1, a2, …, a|A|}, in
which we want to find the nearest neighbor of query q.
Further suppose ai is the nearest neighbor found in A thus
far. For any unseen element aj, which will not be the
nearest neighbor if:
),(),(qadistqadist ij ≥ (2.1)

Given that we are dealing with a metric space, the principle
of triangular inequality [5] illustrated in Figure 2 applies
here:
),(),(),(qadistqadistaadist jiji +≤ (2.2)

Combining (2.1) and (2.2), we can derive the fact that if:
),(2),(qadistaadist iji ×≥ (2.3)

is satisfied, aj can be pruned, since it could not be the
nearest neighbor. This is how a combination of the

triangular inequality and the information stored in the
ranked lists data structure P[A], can allow us to prune some
items aj without the expense of calculating the actual
distance between q and aj.

Figure 2: (above, left) Assume we know the pairwise
distances between ai, aj and aj'. A newly arrived
query q must be answered. (above, right) After
calculating the distance dist(q,ai) we can conclude
that items with a distance to ai less than or equal to
2 × dist(q,ai) (i.e. the gray area) might be the nearest
neighbor of q, but everything else, including aj' in
this example, can be excluded from consideration

The algorithm, as outlined in Table 2, begins by choosing
some random element in A as the tentative nearest
neighbor. It records the index of the element in A in nn.loc
and calculates the distance nn.dist between q and the
element ann.loc in lines 1 and 2. Thereafter, the algorithm
inspects the items in list P[ann.loc] in ascending order until
one of three things happen. If either the end of the list is
reached, or the next item on the list has value that is more
than twice the current nn.dist (line 4), the algorithm
terminates and returns ann.loc as the nearest neighbor and the
corresponding distance dist(ann.loc, q). The third possibility
is that the item in the list is closer to the query than the
current tentative nearest neighbor (line 9). In that case the
algorithm simply jumps to the head of the list associated
with this new nearest neighbor to the query and continues
from there (lines 10 to 12).

Table 2: Orchard's Algorithm Search

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Function [nn.loc, nn.dist] = Orchards(P[A], q)
nn.loc = random_interger_in_range_of(1, |A|)
nn.dist = dist(ann.loc, q)
index = 1
While P[ann.loc].dist[index] < 2 * nn.dist AND index < |A| do
 node = P[ann.loc].node[index]
 If node is not yet tested then
 d = dist(anode, q)
 If d < nn.dist then
 nn.dist = d
 nn.loc = node
 index = 1
 Else
 index = index + 1
 EndIf
 Else
 index = index + 1
 EndIf
EndWhile

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9
1

2 3

4

5

6 7

q

ai

aj
aj'

q?

ai

aj
aj' ?

Note that as the algorithm is traversing down the lists, it
may encounter an item more than once. To avoid redundant
calculations, a record is kept of all items encountered thus
far, and an O(n) hash is sufficient to check if we have
already calculated the distance to that item (line 7).

As the reader can appreciate, the algorithm has the
advantages of simplicity, and being completely parameter
free. Furthermore as shown both here (cf. Section 4) and
elsewhere [3], [12], [20], it is a very efficient indexing
algorithm. However, while we typically would be willing
to spare the quadratic time complexity to build the ranked
lists dataset, the quadratic space complexity has all but
killed interest in this method. In the next section we show
how we can achieve the same efficiency in a fraction of the
space.

3. ANYSPACE ORCHARD'S
ALGORIHM
In this section we begin by giving the intuition behind our
idea for an anyspace Orchard's algorithm, and then show
concrete approaches to allow us to create such an
algorithm.

3.1 Truncated Orchard's Algorithm
We motivate our ideas with a simple observation. Note that
in Figure 1 the two data items a2 and a3 are very close
together. As a result, their lists of nearest neighbors in
Table 1 are almost identical. This is a redundancy; most
queries that are efficiently pruned by a2 would also be
pruned efficiently by a3, and vice-versa. We can exploit
this redundancy by deleting one entire list, thus saving
some space. For the moment let us assume we have
randomly chosen to delete the list of a3, as shown in Table
3.

Table 3: Truncated Orchard's Algorithm
T 1st NN 2nd NN 3rd NN 4th NN 5th NN 6th NN

a1 6 {5.0} 4 {7.1} 2 {8.0} 7 {8.0} 3 {8.1} 5 {8.2}
a2 3 {1.0} 4 {5.8} 1 {8.0} 6 {9.4} 5 {10.0} 7 {11.3}
a3 goto a2

a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1}
a5 7 {2.0} 6 {3.6} 4 {4.2} 1 {8.2} 3 {9.2} 2 {10.0}
a6 7 {3.0} 5 {3.6} 1 {5.0} 4 {5.0} 3 {8.9} 2 {9.4}
a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3}

Note that we cannot just delete the entire row. We have a
small amount of bookkeeping to do. It is possible that as
we are using the index and traversing down the one of the
other lists, we will encounter a3 and find that it is the best-
so-far. We should therefore jump to the list for a3 and
continue searching, however the list was deleted. To solve
this problem we need to place a special “goto” pointer
which tells the search algorithm that it should continue
searching from a2’s list instead.

As the reader will have already guessed, we can iteratively
use this idea to delete additional lists, thus saving more
space. In the limit, we will be left with a single list as
shown in Table 4.

