ol

%{} HOKKAIDO UNIVERSITY
N

x‘

<\

Title Frequentness-Transition Queries for Distinctive Pattern Mining from Time-Segmented Databases
Author(s) Minato, Shin-ichi; Uno, Takeaki
Citation Proceedings of the 10th SIAM International Conference on Data Mining (SDM2010) p. 339-349
Issue Date 2010-04
Doc URL http://hdl.handle.net/2115/47334
Rights Copyright ©2010 Society for Industrial and Applied Mathematics
Type proceedings
Note 2010 SIAM International Conference on Data Mining (SDM2010). April 29 - May 1, 2010. Renaissance Columbus

Downtown Hotel. Columbus, Ohio

File Information

dm210_030_minatos-2.pdf

°

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Frequentness-Transition Queries for Distinctive Pattern Mining

from Time-Segmented Databases

Shin-ichi Minato *

Abstract

We propose a new data mining method called frequentness-
transitional pattern mining for finding patterns with inter-
esting sequential behavior specified by a user’s query. For a
series of databases, we introduce the frequentness-sequence
of a pattern that is a sequence of the two symbols ‘H’ and
‘L,” which represent the frequency or infrequency in each
segment of a database, respectively. The problem is find-
ing patterns whose frequentness-sequences satisfy the query.
The goal of this research is to develop an efficient algorithm
and its implementation that accepts various models and that
can be widely used in practice with large-scale data. Thus,
we chose an itemset as a pattern, and regular expression
for the query language to accept various models. To cope
with the unavoidably large number of candidate patterns,
we use Zero-suppressed Binary Decision Diagrams (ZDDs or
ZBDDs) to store and operate a large number of candidate
itemsets in a short time. Our algorithm performed quite
well in our computational experiments, such that it is com-
petitive with the standard itemset mining algorithms that
can be used only to find frequent itemsets. To the best of
our knowledge, this is the first study on detecting distinctive
itemsets of user-specific models of sequential behaviors.

1 Introduction

Discovering useful knowledge from large-scale databases
has attracted considerable attention during the last
decade. Frequent pattern miningis one of the fundamen-
tal problems for data mining and knowledge discovery.
The task is to find all frequent patterns included in at
least o records of the database where o is the user spec-
ified threshold. Since the pioneering work by Agrawal
et al. [1], various algorithms have been proposed to
solve the frequent itemset mining problem (cf., [4, 15]).
Recently, Minato et al. [9] proposed a fast algorithm
“LCM over ZDDs” for generating very large-scale fre-

~ *Graduate School of Information Science and Tech-
nology, Hokkaido University, Sapporo, 060-0814 Japan.
minato@ist.hokudai.ac.jp, and ERATO MINATO Discrete
Structure Manipulation System Project, Japan Science and
Technology Agency.

fNational Institute of Informatics, Tokyo 101-8430, Japan.
uno@nii.ac.jp

339

Takeaki Uno T

quent itemsets using Zero-suppressed BDDs (ZDDs) [8],
a compact graph-based data structure. Their method is
based on LCM algorithm [12], one of the most efficient
state-of-the-art techniques for itemset mining, and also
based on the ZDD-based data structure, which directly
generates compact output data structures on the main
memory, to be efficiently post-processed by using alge-
braic operations.

We apply these efficient itemset mining techniques
to sequential databases. There have also been many
studies on finding patterns from sequential databases.
One of these approaches is known as sequence mining or
episode mining, to find patterns of sequential structures
such as sequences, sequences with gap constraints, and
directed acyclic graphs [10, 11, 14]. Another approach
is finding combinatorial (non-sequential) patterns whose
occurrence has an interesting sequential property. We
considered this kind of problem. In practice, we often
want to know such patterns. For example, if we obtain
combinations of keywords, which were not frequently
used in Web searches one month ago, but are frequently
used now, then perhaps we can find some recent hot top-
ics. Naturally, we understand that this kind of analysis
is quite important in many areas such as marketing, web
analysis, IT security, financial engineering, and natural
science experimentation.

Emerging pattern mining [3] is an early work dealing
with such problems. For two databases Dy and D, a
pattern P is called an emerging pattern if the ratio of P’s
frequencies in the two databases is greater than a given
threshold value 8 (i.e. frqp,(P)/frqp,(P) > 6). This
method can be used to capture the distinctive differ-
ences between the two databases, or between two differ-
ent periods of one sequential database. There are many
extensions or variations of emerging pattern mining.
A recent proposal is Transitional pattern mining [13]
for time-stamped sequential databases. A pattern P is
transitional if there is a segmentation of the database
into former and latter such that P’s frequency in the for-
mer is considerably larger or considerably smaller than
that of the latter. Transitional patterns can capture
the time point (they call milestone) of the frequency
changes, and do not need a given segmentation, while

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

the emerging patterns need a good segmentation before
mining.

Those differential mining methods are aiming to
find distinctive behaviors of itemsets that cannot be
detected with ordinary frequent itemset mining, so
they have to explore many more candidates with lower
frequencies. In addition, the useful Apriori property no
longer holds, and we cannot prune the search space.
Thus, the computation cost is a serious problem in this
kind of pattern mining. Recently, Loekit and Bailey
proposed using ZDDs for emerging pattern mining to
accelerate computation [7]. We expect that the ZDD-
based post-processing approach has a large potential for
solving these problems.

