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Abstract

Many datasets can be described in the form of graphs
or networks where nodes in the graph represent entities
and edges represent relationships between pairs of enti-
ties. A common property of these networks is their com-
munity structure, considered as clusters of densely con-
nected groups of vertices, with only sparser connections
between groups. The identification of such communities
relies on some notion of clustering or density measure,
which defines the communities that can be found. How-
ever, previous community detection methods usually
apply the same structural measure on all kinds of net-
works, despite their distinct dissimilar features. In this
paper, we present a new community mining measure,
Max-Min Modularity, which considers both connected
pairs and criteria defined by domain experts in finding
communities, and then specify a hierarchical clustering
algorithm to detect communities in networks. When ap-
plied to real world networks for which the community
structures are already known, our method shows im-
provement over previous algorithms. In addition, when
applied to randomly generated networks for which we
only have approximate information about communities,
it gives promising results which shows the algorithm’s
robustness against noise.

1 Introduction

Many datasets can be described in the form of graphs
or networks where nodes in the graph represent enti-
ties and edges represent relationships between pairs of
entities. For example, the World Wide Web (WWW)
can be viewed as a very large graph where nodes rep-
resent web pages and edges represent hyperlinks be-
tween pages. In social networks, nodes typically rep-
resent individuals and edges indicate relationships, e.g.,
in a tele-communication network, each node is a phone
number and edges represent the fact that two nodes
communicated. A common property of these networks
is their community structure which notes the exis-
tence of densely connected groups of vertices, with only
sparser connections between groups. Community Min-
ing, which focuses on the detection and characterization
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of such network structure, has received considerable at-
tention over the past few years in sociology and lately
data mining. A community can be defined as a group of
entities that share similar properties or connect to each
other via selected relations [45]. Identifying these con-
nections and locating entities in different communities
is the main goal of community mining research.

The ability to detect communities could be of
significant practical importance. For example, groups
of web pages that link to more web pages in the
community than to pages outside might correspond to
sets of web pages on related topics, which can enable
search engines and portals to increase the precision
and recall of search results by focusing on narrow but
topically-related subsets of the web [12]; groups within
social networks might correspond to social communities,
which can be used to understand the data, such as
organization structures, academic collaborations and
the communities in tele-communication networks.

Traditional data mining algorithms, such as asso-
ciation rule mining, supervised classification and clus-
tering analysis, commonly attempt to find patterns in a
data set characterized by a collection of independent in-
stances, which is consistent with the classical statistical
inference problem of trying to identify a model given an
independent, identically distributed (IID) sample [14].
However, a new emerging challenge that data mining
researchers face is solving the community mining prob-
lem on richly structured, heterogeneous data sets. Such
data sets are usually modeled as networks or graphs
and contain multiple object types, which can be re-
lated to each other in various ways, e.g., commercial
data describing relations between customers, products
and transactions. Naively applying traditional statisti-
cal inference procedures, which assume that instances
are independent, can lead to inappropriate conclusions
about the data [21], for example, for a search engine, in-
dexing and clustering web pages based on the text con-
tent without considering their linking structure would
definitely lead to unsatisfactory results for queries. Var-
ious relation-based methods have been developed, such
as the spectral clustering approaches [10, 36, 41] and
modularity-based algorithms [7, 30]. However, none of
them distinguish the intrinsic features of the domain
of the network in question. In other words, the same



structural measure has been applied to all kinds of net-
works, despite their different characteristics, which can
be achieved from domain expertise.

In this paper, we present a new modularity-based
measure we call Max-Min Modularity, which considers
the property of both connected and user-defined related
node pairs in finding communities. We use it to estimate
the compatibility between the discovered communities
and the link structure. Generally speaking, our Max-
Min Modularity compares the difference between the
fraction of links that occur within communities to
the fraction that would be expected to occur if the
links were randomly distributed; in addition, it also
considers the fraction of user-defined related node pairs
within communities to the expected fraction of such
pairs. Based on this measure, we propose a hierarchical
clustering algorithm to detect communities in networks.
Our work makes the following contributions:

e We propose a method to include domain knowledge
as guiding criteria in the community detection
process by either rewarding or penalizing the metric
that evaluates the discovered structure, without
increasing the algorithm complexity.

e Our new measure and algorithm improves the ac-
curacy for community detection over previous al-
gorithms when applied to real world networks
for which the community structures are already
known, and also gives promising results when ap-
plied to randomly generated networks for which we
only have approximate information about commu-
nities. This shows the robustness of the algorithm
against noise.