Table 4: Highly Truncated Orchard's Algorithm
Item 1st NN 2nd NN 3rd NN 4th NN 5th NN 6th NN

a1 goto a6

a2 goto a4

a3 goto a2

a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1}
a5 goto a4

a6 goto a7

a7 goto a5

Note that whatever algorithm we use to delete lists, we
must make sure that we don’t end up with cycles. For
example if a2’s row says “goto a3” and if a3’s row says
“goto a2” we have an infinite loop. Another important
observation is that although we should not expect this
highly truncated Orchard's algorithm to perform as well as
the quadratic space version, we still have not (necessarily)
degraded to sequential search. Queries that happen to land
near a4 will be answered quickly, no matter which random
starting position we choose.

3.2 Anyspace Orchard's Algorithm
As framed in the previous section, we appear to have a
solution to the quadratic complexity of Orchard's
algorithm. We can simply work out how much memory is
available for our application, and delete the necessary
number of lists to make our Truncated Orchard's Algorithm
fit. However, there may be situations where the amount of
memory is variable (we discuss such applications in more
detail in Section 5). In these applications we may find it
useful to delete additional lists on-the-fly, as memory
becomes more precious. For example, an autonomous robot
could use a 90% Truncated Orchard's Algorithm to
efficiently classify the items it sees as friend, foe or
unknown. For both the friend and foe categories, it suffices
to count how many it encountered. However, for the
unknown category we may want the robot to store a picture
of the unidentified item for later analysis. In this case, it
would be useful to throw out additional lists of the
Truncated Orchard's Algorithm in order to make space for
the new image. An obvious question is, which lists should
we toss out? A random selection would be easy, but this
may decrease indexing efficiency greatly. Can we do
better than random?

Our solution is to frame the Truncated Orchard's Algorithm
as an anyspace algorithm [21]. Anyspace algorithms are
algorithms that trade space for quality of results. In general,
an anyspace algorithm is able to solve the problem at hand
with any amount of memory, and the speed at which it can
solve the problem improves if more space is made

available. In our particular case, we assume we start with
all the memory of full data structure for the Truncated
Orchard's Algorithm, and if we need space to store
information about an unexpected event, we “cannibalize” a
part of the Truncated Orchard's Algorithm's space to store
it. We call such an approach an Auto-Cannibalistic
algorithm. Figure 3 shows an idealized anyspace algorithm.

Figure 3: An idealized Anyspace Indexing Algorithm

Note that in this hypothetical case we get the best indexing
performance if we use all the memory, however we can
throw away 80% of the data and the performance only gets
twice as bad. We could instead have thrown away 50% of
the data with no significant difference in performance.
Note that all anyspace algorithms have some absolute
minimum amount of memory which they require. In our
case this is the O(|A|) space for the list of items in the
dataset.

Assume the size of the full data structure is denoted as
unity. Then we can denote the size of an anyspace
algorithm as S, where minimum_space ≤ S ≤ 1. In our
particular problem we have O(|A|) ≤ S ≤ O(|A|2).

The basic framework for using an anyspace algorithm is as
follows. We precompute the full space truncated Orchard's
Algorithm table and store it in main memory. At some
point in the future we expect to get requests for the index
which are space limited. For example, sensor A may need
the index, but only have 2MB available. We simply pull off
the best 2MB version and give it to sensor A. If sensor B
requests a 3 MB version, we pull off the best 3MB version
and give it to B.

Note that for any memory size S of the anyspace algorithm,
the data structure S is a proper subset of the data structure
S+e. That is to say that a larger data structure is always the
same as a smaller one, plus some additional data. This is a
useful property. First of all it ensures that the size of the
full data structure (S = 1) is no greater than the original
(non anyspace) version (plus a tiny overhead). Thus we
have no space overhead for keeping the data in an anyspace
format. Second, it allows progressive transmission of the
data structure. For example, in our scenario above, if
sensor A manages to free up some addition memory, and
can now devote 2.5MB to indexing the data, we only need
to send it the 0.5MB difference.

Anyspace algorithms are rare in machine learning/data
mining applications [2], [4], however anytime algorithms,
which are exact analogues that substitute time instead of
space as the critical quality, have seen several data mining
applications [13], [14], [15], [17]. Zilberstein and Russell
give a number of desirable properties of anytime
algorithms, which we can adapt for anyspace algorithms.
Below we consider the desirable properties of anyspace
algorithms, placing the desirable properties for anytime
algorithms in parentheses:

• Interruptability: After some small amount of
minimum space (setup time), the algorithm returns an
answer using any additional amount of space (time)
given.

• Monotonicity: the quality of the result is a non-
decreasing function of space (computation time) used
(cf. Figure 3).

• Measurable quality: the quality of an approximate
result can be determined. In our case, this quality is the
indexing efficiency, which can be measured by the
number of distance calculations required to answer a
query.

• Diminishing returns: the improvement in solution
efficiency (quality) is largest at the early stages of
computation, and diminishes as more space (time) is
given (cf. Figure 3).

• Preemptability: The algorithm can use the space
given, or additional space if it become available (the
algorithm can be suspended and resumed) with
minimal overhead.

As we shall see, our anyspace indexing algorithm meets all
these properties.

Table 5 shows our proposed Anyspace Orchard’s algorithm
data structure. It differs from the classic data structure (as
shown in Table 1) in just two ways.