We propose a pattern mining algorithm which al-
lows users’ queries to specify the interesting frequency
changes in a sequential database. This idea enables us
to handle not only the difference in the two time periods
but also more sophisticated models of sequential behav-
ior. If we implement this method in a straightforward
way, the computational complexity will become much
higher than existing mining problems. To cope with
this, we propose a new method, as shown below.

e Digitizing the time frame of sequential databases.
We consider a time-segmented database, which is a
sequence of non-sequential databases of the same
type. For example, the sequence of POS database
of a supermarket for each day can be considered as
a time-segmented database.

e Quantization of the pattern frequencies. For a
time-segmented database D = (Dy,...,Dr), we
consider the frequentness-sequence of a pattern,
which is a sequence of length T', consisting of two
symbols ‘H’ and ‘L, where "H’ (‘L) on the i-th
position means the pattern is frequent (infrequent)
in D;. (for example, “L...LH...H”)

e Using ZDDs for post-processing a large number of
patterns. LCM over ZDDs can efficiently extract
a large number of frequent itemsets and directly
generate compact representations of all solutions
using ZDDs. After digitization and quantization of
the database model, we can use this state-of-the-art
technique.

e Using regular expression for the query language.
We call this frequentness-transition query, which is
a regular expression of ‘H’ and ‘L.” For example, a
query “LL*HH*” represents a set of sequences such
that “the pattern is not frequent at the beginning,
but at some point it becomes frequent and remains
so until the end.” Many users easily understand

340

regular expressions, and it has a good trade-off
between expressive power and complexity.

We call a pattern whose frequentness-sequence be-
longs to the model of the frequentness-transition query
a frequentness-transitional pattern. We propose an effi-
cient algorithm for solving the frequentness-transitional
pattern mining problem.

This paper is organized as follows. In Section 2,
we start with preliminaries and explain straightforward
algorithms for understanding the difficulty of the prob-
lem. Section 3 describes our algorithm for solving the
problem, and Section 4 describes the ZDD and LCM
over ZDDs for understanding how to reduce the compu-
tational cost. Experimental results are shown in Section
5, followed by our conclusions.

2 Preliminaries

Let £ = {1,2,...,n} be the set of items. A transaction
database on & is a multiset D = {T},T>,...,T,,} where
each T; is included in £. Each T; is called a transaction
(or tuple). We denote the sum of all transaction sizes in
D as ||D|| that is, the size of database D. A set P C &
is called an itemset.

For itemset P, a transaction including P is an
occurrence of P. The denotation of P, which is denoted
by Oce(P), is the set of the occurrences of P. |Oce(P)| is
the frequency of P and is denoted as frq(P). For a given
constant p, called a minimum support ratio, itemset P
is frequent if frq(P) > m X p. Note that usually the
threshold value is called minimum support and is given
by the absolute number of transactions; however, to
adopt the difference in the sizes of the databases in
a time-segmented database, we use the ratio for the
threshold. A frequent itemset not included in another
frequent itemset is called mazimal. An itemset not
included in another itemset with the same frequency
is called closed.

For a given p, the set of frequent itemsets in
database D is denoted as FI(D). The problem of
frequent itemset mining is to enumerate all frequent
itemsets for given database D and a minimum support
ratio p. In other words, the problem is to generate a
representation (such as a list of itemsets) of FI(D).

A time-segmented database is a sequence of the
same type of databases. We may consider any type
of databases such as transaction, text, and graph, but
hereafter, a time-segmented database D is a sequence
of transaction databases, i.e., D = {Dy,..., Dy} such
that each D; is a transaction database. Each D; is
called a segment database. The size of D, denoted by
[|D]| is the sum of the database sizes composing D, i.e.,
[ID|| = E;le [|D;||. For an itemset P, frequentness-

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

sequence fq(P) for time-segmented database D is a
sequence composed of ‘H’ and ‘L’ of length T such that
the i-th position of the sequence is ‘H’ if and only if P is
frequent in D;. FI(D) denotes the set of itemsets which
are frequent in at least one D; € D.

Let ¥ = {ay,as,...,a;} be a finite alphabet;
then the class of regular expressions over X is defined
recursively as follows:

1. Any ay,as,...,a; alone is a regular expression, as
are the null sequence A and empty set ¢.

2. If P, and P; are regular expressions, then so is their
concatenation P; P, and their union P, U P,. If P
is a regular expression, then so is its closure P*.

A=1%,Q,96,q, F] is said to be a non-deterministic
finite automaton (NFA) if

1. ¥ is an alphabet,

2. (@ is a finite non-empty set, the set of states,
3. 0:Q x ¥ — 29, the state transition relation,
4. gy € Q, the initial state, and

5. F C @, the set of final states.

A sequence S € ¥* is said to be accepted by an
NFA A =[%,Q,9,qo, F] if and only if §*(qo,p) N F # ¢,
where 6* : Q x ©* — 2 is defined as follows:

1. 6*(¢q,\) = {q} for any q € @ and
2. 6*(q,aS) = |J 0*(¢,S) forany g € Q, a € X,

q'€d(q,a)
and S € X*.