The rest of the paper is organized as follows. We
discuss related work in Section 2. Section 3 introduces
definitions of the modularity evaluation. We propose
our Max-Min modularity measure and community min-
ing algorithm in Section 4 and report experimental re-
sults in Section 5. Possible extensions are discussed in
Section 6, followed by conclusions in Section 7.

2 Related Work

Generally speaking, we can divide previous research of
finding groups in networks into two main principle lines
of research: graph partitioning and hierarchical cluster-
ing. These two lines of research are really addressing
the same question, albeit by somewhat different means.
There are, however, important differences between the
goals of the two camps that make quite different techni-
cal approaches desirable [29]. For example, graph parti-
tioning approaches usually know in advance the number
and size of the groups into which the network is to be

split, while hierarchical clustering methods normally as-
sume that the network of interests divide naturally into
some subgroups, determined by the network itself and
not by the user.

Graph Partitioning. Generally, finding an exact
solution to a partitioning task is believed to be an NP-
complete problem, making it prohibitively difficult to
solve for large graphs. However, a wide variety of heuris-
tic algorithms have been developed and give good solu-
tions in many cases, e.g., multilevel partitioning [22], k-
partite graph partitioning [24], relational clustering [25],
flow-based methods [12], information-theoretic methods
[9] and spectral clustering [33]. The main problem for
these methods is that input parameters such as the num-
ber of the partitions and their sizes are usually required,
but we do not typically know how many communities
there are, and there is no reason that they should be
roughly the same size. Various benefit functions have
been proposed to avoid the problem, such as the normal-
ized cut [36] and the min-maz cut [10]. However, these
approaches are biased in favor of divisions into equal-
sized parts and thus still suffer from the same drawbacks
that make graph partitioning inappropriate for commu-
nity mining.

In the field of theoretical computer science, corre-
lation clustering [2, 5, 37] considers a complete graph
on n vertices, where each edge (u,v) is labeled either +
or — depending on whether u and v have been deemed
to be similar or different. Similar to our problem, the
goal is to find a partition that agrees as much as possi-
ble with the edge labels, i.e., a clustering that maximizes
the number of + edges within clusters and minimize the
number of — edges inside clusters. However, while cor-
relation clustering assumes the graph is complete and
each connection is either positive or negative, such as-
sumption is not true for community detection, where
graphs are usually sparse and many of the edges are
unobserved, i.e. labeled as 0. Moreover, while existing
methods [15, 16] for correlation clustering require the
user to specify parameters that are usually hard to de-
termine [1], e.g., the number of clusters, our algorithm
does not require parameters.

The idea of considering domain knowledge as re-
lated /unrelated pairs in this paper is analogous to the
notions of must/cannot links in semi-supervised clus-
tering [3, 39, 40]. However, in semi-supervised cluster-
ing, the labeled data is used for cluster initialization
[3] and the link constraints must be satisfied [39, 40].
Moreover, the number of clusters k is usually required
as the starting parameter. On the other hand, our al-
gorithm does not require parameters and the domain
knowledge in our work is used to guide the bottom-up
hierarchical clustering process, instead of generating ini-



tial communities. The given related/unrelated pairs are
not enforced to be in the same/different communities,
but contribute in calculating a metric score which eval-
uates the “closeness” of two communities.

Hierarchical Clustering. The main idea of this
technique is to discover natural divisions of social net-
works into groups, based on various metrics of similarity
(usually represented as similarity x;; between pairs (3, j)
of vertices). The hierarchical clustering method has the
advantage that it does not require the size or number
of groups we want to find beforehand, therefore, it has
been applied to various social networks with natural or
predefined similarity metrics, such as the modularity
and betweenness measure [7, 17, 27, 30]. However, they
are usually slow and the performance highly depends on
the corresponding metrics.

Recently, real world networks have been shown to
change over time and have an overlapping community
structure, which is hard to grasp with classical cluster-
ing methods where every vertex of the graph belongs to
only one community. Based on these observations, fuzzy
methods [18, 26, 32, 46] and dynamic approaches [4, 38]
have been proposed for overlapping structure and dy-
namic community detection. Recent work by Xu et al.
[42] proposed a fast SCAN algorithm to detect not only
clusters, but also hubs and outliers in networks. How-
ever, the performance of their approach highly depends
on input parameters, which are very sensitive. While
all these methods successfully find communities, none
of them are able to use domain knowledge as clustering
criteria to help the mining process.