Table 5: Anyspace Orchard's Ranked Lists (I)
goto
list

Item 1st NN
{dist}

2nd NN
{dist}

3rd NN
{dist}

4th NN
{dist}

5th NN
{dist}

6th NN
{dist}

Linear a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1}

goto a4 a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3}

goto a4 a3 2 {1.0} 4 {5.0} 1 {8.1} 6 {8.9} 5 {9.2} 7 {10.6}

goto a4 a1 6 {5.0} 4 {7.1} 2 {8.0} 7 {8.0} 3 {8.1} 5 {8.2}

goto a7 a6 7 {3.0} 5 {3.6} 1 {5.0} 4 {5.0} 3 {8.9} 2 {9.4}

goto a3 a2 3 {1.0} 4 {5.8} 1 {8.0} 6 {9.4} 5 {10.0} 7 {11.3}

goto a7 a5 7 {2.0} 6 {3.6} 4 {4.2} 1 {8.2} 3 {9.2} 2 {10.0}

First, the rows are no longer in the original order, but
sorted in a best first order. Second, note that in the leftmost
column there is a small amount of additional information in
the form of a goto list. This list tells us what to do if we
need to free up some space by deleting lists. We will

Space

C
om

pu
ta

tio
na

l
Ti

m
e Truncation

Level Chosen

Minimum Space

100% 1%40% 20%60% 80%

always delete the lists from the bottom, and replace the
entire list by the corresponding goto pointer.

As a concrete example, suppose that we must free up
approximately 40% of the space used. As shown in Table
6, we can achieve this by deleting the last three lists and
replacing them with their respective goto pointers.

Table 6: Anyspace Orchard's Ranked Lists (II)
goto
list

Item
1st NN
{dist}

2nd NN
{dist}

3rd NN
{dist}

4th NN
{dist}

5th NN
{dist}

6th NN
{dist}

Linear a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1}

goto a4 a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3}

goto a4 a3 2 {1.0} 4 {5.0} 1 {8.1} 6 {8.9} 5 {9.2} 7 {10.6}

goto a4 a1 6 {5.0} 4 {7.1} 2 {8.0} 7 {8.0} 3 {8.1} 5 {8.2}

 a6 goto a7

 a2 goto a3

 a5 goto a7

3.3 Constructing Anyspace Orchard's
Assume we have truncated Orchard's data structure, T. At
one extreme, T has all lists P[ai] for 1 ≤ i ≤ |A|, and is thus
the “classic” Orchard's data structure. At the other extreme,
it has only a single list, and we can only efficiently answer
queries that happen to be near the untruncated item.

Assume that we have a black box function
evaluate_addition(T,i) which given T returns the estimated
utility of adding list P[ai]. This function estimates the
expected number of items that an arbitrary query must be
compared to in order to find its nearest neighbor by adding
list P[ai] to the existing table, and returns the highest utility
with the smallest comparison number. For the moment we
will gloss over the details of this function, except to note
that it allows us to create an Anyspace Orchard’s
Algorithm. The basic idea of the algorithm is to start with
an empty set T, and iteratively use function
evaluate_addition(T,i) to decide which list to add next. For
example, we can see from column 2 of Table 5, the lists
were added in this order: a4, a7, a3, a1, a6, a2 and a5.

The formal algorithm shown in Table 7 is divided into two
phases; selection and mapping. The first phase is a simple,
greedy-forward selection search. T is initialized as an
empty stack in line 1. For each outer iteration, the
algorithm tests every item (that was not previously
selected) with the utility function (line 7), picks the item
with highest utility and pushes it onto T (lines 8 to 10).
This procedure continues until all the items are pushed onto
T. In essence, this phase sorts all the items by their
expected utility for indexing. For instance, in the running
example shown in Table 5, it first selects a4, then a7, then
a3, etc.

The second phase is to create the goto list. Our strategy is
to start from the bottom of the table, repeatedly selecting

the candidate with the lowest utility, and change its goto
pointer to point at its nearest neighbor with a higher utility.

Table 7: Build Anyspace Orchard's Construction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Function [goto_list, P'] = BuildAnyspaceOrchards(A, P)
T = NULL
For i = 1 to |A|
 max_eval = evaluate_addition(T, 1)
 additem = 1
 For j = 2 to |A|
 If aj is candidate
 eval = evaluate_addition(T, j)
 If (eval > max_eval)
 max_eval = eval
 additem = j
 EndIf
 EndIf
 EndFor
 push(T, additem)
EndFor
P' = sort P best first according to T
For i = |A| to 2
 For j = 1 to |A| - 1
 index = P[ai].pointer[j]
 If aindex appears above ai in P'
 goto_list[ai] = aindex
 break;
 EndIf
 EndFor
EndFor

To achieve this we scan the sorted Orchard's algorithm
table bottom up (as in line 17). For each item ai under
consideration, we scan down its nearest neighbor list
P[ai].pointer in lines 18 and 19. If we find one nearest
neighbor aindex that ranks above ai in sorted Orchard's
algorithm table, we assign aindex to the entry of ai in the
goto list goto[ai] in line 20 to 22. In the running example,
we first consider the item a5. Following a5's nearest
neighbor list, we check the item a7, which is on the second
line of the sorted Orchard's algorithm table, and thus above
a5. We therefore make goto[a5] point to a7. We next
consider the item a2, and so on.