3 Preliminaries

As reviewed above, many algorithms are able to detect
communities. However, ground truth is difficult to come
by, thus validation becomes an issue when using these
algorithms on unknown networks. How do we know
whether the communities discovered by the algorithms
are truly good ones? Since community mining algo-
rithms can produce communities even for completely
random networks which have no meaningful commu-
nity structure, how can we measure the structure that is
found for these “structureless” networks is an important
question to answer. To solve this problem, computer
scientists proposed several benefit functions based on
cut sizes, e.g., normalized cut [36]. However, cut sizes
do not accurately reflect the intuitive concept of social
network communities and thus are the wrong measure
to optimize. A good division of a network into commu-
nities is not merely one in which the number of edges
running between groups is small. Rather, it is one in
which the number of edges between groups is smaller
than expected [28], which is the intuition behind the

modularity measure.

3.1 The Modularity Measure The modularity Q
is proposed by Newman and Girvan [30] as a measure
of the quality of a particular division of a network, and
is defined as follows:

Q =

(number of edges within communities)

—(expected number of such edges) [30]

The basic idea is to compare the division to a “null
model”, a randomized network with exactly the same
vertices and same degree, in which edges are placed
randomly without regard to community structure. More
precisely, consider a particular division of a network into
k communities, the division can be represented by a
k x k symmetric matrix e, of which each element e;; is
the fraction of all edges in the network that link vertices
in community ¢ to vertices in community j. The matrix
trace T'r(e) = Y, e;; gives the fraction of edges in the
network that connect vertices in the same community,
and clearly a good community division should have a
high trace value. However, the trace alone is not a good
indicator of the quality, since placing all vertices in one
single community would give the maximal value 1 while
providing no information of the community structure.
The row sum a; = Ej e;; represents the fraction of
edges that has at least one end in community i. So,
a? is the expected fraction of edges within community i
if the edges were distributed randomly on the null model
network. Thus, the modularity measure is defined by:

Q=Y (e —a7) =Tr(e) - |I€*

where |z|| indicates the sum of the elements of the
matrix x. In other words, the modularity Q measures
the fraction of the edges in the network that connect
vertices of the same type, i.e., within-community edges,
minus the expected value of the same quantity in a
network with the same community division but with
random connections between the vertices [17]. If the
number of within community edges is no better than
random, Q = 0. Values of ) that are close to 1, which
is the maximum, indicates strong community structure.
Q typically falls in the range from 0.3 to 0.7 [17] and
high values are rare.

(3.1)

3.2 Drawbacks of Modularity Q The modularity
approach has been pursued by a number of authors
[11, 19, 28, 41}, and has been proved highly effective in
practice for community evaluation [8]. However, there
are three major problems for the Q measure. At first,
the modularity requires information of the entire struc-
ture of the graph, which is problematic for huge net-
works like the WWW. To solve this problem, Clauset [6]
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Figure 1: Two Network Examples with same Modularity score, but the right network has more absent links
(disconnected node pairs in community) than the left network.

proposed a measure of local community structure, called
local modularity, for graphs which lack global knowl-
edge. Secondly, recent research showed that modularity-
based methods have resolution limit and may fail to
identify communities smaller than a certain scale [13].
Possible solutions include recursive algorithms based on
modularity optimization [34]. At last, as pointed out by
Scripps et al. [35], the modularity only measures exist-
ing links on the network, but does not explicitly consider
the absent links between two nodes in the same commu-
nity. In other words, the modularity only measures how
good the discovered community structure fits the ex-
isting links (connected vertices should be in the same
community), but fails to measure how good the struc-
ture fits the absent links (disconnected vertices might
not be necessarily in the same community). For exam-
ple, the two networks shown in Figure 1 have the same
number of edges and the same ), which is 0.360, but the
intuition is that the community division in the second
network is worse, since it has more disconnected node
pairs within community 1, which is not considered by
the @ measure. Therefore, modularity fails to compare
the community structure between different graphs. To
solve this problem, Scripps [35] proposed two ratios p
and ¢, measuring the fraction of links within communi-
ties and absent links between communities, respectively.
The drawback of their method is that the interpreta-
tion is not clear since there are two measures: a mining
result can have higher p but lower ¢ than the other,
which makes it hard to compare the quality of differ-
ent community structures. In this paper, we propose
a new evaluation measure to increase the accuracy of
community detection, which not only solves this partic-
ular problem by taking unrelated node pairs (defined by
domain knowledge) into consideration, but also makes
it possible to compare the community structure quality
between different graphs.