We have yet to explain how our evaluate_addition function
is defined. We propose a simple approach that takes both
density and overlap of each item into consideration.
Intuitively, we assume the density distribution of the
queries to be at least somewhat similar to the density
distribution of the data in the index, so we want to reward
items for being in a dense part of the space. At the same
time, if we have one item from the center of a dense region,
then there is little utility in having another item from the
same region (overlap), so we want to penalize for this.

Concretely, our algorithm works as follows: the candidate's
pool is initialized to include all the items. Given the
parameter nearest neighbors number n, we set the item ai
maximum utility in the candidate pool with smallest
distance between ai and its nth valid nearest neighbor. We
then delete ai from candidate pool. In addition, for all the

items that on the ai's nearest neighbor list, ranked from 1 to
n, we assign them the minimum utility value (overlap
penalty) and they are never again considered to be
neighbors of any other items. Suppose we have m items
initially, in our approach, we first pick ⎣ ⎦)1/(+nm pivot
items according its radius to cover n valid nearest
neighbors. After that, for those m%(n+1) items that are
uncovered by any pivot item, we pick them in random
order. Finally, we pick remaining nearest neighbors items
in random order. We did consider several other
possibilities, such as leaving-one-out evaluation, measuring
the rank correlation, mutual information, or entropy gain
between two lists as a measure of redundancy. However
either these ideas did not work empirically, or required
several parameters to be tuned. As a simple sanity check,
we will include empirical comparisons to random, a variant
of evaluate_addition which simply chooses a random list to
add.

3.4 Using Anyspace Orchard's Algorithm
After constructing the sorted Orchard's algorithm table, it is
easy to adapt the Orchard's algorithm search technique
(Table 2) to allow it to search in the truncated version. The
main task is to decide what we should do if the algorithm
indicates a jump to the list of a certain item ai while that list
has already been deleted.

Simply jumping to the list of aj if goto[ai] = aj is not
possible, as the list of aj may also have been deleted.
Consider the running example in Table 6. If two more lists
are deleted, the Orchard's Algorithm table shown in Table
8 is produced.

Suppose some query arrives, and the algorithm finds itself
needing to jump to the list of a2. Since the list of a2 is
deleted, it wants to jump to a3 which the goto entry of a2
indicates. However, it cannot do so, because the list of a3 is
also deleted. The algorithm should continue the jump
action, and see whether the list of a4 = goto[a3] is deleted.
The general approach to find a valid item to jump to is
described in Figure 9.

Table 8: Anyspace Orchard's Ranked Lists (III)
goto
list

Item
1st NN
{dist}

2nd NN
{dist}

3rd NN
{dist}

4th NN
{dist}

5th NN
{dist}

6th NN
{dist}

Linear a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1}

goto a4 a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3}

 a3 goto a4

 a1 goto a4

 a6 goto a7

 a2 goto a3

 a5 goto a7

Table 9: Find Valid goto for Single Item

1
2
3
4
5
6
7
8

Function valid_goto = Find_goto(goto_list, ai)
item = ai
While 1
 item = goto_list[item]
 If the list of item is not deleted
 break
 EndIf
EndWhile
Return item

There are two additional things we need to check. One is if
the list of aj has not been visited, and the other is if the
distance between q and aj is smaller than the distance
between query q and ann, which is the item whose list we
are currently visiting.
The first test is performed to avoid an infinite loop which
makes the algorithm jump back and forth between the
ranked lists. The second item is because the spirit of
Orchard's algorithm tells us to attempt to jump to the item
that is nearer the query than the item being visited. After
confirmation of the two questions above, we can safely
jump to the list of aj. Table 10 shows the entire Anyspace
Orchard's search algorithm.

Table 10: AnySpace Orchard's Algorithm Search

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Function nn = AnyspaceOrchards(A, q)
Build P
[goto, P'] = BuildAnyspaceOrchards(A, P)
truncate P' from bottom to fit it into memory
nn.loc = random_interger_in_range_of(1,|A|)
nn.dist = dist(ann.loc, q)
index = 1
bestpos = nn.loc
bestdist = nn.dist
While P[ann.loc].dist[index] < 2 * nn.dist AND index < |A|
 item = P[ann.loc].pointer[index]
 d = dist(aitem, q)
 If d < nn.dist
 If d < bestdist
 bestdist= d
 bestpos = item
 EndIf
 agoto = valid_goto(goto_list, aindex)
 If list of agoto not visited AND dist(agoto,q) < nn.dist
 nn.loc = goto
 nn.dist = dist(agoto, q)
 If nn.dist < bestdist
 bestdist = nn.dist
 bestpos = nn.loc
 EndIf
 Else
 index = index + 1
 EndIf
 Else
 index = index + 1
 EndIf
EndWhile

First, the algorithm checks the available space and builds
the truncated sorted Orchard's algorithm table in lines 1 to
3. One modification is that we add some bookkeeping to
the item that best matches query, and the corresponding
distance in lines 7 and 8, lines 13 to 15, and lines 21 to 23.
The reason is the list of best-match item may have been
deleted, thus the search does not necessarily end at the
best-match item. Therefore the information of the best-

match item should be stored at the time we compare the
item to the query. Another modification is that we find the
valid item to jump to in line 16, and test if we should jump
to that item in line 17 as discussed above. Apart from these
minor changes, the rest of the algorithm is exactly the same
as in the classical Orchard's algorithm.

3.5 An Optimization of Anyspace
Orchard's
As described above, the mechanism used to create the
Anyspace Orchard’s algorithm may be quite slow. In some
sense this is not a big issue, since we expect to perform this
step offline. Nevertheless, it is reasonable to ask if we can
speed up this process.

Note that one cause of its lethargy is the redundant
calculations spent in finding the valid goto entries. The
time will increase as the more lists being deleted. Here we
show a simple one-scan strategy to update the entire goto
list and avoid this overhead, which is described in Table
11. The parameter cut means the number of sorted rank
lists can accommodate in the memory.

Table 11: Find Entire Valid goto List

1
2
3
4
5
6
7
8

Function valid_goto_list = find_gotolist(P', goto_list, cut)
For i = 1 to cut
 ai = the item on the ith row of P'
 valid_goto_list[ai] = ai
EndFor
For i = cut+ 1 to n
 ai = the item on the ith row of P'
 valid_goto_list[ai] = valid_goto_list[goto_list[ai]]
EndFor

We initialize the goto entry of those items which have not
been truncated to point to themselves in lines 1 and 4. This
initialization does not affect these items, as they never use
goto pointers, and makes finding valid goto pointers easier
for the remaining items. In lines 5 and 8, we consider these
truncated items from top to bottom. For each item ai we are
considering, we are sure all the items whose position above
it in the table already point to a valid item. Suppose ak is
the item that ai's original goto pointer points to. In that
case, the option is either making the valid ai's goto pointer
the same as ak's goto pointer when ak is truncated, or when
ak is not truncated, the pointer should point to ak. Once the
valid goto list is built, we can avoid all the redundant goto
searches.

Another optimization is to narrow down the pruning
criteria. We discovered an extra inequality we can exploit
using the distance between the query and the best-so-far
item. As in Figure 4.A, suppose aj is the best-so-far item
while its rank list has been truncated, and ai is a valid item
which aj's goto pointer points to. As shown in Figure 4.B,
we only need to compute the actual distance between q and
any ak∈ A only if the following inequality holds: dist(ai,
ak) < 2 × dist(aj, query) + dist(ai, aj). Recall that, as shown
in Section 2, ak can be pruned if

),(2),(queryadistaadist jkj ×≥ (3.1)
However, dist(aj, ak) is not available because P[aj] was
truncated. There is an additional inequality between the
three items where we can have the lower bound of the
value of dist(aj, ak):
),(),(),(jikikj aadistaadistaadist −≥ (3.2)
Combining (3.1) and (3.2), if we have
),(2),(),(queryadistaadistaadist jjiki ×≥− (3.3)
item ak can be admissibly pruned. In our implementation,
we can simply replace line 8 of Table 10 with the line
below, which is
8new While P[ann.loc].dist[index] < 2nn.dist AND index < |A| AND

dist(ai, ak) < 2dist(aj, query) + dist(ai, aj)

In general, on most datasets, this optimization improves
indexing efficiency by 10% to 30%, so we use it in all
experiments that follow.

Figure 4: Assume aj is the current nearest neighbor
of query q, and that P[aj] was deleted and replaced
with the goto entry ai, (A) A newly arrived query q
must be answered. (B) An admissible pruning rule is
to exclude items whose distance to ai is greater than
or equal to dist(ai, aj) + 2 × dist(q, aj). In this
example, everything outside the large gray circle can
be pruned

4. EXPERIMENTS
We begin by stating our experimental philosophy. In order
to ensure easy replication of our work we have placed all
data and code at a publicly available website [18].

q

ai

ak

ak'

aj

q

ai

ak
ak'

aj

?
?

dist(ai,aj)

pruning radius

2 * dist(q,aj)

(A)

(B)

Recall that our algorithm for constructing truncated
Orchard's algorithm has a parameter n. One objective of
our experiments is to see how sensitive our algorithm is to
the choice of this parameter. A further objective is test the
utility of our evaluate_addition function. It might be that
any function would work well in this context. As a simple
baseline comparison we compare against a function that
randomly orders the lists for truncation. To understand the
algorithm's efficiency we measure the average number of
distance calculations needed to answer a one nearest
neighbor query. In this, and all subsequent experiments we
normalize the range to be between zero and one when
creating figures, so a perfect algorithm would have a value
near zero, and a sequential scan would have a value of one.

We begin with a simple experiment on a synthetic dataset.
We created a dataset of 5,000 random items from a 2D
Gaussian distribution. We created a further 50,000 test
examples. We begin by testing the indexing efficiency of
the full Orchard's algorithm (i.e with zero truncation) with
the test set, and then we truncate a single item and test
again. We repeat the process until there is only a single list
available to the algorithm, Figure 5 shows the experiment
on the synthetic data.

Figure 5: The indexing efficiency vs. level of
truncation for a synthetic dataset

The results appear very promising (compare to the
idealized case in Figure 3). First, it is clear that the choice
of parameter n has very little impact on the results. Note
that we can truncate 80% of the data without making a
significant difference to the efficiency. Thereafter, the
efficiency does degrade, but gracefully. Further notice that
in contrast to our algorithm, the random approach has
linear relationship between size and efficiency. This tells us
our evaluate_addition function is finding redundancies in
the data to exploit.

We next consider a problem of indexing data from a road
sensor. This sensor data was collected for the Glendale on-
amp at the 5-North freeway in Los Angeles. The
observations were taken over 25 weeks, at 5 minute count
aggregates. As the location is close to the Dodgers stadium,
it has bursty behavior on days in which a game is played.
There are a total of 47497 observations, we randomly

choose 1,000 to build our index, and used the rest for
testing. Figure 6 shows the results.