4 Owur Proposed Elaboration

Communities are defined to be densely connected
groups of entities in a relational network, i.e., nodes in
a strong community should be related to all other nodes
in the same community. However, the original modu-
larity measure does not consider the absent links. In
other words, it only checks whether connected vertices
are placed in the same community, but ignores discon-
nected vertices that share the same community. There-
fore, to more thoroughly evaluate a network division, we
should not only reward the evaluation score if connected
vertices are put in the same community, but also penal-
ize the score if disconnected vertices are in the same
community. However, a “disconnection” could possibly
be an unobserved connection, which is very common in
biological and social networks, so it is dangerous to as-
sume disconnection to be a negative sign of the commu-
nity structure. Therefore, while connected pairs remain
as positive signs of a strong community structure, we
separate the disconnected pair set into two categories
based on knowledge provided by domain experts: the
related pair set, in which pairs of nodes are possibly re-
lated, and unrelated pair set, in which pairs of nodes
are certainly unrelated. We only penalize our measure
score if we see unrelated pairs share the same commu-
nity. Based on this criterion, we propose a user-defined
community structure measure, we call Maz-Min (MM)
Modularity.

The idea of MM Modularity is based on the intu-
ition that a good division of a network into commu-
nities is not merely one in which the number of edges
between groups is smaller than expected, it is also one
in which the number of unrelated pairs within groups
is smaller than expected. Only if both the numbers of
between-group edges and within-group unrelated pairs
are significantly lower than would be expected purely
by chance, can we justifiably claim to have found signif-
icant community structure. Equivalently, we can exam-



ine the number of edges within communities and unre-
lated pairs between communities and look for divisions
of the network in which this number is higher than ex-
pected. These two approaches are equivalent since the
total number of edges/pairs is fixed and any edges/pairs
that do not lie between communities must necessarily lie
inside one of them [28].

Generally speaking, our evaluation attempts to
maximize the number of edges within groups and min-
imize the number of wunrelated pairs from the user-
defined unrelated pair set within groups at the same
time, therefore we named it Max-Min Modularity. Note
that maximizing the edge number within groups does
not automatically minimize the unrelated pair number,
e.g., if we have no network knowledge, thus have no
related pairs, and unrelated pairs as disconnected node
pairs, consider a node that only connects one member of
a community with size n, maximizing the within-group
edge number by including that node in this community
would increase the unrelated pair number by n — 1.

4.1 Generalizing the Max-Min Modularity The
modularity Q can be transformed from its original form,
which is community-based, to a node-based form. Given
a unweighted and undirected network G = (V,E),
|V| = n,|E| =m,let Ayy be an element of the adjacency
matrix of G:

if vertices x and y are connected

1
Aay = { 0 otherwise

Assume the network is divided into k& communities and
node z belongs to community C,, the fraction of edges
that fall between community ¢ and community j is
defined as follows:

1 . .
€ij = % IZUAzyd)(Cza Z)¢(Oy7])

where the ¢ function ¢(i,5) is 1 if ¢ and j are the same
community and 0 otherwise. The degree d,, of a vertex x
is the number of edges that connect to it: d, = Eu Agy.
Therefore, the fraction of edges that have at least one
end in community ¢ is:

a; = %Zu ry¢( )

From all the equations above:

Q = Y (ei—a?)
= z[ﬁ zy Awy¢(cw= i)qS(Cy,i)
—L Zx dng( V) g 20y dy$(Cly )]

d12¢< )6(C o))
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Figure 2: A Graph Division and its Complement

Define P, = ”dy , we have the modularity Q as follows:

1
% Z[Awy -

zy

(4.2) Q= Puy|d(Cs, Cy)

We see that the original modularity has already
measured the first part of MM Modularity:

_Z oy —

thus we only need to measure the other part, which is
minimizing the unrelated pair fraction within communi-
ties. It is obvious that, if a division contains very few un-
related node pairs within communities for a graph, the
same division will have equivalently few connected node
pairs within communities for the complement graph,
which is a graph on the same vertices as the original
network such that two nodes are connected if and only
if they are defined as an wunrelated pair in the origi-
nal graph. In other words, the better this division is
for the original network regarding containing few unre-
lated node pairs within communities, the worse it is for
the complement graph as a community structure since
there are equally few connected node pairs within com-
munities (See Figure 2). Therefore, we can compute the
modularity score for a division on the complement graph
of the network. The lower QQ score we get, the better
community division we have for the original network.
Note that, although building a complement graph can
be very expensive especially when the original graph is
sparse, our method does not require extra computation
or materialization of this complement graph, since we
only need to maintain and update the related pair set
defined by domain experts. Other information we need,
which is the node degree and number of edges, can be
easily achieved from the structure of the original graph.