Figure 6: The indexing efficiency vs. level of
truncation for the Dodgers dataset

As before, the performance of our algorithm is exactly we
would like to see in an idealized anyspace algorithm, and
once again, and our algorithms performance is almost
invariant to the choice of parameter n.

Having shown that truncated Orchard's algorithm passes
some simple sanity checks, in the next section we consider
detailed case studies of problems we can solve using our
algorithm.

5. EXPERIMENTAL CASE STUDIES
We conclude the experimental section with two detailed
case studies of uses for our algorithms.

5.1 Insect Monitoring
ISCA Technologies is a Southern California based
company that produces devices to monitor and control
insect populations in order to mitigate harm to agricultural
and human health. They have produced a “smart-trap”
device that can be mass produced, and left unattended in
the field for long periods to monitor a particular insect of
interest.

The system under consideration here is primarily designed
to track Aedes aegypti (yellow fever mosquito), a mosquito
that can spread the dengue fever, yellow fever viruses, and
a host of other diseases. In particular, the system needs to
classify the sex of the insects and keep a running total of
how many of each sex are encountered1. In order to only
capture Aedes aegypti, the trap can be designed specifically
for them. For example, carbon dioxide can be used as an
attractant (this eliminates most non-mosquito insects). The
trap can be placed at a certain height which eliminates low
flying insects, and the entrance can be made small enough
to prevent larger insects from entering. Nevertheless, as we
shall see, non Aedes aegypti insects can occasionally enter
the traps.

1 Recall that only female mosquitoes suck blood from humans and other

animals.

Fr
ac

tio
n

of
 D

at
a

To
uc

he
d

0 1000 2000 3000 4000 4999 0

0.2

0.4

0.6

0.8

1

2
4
8
16
32
Random

Increasing Levels of Truncation

Fr
ac

tio
n

of
 D

at
a

To
uc

he
d

0 200 400 600 800 999 0

0.2

0.4

0.6

0.8

1

Increasing Levels of Truncation

2
4
8
16
32
Random

While we have attempted classification of the insects with
Bayesian Classifiers, SVMs and decision trees, our current
best results come from using 1-Nearest Neighbor
classification with a 4-dimensional feature vector extracted
from the audio signal. A further advantage of using 1NN is
that it allows us to come up with a simple definition of
outlier. We empirically noted that on average both males
and females tend to be a distance of m to their nearest
neighbors. This number has a relatively small standard
deviation. We therefore have defined an outlier as a data
sample that is more than m + 4 standard deviations from its
nearest neighbor. Figure 7 shows a visual intuition of this.

Figure 7: The distribution of distances to nearest
neighbor for 1,000 insects in our training set. We
consider exemplars whose distance to their nearest
neighbor is more than the mean plus 4 standard
deviations to be suspicious and worthy of follow-up
investigation

There are two obvious sources of outliers; non-insect
sounds from outside the trap—including helicopters and
farming equipment—and non-Aedes aegypti insects that
enter the trap. Knowing the true identity of the outliers can
be very useful. In the former case, it may be possible to
change the traps location to reduce the number of outlier
events caused by the sound of farm machinery. In the latter
case, it may be useful know which unexpected insects we
have caught. For example, we may have been subject to an
unexpected invasion, as in the famous invasion of Glassy-
winged Sharpshooters (Homalodisca coagulata) which
almost devastated the wine industry in Temecula southern
California’s Temecula Valley 1997 [1]. However, the low
power/low memory requirements of the traps prohibit
recording the entire audio stream. Our solution therefore is
to use an auto-cannibalistic algorithm which allows
efficient indexing to support the one-nearest neighbor
classification, and to record a one second snippet of outlier
sounds. Each snippet requires the auto-cannibalistic to
delete 3 lists from its table.

A classifier was built using 1,000 lab reared insects, with
500 of each sex. The training error suggests that we can
achieve over 99% accuracy, however we have yet to
confirm this by hand annotation of insects captured in the
field. In Figure 8 we see a plot showing the indexing
efficiency for various levels of truncation.

Figure 8: Indexing efficiency vs. space on the insect
monitoring problem

Note that the application lends itself well to any anyspace
framework. Even when we have deleted 25% of the data
we can barely detected any change in the indexing
efficiency.

Figure 9: top) The cumulative number of Euclidean
distance calculations performed vs. the number of
sound events processed. bottom) The size of auto-
cannibalistic algorithm vs. the number of sound
events processed

Having demonstrated the concept in the lab, we deployed
an auto-cannibalistic algorithm in the field. As a baseline
comparison we compared to hard-coded truncated
Orchard's algorithms where just 5%, 1% and a single list
remains. Figure 9 shows the results.

The figure shows that the more memory an indexing
algorithm has, the more efficiently it can process incoming
data. The auto-cannibalistic algorithm starts out with a full
Orchard's algorithm in memory and is consequently much
more effective than its smaller rivals. Over time, outliers
are encountered and must be stored, so the amount of
memory available to auto-cannibalistic algorithm
decreases, causing it to become less efficient. However it is
difficult to detect this for the first 50,000 or so events. As
the power required is almost perfectly correlated with the
cumulative number of Euclidean distance calculations,
which in turn is simply the area under the curves, the auto-
cannibalistic algorithm requires less than one tenth the
energy of the 5% Orchard's algorithms, and is able to
handle 4.99% more outlier events before its memory fills
up.