More precisely, given an unweighted graph G =
(V,E), V = {v]1 <z < n}, E={el <2< m}

(43)  Qmas = 16(Cs, Cy)
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Figure 3: Building Complement Graphs

and the user-defined criteria U to define whether two
disconnected nodes 4, j are related (i, j) € U or unrelated
(i,7) ¢ U, we create G’ = (V, E'), such that if and only
f(i,j) ¢ E and (i,5) ¢ U,(i,j) € E', ie., G' is G’s
complement graph. A’ is the adjacency matrix of G'’:
A;j =1iff A;; =0and (i,j) ¢ U . We define Qin, as

Qmin =

(4.4)

¢(Cy, Cy) = 11if Cp and C are the same community, 0
otherwise. |U| is the number of pairs in U. Similarly,
Py, is the expected probability of an edge between
vertices z and y in a random graph:

(d;)(d)

/

T 307 2 e = Prl#(Ce )

I
P, =

2m

where d, is the degree of node z in G’, and m' =

“D2m—2U| «
w. Since d, = n — d, — u,, we have

n—dy —uz)(n—dy —uy)
n(n—1) — 2m — 2|U]|

(
P, =

where u, and u, are number of nodes that are discon-
nected from but defined as related nodes with =z and
Y.

Now we want to maximize Q.nq: and minimize
Qmin at the same time. Fortunately, it can be achieved
by the following equation:

QMaw_Min = Qmaw - szn
= X Iy[ (Awy = Pry)
— 5 (AL, = PL)I6(Ca, C)

The higher Q praz_nin 1S, the better community division
we get. Note that we choose to use Qar — Qmin instead
of Qm‘” for Qaraz_nmin Since the former equation allows
us to compute the A modularity between every pair
of nodes. Also note that it is easy to extend the MM
Modularity for weighted graphs by using the weight in
degree computation for Q. and Qpmin.

We present an example for user-defined criteria in
the following. In social networks, the neighbourhood
around nodes are usually as important as direct con-
nections. Thus we naturally define disconnect people
as related pair if they connect to the same intermedi-
ary person. Therefore, we define U as if (i,5) ¢ F and
there is such k that (i, k), (k, j) € E, we have (i,j) € U.
By applying this criterion, we reward the MM modular-
ity for connected pairs in the same community, penalize
it for pairs that are in same communities and has no
shared neighbour, and do not reward or penalize pairs
that are disconnected but share neighbour nodes. An
example for building complement graphs for this crite-
rion is shown in Figure 3. Other constraints can also be
applied to define related pairs, as discussed in Section 6.

ALGORITHM 4.1. Hierarchical Clustering Algo-
rithm HMaxMin to greedily optimize Qarax_nrin

Input: A social network G = (V, E), V = {v;]1 <
i < n}, E={e;]l <z <m}, Adjacency Matrix A,
the user-defined criteria U.
Output: A division of V: Cq, Cs, ...Ck.
1. Assume each node is the sole member of one
of the n communities. Build related pair matrix
S, Si; equals the number of related pairs between
community ¢ and j:
Sij =1 lff(’hj) eU.

2. Compute the symmetric sparse matrix containing
AQyy for each connected pair x, y:

AQuy = zm(l_Pry) 2m/(0 By )
Save each matrix row both as a balanced binary tree
t, and as a max-heap h,. Save the largest element of

each matrix row along with the x y label in a max-
de _ dy

heap H. For each node z, we set: a, = $=, al, = 5.%.

3. While (pop-heap(H) >0 )
Select the largest element H and the corresponding
x, y. Update AQ by merging y row (column) into
row (column) such that:
if community z connect to both z and y in G:
Asz = AQLI)Z + AC?yz
if z only connect to x in G and connect to y in G':
(ly| equals the number of nodes in community y)
AQ.. = AQ,. + 2a;a’z — 2aya, — % + 2;791_%2
if z only connect to y in G and connect to z in G':
AQ,, = 2aldl, — 2a,a, — % + 251—%2 + AQy
Mark y row (column) in AQ and S as merged.
Update S by adding y row (column) into = column.
Update new_a; = a; + ay, new-a;, = a, + a,
Update t,, update all h,, update H.
4. Label merged nodes in the same unmarked row to
be in the same community, as Cy,Cs, ...Cyk.
5. Return C1, Cs, ...C.



4.2 Algorithm for Community Detection Here
we propose a new method to evaluate the quality of the
discovered community structure based on the MM Mod-
ularity. We may consider, if a high value of Qaraz_nrin
represents a good community division, one can sim-
ply optimize Qparaz_nin over all possible divisions to
find the best one. However, to find the optimal value
of Qnrax_nin is very costly: to carry out a complete
search of all possible divisions for the optimal value of
Qnrazx_Min Would take at least an exponential amount
of time, and is thus infeasible for large networks. There-
fore, we propose a hierarchical clustering algorithm
HMaxMin (see Algorithm 4.1) to greedily optimize the
MM Modularity to find the approximate optimal value.