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

STD

0.2425

Mean

0.5337

T = Mean + 4* STD

Fr
ac

tio
n

of
 D

at
a

To
uc

he
d

0 200 400 600 800 999 0

0.2

0.4

0.6

0.8

1

2
4
8
16
32
Random

Increasing Levels of Truncation

More Sounds Processed

0 20,000 40,000 60,000 80,000

100%

0

0.2

0.4

0.6

0.8

1

Auto-Cannibalistic
Leave 5%

Leave 1%

Leave 1

Size of Auto-Cannibalistic
Algorithm

0%

Eu
cl

id
ea

n
D

is
ta

nc
e

C
al

cu
la

tio
ns

 P
er

fo
rm

ed

(N
or

m
al

iz
ed

)

Algorithms terminate
when there is no more
free space for outliers

5.2 Robotic Sensors
In this section we consider the utility of auto-cannibalistic
algorithms in a robotic domain. Note that unlike the insect
example in the previous section, this is not a mature fielded
product, it is simply a demonstration on a toy problem. In
particular, we are not claiming that the approach below for
finding unexpected tactical sensations is the best possible
approach; it is merely an interesting test bed for a
demonstration of our ideas.

The Sony AIBO, shown in Figure 10, is a small quadruped
robot that comes equipped with a tri-axial accelerometer.
This accelerometer measures data at a rate of 125 Hz.

Figure 10: clockwise from top right. A Sony Aibo
robot. An on-board sensor can measure acceleration
at 125 Hz. The accelerometer data projected into
two dimensions

By examining the sensor traces, we can (perhaps
imperfectly) learn about the surface the robot is walking
on. For example, in Figure 10 we show a two dimensional
mapping of the Z-axis time series for both normal
unobstructed walking and walking when one leg is
obstructed. While the overlap of the two distributions in
this figure suggests a high error rate, in three dimensions
the separation is better, and we can achieve about 96%
accuracy. Naturally it is useful to distinguish between these
two situations, as the robot can attempt to free itself or
change direction. In addition to merely classifying current
state, it may be useful to detect unusual states and
photograph them for later analysis. As the AIBO has only 4
megabytes of flash memory on board, memory must be
used sparingly. A single compressed image with its
416x320 pixel camera requires about 100k of space.

Figure 11: The distribution of distances to nearest
neighbor for 700 tactile events in our training set.
We consider exemplars whose distance to their
nearest neighbor is more that the mean plus 5
standard deviations to be suspicious, and worthy the
memory required to take a photograph

We use the same basic framework as in the previous
section here. We took 700 training instances and use them
to build a 1-nearest neighbor classifier indexed by the
truncated Orchard's algorithm. Every time an outlier is
detected, and an image must be stored, we must delete an
average of 18 lists from our index to make room for it.
Figure 12 shows the result of the experiment. As before,
we compare to hard-coded truncated Orchard's algorithms
where just 5%, 1% and a single list remains.

Figure 12: top) The cumulative number of Euclidean
distance calculations performed vs. the number of
tactile events processed. bottom) The size of auto-
cannibalistic algorithm vs. the number of tactile
events processed

As with the insect example, the truncated Orchard's
algorithm requires only a fraction of the energy of the
fixed-size indices, and is able to process data until just a
single list remains available after dealing with event 1,522.

6. DISCUSSION
We have introduced a novel indexing method especially for
sensor data mining. In this section, we discuss the related
work and provide future extensions.

6.1 Related Work
Indexing is important for similarity search because it will
reduce a large amount of searching time since it can

0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Normal Walking

Obstructed Leg

Unusual
Observation

*

0 20 40 60 80 100 120

1-second of z-axis
acceleration data

Sony

AIBO

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.2
0

100

200

300
STD

0.0156

Mean

0.0219

T = Mean + 5* STD

More Events Processed

0 1,000 2,000
100%

0

0.2

0.4

0.6

0.8

1

Auto-Cannibalistic
Leave 5%

Leave 1%

Leave 1

Size of Auto-Cannibalistic
Algorithm

0%

Eu
cl

id
ea

n
D

is
ta

nc
e

C
al

cu
la

tio
ns

 P
er

fo
rm

ed

(N
or

m
al

iz
ed

)

Algorithms terminate
when there is no more
free space for outliers

eliminate expensive distance calculations. The problem of
indexing under metric distance has been studied intensively
in the last decade and many efficient algorithms have been
proposed. There are basically two alternative categories:
• Embedding method: for the objects in the data set of

N dimensions, it created a k-dimension feature vector
to represent each object. The distance calculated in the
k-dimension feature space provides a lower bound of
the actual distance between the objects. If k is
considerably smaller than N, and the lower bound is
reasonably tight, it can prune a lot of objects with
much less distance calculation effort. Examples of this
method are in [8], [16].

• Distance-based method: typical distance-based
method is based on partition. All or some distance
between the objects in the data set are precomputed.
When a query comes in, we can estimate the majority
of distances between the objects and query based on a
small fraction of the actual distance we have computed
between the objects and the query, and thus prune a lot
of non-qualified objects. The vantage-point tree
method [19] is an example in this category.