Recall that we reward the modularity for connected
pairs, penalize it for unrelated pairs, and do nothing
for disconnected but related pairs. Merging a pair of
nodes between which there are no edges at all can never
result in an increase in @ prq0_arin, thus in step 2 we only
compute and store modularity scores for connected pairs
in a sparse matrix. In step 3, we greedily merge the pair
of communities which provides the highest modularity
gain into one community and update the modularity
matrix as well as the related pair matrix. For updating
the modularity matrix, we first treat all pairs between
community ¢ and j as unrelated, i.e., || * |j| pairs, then
add the extra deducted value for related pairs (note
that Qi'r‘jr = ﬁ(() — PZJ) — #(O - ]Dl;) if ¢ and j are
related and Q;; = 5= (0— Pjj) — 5 (1 — P;;) if they are
unrelated, thus Q;,j, = Qi + 507).

For algorithm complexity, consider we have n nodes
and m edges. In step 2 we only need to consider those
pairs connected by edges, of which there will be at
any time at most m. If we use n, to represent the
number of neighboring communities of community =z,
we have n, elements for the x row in the sparse matrix.
In step 3 of Algorithm 4.1, since we need to merge
y row into x row, we will have n, + n, insertions in
the worse case. Since the rows are stored as balanced
binary trees, each of the insertions take O(logn) in the
worst case. Therefore, updating the matrix in step 2
takes O((ny + ny)logn) time. Similarly, we only need
to update the heap for the k row if community k is
adjacent to community x or y. We need to do at most
ng + ny, updates of hy, each of which takes O(logn)
time, for a total of O((n;+mn;) logn) time. Updating the
related pair matrix S takes O(|Sy|) (Sy is the number
of elements in the y row of S), however, we can always
choose y so that |S,| < |S;|, therefore, updating S takes
O(1) time. Since each merge takes O((n; + n;)logn)
time, the total running time is the O(logn) times
the sum over all degrees of the merged communities
along the dendrogram. In the worst case, each node

would contribute its degree to all of the communities
it belongs to, along the path in the dendrogram from
the node to the root, which makes the total degree
2m, therefore, if the dendrogram has depth D, the
algorithm runs in O(mD logn) time in a sparse graph.
The approximate optimal @) value is also accumulated as
the algorithm goes along. Thus, our algorithm includes
domain knowledge but still runs in the same complexity
as the similar algorithm proposed in [7].

5 Experiment Result

In this section, we apply our MM Modularity and the
HMaxMin algorithm to detect communities on various
social networks, including several data sets collected
from real networks with ground truth as well as a
synthetic data set which is randomly generated with
given parameters, such as the graph size and the number
of communities. The domain knowledge used is the
example presented in Section 4.1: if (i,7) ¢ E and there
is such k that (i,k), (k,j) € E, we have (i,j) € U. All
the experiments were conducted on a PC with a 3.0 GHz
Xeon processor and 4GB of RAM.

5.1 Scalability To test our algorithm on large
datasets, we ran our algorithm on the largest compo-
nent of the collaboration network of scientists posting
preprints at www.arxiv.org [27], which has 27,519 nodes
and 116,181 edges, and the IMDB network between ac-
tors who share involving movies [20], which has 47,436
nodes and 379,196 edges, within 376 and 1,037 sec-
onds, respectively. To further evaluate the algorithm
efficiency, we generated ten random graphs of vertices
ranging from 10,000 to 500,000 and the number of edges
ranging from 20,000 to 1,000,000. Figure 4 shows the
performance of our algorithm on those networks. It
clearly reflects the O(mD logn) complexity of our ap-
proach.

However, we do not have ground truth to validate
our result for such large datasets, thus we turn to
synthetic data and real world datasets to evaluate the
accuracy of our algorithm. Danon et al. [8] found that
the modularity method outperformed all other methods
for community detection of which they were aware,
in most cases by an impressive margin. Therefore,
we compared our HMaxMin algorithm with a similar
hierarchical clustering algorithm [7] (we refer to it
as algorithm N), which uses Newman’s modularity to
measure community structure, to show that our MM
Modularity is more accurate for community detection
tasks by including domain knowledge.

5.2 Evaluation Approach To evaluate how closely
each community in the result matches its corresponding
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community in ground truth, we adapt the Adjusted
Rand Index (ARI) [43] as the performance metric for
accuracy. The ARI measures how similar are the
partition of objects according to the real communities
(R) and the partition in an algorithm result (P). Denote
a,b,c and d as the number of object pairs that are in
the same community in both R and P, in the same
community in R but not in P, in the same community
in P but not in R, and in different communities in both
R and P, respectively. ARI is defined as follows.

2(axd—bxc)

ARI(R, P) = (@+b)x(b+d)+ (a+c)*(c+d)

The more similar the two partitions (larger a and d,
smaller b and c¢), the larger the ARI value. ARI will
be 1 if R and P are identical and 0 if P is a random
partition for the graph.

5.3 Synthetic Data To test the performance of our
algorithm on networks with varying degrees of commu-
nity structure, we have applied it to a large set of ran-
domly generated graphs. Each graph was constructed
with 1000 vertices and 5 communities, each of which
had 200 vertices. At first, each vertice was connected
to 6 other randomly chosen nodes in the same com-
munity and had no connection to nodes in the different
communities, thus we get 3000 within-community edges.
Then we added a number of between-community edges,
x, into the graph. Both ends were randomly chosen and
each node could only connect up to 4 nodes in different
communities so that within-community connections for
all nodes were supposed to be stronger than between-
community connections. This produces graphs which
have a known community structure, but are essentially
random in other respects. Moreover, we can control the
“noise”, i.e., between-community edges, by adjusting x.

Community Tetection on Random Graphs
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Figure 5: Synthetic Data Results (each point is an
average over 50 1,000-node graphs.)

Similar synthetic data generation methods have been
used in [6, 17].

Using these graphs, we tested and compared the
performance of HMaxMin algorithm and algorithm N
with different x, as shown in Figure 5. As the figure
shows, HMaxMin performs well, with a > 0.7 average
ARI on graphs with less than 1500 between-community
edges (50% of the within-community edges). HMaxMin
begins to “fail” when x exceeds 1500, however, com-
munities may not exist in such circumstances. On the
same plot, we also show the performance of the algo-
rithm based on the original modularity Q (Algorithm
N) and, as we can see, the algorithm performs measur-
ably worse than our algorithm. Interestingly, the perfor-
mance of the two algorithms are about the same when
the community structure is clear and strong, but when
we increase the noise edge numbers, the accuracy of
HMaxMin drops much slower than algorithm N. There-
fore, it is reasonable to believe that our algorithm is
more robust in finding community structure for data
with considerable noise.

5.4 The Karate Club While random mid-size
networks provide a reproducible and well-controlled
testbed for community discovery evaluation, it is also
desirable to test and compare the performance of our
algorithm on real world networks. Since ground truth
of large datasets is hard to come by, we have selected
three network datasets, for which the community struc-
ture is already known from other sources. Table 1 shows
the detected community number and the ARI score of
discovered structures of both algorithms. The first net-
work is drawn from the well-known “karate club” study
of Zachary [44]. In this study, relations between 34



Ground Truth | Q based Algorithm N | Our HMaxMin Algorithm Improvement
Communities | Comm. ARI Comm. ARI
Karate Club 2 3 0.680 2 1.00 471 %
Sawmill Network 3 4 0.664 3 1.00 50.6%
Mexican Politicians 2 3 0.255 3 0.359 40.7%

Table 1: Algorithm Comparison on Real World Networks.
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Figure 6: The Karate Club

members of a karate club over a period of two years
are observed. During the study, a disagreement de-
veloped between the administrator and the teacher of
the club, which eventually made the club split into two
smaller ones, centering around the administrator and
the teacher, represented by node 34 and node 1. Then
Zachary was able to construct a network of friendships,
using a variety of measures to estimate the strength of
ties between members of the club.

The user-defined criteria we used for the karate net-
work and all the following experiments is a heuristic rule
for social networks where we believe the neighbourhood
around people are as important as direct relations, thus
disconnected people are treated as related pairs if they
share the same intermediary friends. In other words,
this criteria only penalizes the MM modularity for pairs
that are in the same community and have no shared
friends. We reward the score for connected pairs and do
not reward or penalize sharing-neighbour pairs.

In Figure 6!, we show a unweighted network struc-
ture extracted from Zachary’s observations. The ac-
tual divisions of the club following the break-up, as re-
vealed by which club the members attended afterward,
are indicated by node colours. We also show the re-
sults after feeding the network into HMaxMin (repre-
sented by node shape) and algorithm N (represented
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Figure 7: Social Network in a Sawmill

by closed area) in the figure. As we can see, algo-
rithm N not only incorrectly generates one extra com-
munity, but also classifies node 10 into the wrong com-
munity?, while results of our algorithm perfectly match
the ground truth. In other words, the MM Modularity
is better than the original as a predictor of subsequent
social evolution of this friendship network.