The method we proposed in this paper falls into the second
category. The obvious drawback of method in the second
category is that the index data structure is fixed, which
means, the indexing has a rigid memory requirement.
However, under the scenario where main memory is
bottleneck, e.g. in the sensor or robot, the algorithms with
fixed memory requirement may fail.

6.2 Conclusion
In this paper, our major contribution is that:

• We have shown the Orchard's algorithm may be
rescued from its relative obscurity by considering it as
an anyspace algorithm and leveraging off of its unique
properties to produce efficient sensor mining
algorithms.

• We have further shown what we believe is the first
example of an auto-cannibalistic algorithm.

Future work includes a large scale deployment and testing
of the insect sensors, and a more general exploration of the
notation of auto-cannibalism for other applications.

Acknowledgements: We thank the staff of ISCA
Technologies for their assistance with insect project, and
Dr. Manuela Veloso and Douglas Vail for donating the
robotic data.

7. REFERENCES
[1] S.J. Castle, S.E. Naranjo, J.L. Bi, F.J. Byrne and N.C.

Toscano. Phenology and demography of Homalodisca
coagulata (Hemiptera: Cicadellidae) in southern

California citrus and implications for management
Bulletin of Entomological Research (2005) 95, 621–
634

[2] A. Chechetka and. K. Sycara. An Any-space
Algorithm for Distributed Constraint Optimization. In
Proceedings of AAAI Spring Symposium on
Distributed Plan and Schedule Management, March,
2006.

[3] K.L. Clarkson. Nearest-neighbor searching and metric
space dimensions. In Nearest-Neighbor Methods for
Learning and Vision: Theory and Practice, MIT Press,
2006.

[4] A. Darwiche. Any-space probabilistic inference. In
16th Conference on Uncertainty in Artificial
Intelligence, pages 133-142, 2000.

[5] C. Elkan. Using the triangle inequality to accelerate
kMeans. In Proceedings of the Twentieth International
Conference on Machine Learning, pages 147-153,
2003.

[6] D. Ghosh and A. P. Shivaprasad. Fast codeword
search algorithm for real-time codebook generation
inadaptive VQ. Vision, Image and Signal Processing,
IEE Proceedings, volume: 144, issue: 5. pages 278-
284, 1997.

[7] J. Grass and S. Zilberstein. Anytime algorithm
development tools. SIGART Artificial Intelligence.
volumn 7, no. 2, ACM Press, 1996.

[8] C. Faloutsos and K. I. Lin. FastMap: A fast algorithm
for indexing, data-mining and visualization of
traditional and multimedia datasets. In Proceedings of
the 1st ACM SIGKDD Conference, pages 163–174,
1995.

[9] M. E. Hodgson. Reducing computational requirements
of the minimum-distance classifier. Remote Sensing of
Environments, 25:117-128, 1988.

[10] A. Ihler, J. Hutchins, and P. Smyth. Adaptive event
detection with time-varying Poisson processes. In
Proceedings of the 12th ACM SIGKDD Conference
(KDD'06), 2006.

[11] M. T. Orchard. A fast nearest-neighbor search
algorithm. International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2297-
2300, IEEE Computer Society Press, 1991.

[12] B. C. Song; J. B. Ra. A fast search algorithm for vector
quantization using L2-norm pyramid of codewords;
Image Processing, IEEE Transactions, volume 11,
issue 1, pages 10-15, 2002.

[13] P. Smyth and D. Wolpert. Anytime Exploratory Data
Analysis for Massive Data Sets. In Proceeding of the
3rd International Conference on Knowledge Discovery
and Data mining (KDD'97), pages 54-60, 1997.

[14] K. Ueno, X. Xi, E. Keogh and D.J. Lee. Anytime
Classification Using the Nearest Neighbor Algorithm
with Applications to Stream Mining, In Proc. of the
6th International Conference on Data Mining
(ICDM'06), pages 623-632, 2006.

[15] M. Vlachos, J. Lin, E. Keogh & D. Gunopulos. A
Wavelet-Based Anytime Algorithm for K-Means
Clustering of Time Series. In Workshop on Clustering
High Dimensionality Data and Its Applications. In the
3rd SIAM Int'l Conference on Data Mining. San
Francisco, CA. 2003.

[16] J. T. Wang, X. Wang, K. I. Lin, D. Shasha, B. A.
Shapiro & K. Zhang. Evaluating a class of distance-
mapping algorithms for data mining and clustering. In
Proceedings of the 4th ACM SIGKDD Conference,
pages 307–311, 1999.

[17] G. I. Webb, Y. Yang, J. Boughton, K. Korb and K. M.
Ting. Classifying under computational resource
constraints: Anytime classification using probabilistic

estimators. Technical Report 2005/185, Clayton
School of Information Technology, Monash University,
2005.

[18] L. Ye.(2008). Supporting URL for this paper.
www.cs.ucr.edu/~lexiangy/Anyspace/Dataset.html

[19] P. N. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
Proceedings of the 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 311–321, 1993.

[20] K. Zatloukal, M. H. Johnson and R. Ladner. Nearest
neighbor search for data compression. In Data
Structures, Nearest Neighbor Searches, and
Methodology: Fifth and Sixth DIMACS
Implementation Challenges. AMS, 2002.

[21] S. Zilberstein, and S. Russell. Approximate reasoning
using anytime algorithms. In Imprecise and
Approximate Computation, Kluwer Academic
Publishers, 1995.