5.5 Sawmill Communication Network As a fur-
ther test of our algorithm, we turn to the communica-
tion network of employees in a sawmill®>. This data is
collected in order to analyze the communication struc-
ture among the employees after a strike. An edge in
the network means that the two connected employees
have discussed the strike with each other very often.
As Figure 7 shows, there are three groups according
to age and language. The Spanish-speaking young em-
ployees (the top group) are almost disconnected from
the English-speaking young employees (the left group),
who communicate with no more than two of the older
English-speaking employees (the right group). All ties
between groups have special backgrounds. For example,
Alejandro is most proficient in English and Bob speaks
some Spanish, which explains their connection. Bob

ZThe result in [27], which showed that algorithm N find
two communities with only one misclassified node, is incorrect,
confirmed by M. Newman in private communication.

3This dataset is collected from the Pajek Project [31].



owes Norm for getting his job, which may be the reason
that they developed a friendship tie. Finally, Ozzie is
Karl’s father [31].

In Figure 7, we show the communities of the ground
truth, our algorithm and algorithm N, indicated again
by the node colour, shape and closed area. As we
can see, both algorithms correctly identify the Spanish-
speaking group, which is a clique. However, algorithm
N inaccurately classifies Ozzie into the young English-
speaker group and generates an extra community for
the older English-speaker group although Sam strongly
connects the two separated groups. On the other hand,
HMaxMin again perfectly detects the ground truth, as
revealed by the sociology research.

5.6 Mexican Politician Network For our next
example, we look at a more complex relation network
between politicians in Mexico (also collected from the
Pajek Project [31]), which describes a social network
between Mexican politicians in the 20th century. Edges
represent significant social ties between the politicians,
represented by nodes. Two groups within this network
have been competing for power against each other
(Figure 8), which are civilians (the top group) and
members of the military force (the bottom group).

As we can see in Figure 8, this network has way
more between-community connections than the previ-
ous two networks, which makes it harder for community
mining algorithms to correctly detect the communities
(as shown by the experiments on synthetic data). As
the figure shows, algorithm N finds most members of
the civilian group (red nodes), but it separates the mil-
itary group (yellow nodes) into two communities and
makes several mistakes around the periphery. On the
other hand, HMaxMin also detects three communities,
one for the civilian group, one for military group and one
in the middle, mainly containing periphery nodes. Al-
though it is hard to argue which partition is better sim-
ply by observation, Table 1 shows that the HMaxMin
algorithm achieves a better 0.359 ARI score than 0.255
of algorithm N.

6 Discussion

Recently, community mining is increasingly attracting
attention as an area of study and faces many challenges
in developing community structures. Newman’s Modu-
larity has been proven to be effective and is thus pursued
by many researchers, however, it has three main prob-
lems as we reviewed in Section 3. Our Max-Min modu-
larity solves the third problem of modularity shown in
Figure 1, which does not consider absent links, by in-
cluding the factor of user-defined related node pairs in
the quality measure process, thus not only the detec-
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Figure 8: Mexican Politician Network

tion accuracy is improved by taking advantage of do-
main knowledge, but the community structure in differ-
ent graphs can be compared. The Max-Min modularity
idea can easily be extended to its local version, where
global information about the graph is unavailable, and
can be used in the recursive community detection to
improve the community resolution. In networks such as
biological and social networks, where connections can be
unobserved, only considering the connected pairs might
be inaccurate for community structure detection. While
other algorithms cannot handle such cases, our MM
modularity-based methods can exploit information from
link prediction [23], and extract appropriate criteria for
community detection. Additionally, our algorithm still
runs in O(mD logn) time, which is the same as previous
modularity-based algorithms.

7 Conclusions

We have described a new measure based on modular-
ity for community structure and a hierarchical cluster-
ing algorithm HMaxMin for detecting communities from
various networks. Different from other similar algo-
rithms, which use one pre-defined similarity measure for
all kinds of networks, our approach takes domain knowl-
edge into consideration and thus improves the commu-
nity detection accuracy. The proposed measure not only
considers to maximize connected node pairs but also to
minimize unrelated pairs in the same community, thus



provides a considerable improvement over the original
modularity, which only measures the existing connec-

tions within communities.

While giving a penalty for

all absent links might be too strict, domain knowledge
is incorporated in our model to boost performance. Our
change on the modularity has a big impact on com-
munity detection, and further improves the high ac-
curacy that modularity-based method already achieve.
We have applied the algorithm to randomly generated
networks and a set of real world networks with ground
truth for validation. We have also applied the algorithm

on large networks to show its scalability.

The exper-

imental results confirm the accuracy and effectiveness
of the proposed measure and algorithm for community
structure detection.
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