A state transition graph is a directed graph for
visualizing an NFA. Its vertex set is the set of states
do,q1,- - -, and a directed edges (g, ¢') with label ¢ means
q' € 6(g,a) in the state transition relation.

It is a well-known theorem that any regular expres-
sion can be transformed into a state transition graph of
an NFA accepting all sequences generated by the regu-
lar expression. The size of the state transition graph is
linear to the size of the regular expression.

A frequentness-transition query is a regular expres-
sion which describes a set of sequences composed of
‘H’ and ‘L’. For a frequentness-transition query X, a
finite automaton accepting the sequences belonging to
the set given by X is denoted as A(X). We call an item-
set whose frequentness-sequence is in X a frequentness-
transitional itemset.

Examples of frequentness-sequences are
“L..LH..H”, “L..LHHHL...L”, and “H...HL...LH...H”,
where ‘L’ means infrequent and ‘H’ means frequent.
The regular expressions representing the sequences are

341

“LL*HH*”, “L*HHHL*’, and “HH*LL*HH*”. Using
regular expression also enables us to model periodical
patterns of being frequent, such as “frequent only one
day a week”.

We address the following problem.

Frequentness-Transitional Itemset Mining Prob-
lem:

Input: a time-segmented transaction database D, a
minimum support ratio p, and a frequentness-transition
query X

Output: all itemsets P whose frequentness-sequences
belong to the model given by X.

The frequentness-sequences and frequentness-
transitional patterns can also be defined in the same
way for other kinds of patterns such as sequences,
graphs, and geometric objects. Thus, this problem can
be easily considered in other kinds of pattern mining
applications.

In this paper, we only consider the two symbols
‘H’ and ‘L’ for frequentness-sequences and frequentness-
transition queries. However, we can easily extend the
model using the three symbols ‘H,” ‘M, and ‘L’ to
represent a ternary quantization of high, middle, and
low, respectively. More multi-valued quantization will
be possible.

2.1 Straightforward Algorithms To understand
the difficulty of this problem and non-triviality of the
algorithm, this subsection discusses straightforward al-
gorithms. The simplest way to solve the problem is to
compute the frequentness-sequences of all itemsets and
input the obtained sequences to the finite automaton
A(X). Tt takes, roughly speaking, O(2/€l x ||D||) time,
where 2/¢1 is the number of itemsets and O(||D]|) is the
time to compute the frequentness-sequence of an item-
set. Note that the evaluation of a frequentness-sequence
using the finite automaton A(X) can be done in O(T)
time.

With this method, the frequentness-sequence
“L...L” should not be in the model of X; otherwise,
many itemsets will be output. Thus, we can restrict the
itemsets to FI(D). Let T(D;) be the time to enumerate
all frequent itemsets in D;. Then, the computation time
will be O(S 1, T(D;) + | Ui~y FI(D:)| x |[D])).

This can be further reduced by computing all the
frequentness-sequences in a breadth-first manner. First,
we compute FI(D). Then, we compute FI(D1), and set
the first position of the frequentness-sequence of each
itemset according to whether the itemset is included in
FI(Dy). Tteratively, we compute F'I(D;) and determine
the i-th position of each frequentness-sequence. In

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

F(a,b,c) S(a,b,c)

Binary Decision Tree BDD

Figure 1: Binary Decision Tree, BDD and ZDD

alblc]] F|] =8

0Ol0[O] O

01T 01110 As a Boolean function:
O 1ol 11 —=b F(a,b,c) = abc \V abc
Ol1]1] O

110700 As a family of itemsets:
1101 1| —ac S(a,b,c) = {ac, b}
T[TJO0] O

T]1]1T]O

Figure 2: Correspondence of Boolean functions and sets
of combinations

this way, we can compute all frequentness-sequences in
O(ZZ,T:1 T(D;)) time and O(T x |FI(D|) memory. This
is possibly a limit of straightforward algorithms derived
using frequent itemset mining algorithms. However,
since both Zszl T(D;) and |FI(D)| can be quite large
in practice, this straightforward algorithm may not
practically work on a large amount of data, or minimum
support ratio involving a large number of frequent
itemsets.

3 Zero-suppressed Binary Decision Diagrams

(ZDDs)

A Binary Decision Diagram (BDD) is a graph represen-
tation for a Boolean function. An Example is shown in
Fig. 1 for F(a,b,c) = abcVabe. Given a variable order-
ing (in our example a,b,c), one can use Bryant’s algo-
rithm [2] to construct the BDD for any given Boolean
function. For many Boolean functions appearing in
practice this algorithm is quite efficient and the result-
ing BDDs are much more efficient representations than
binary decision trees.

BDDs were originally invented to represent Boolean
functions, but we can also map a family of itemsets into
Boolean space of n variables, where n is the cardinality
of £ (see Fig. 2). Therefore, one could also use BDDs
to represent families of itemsets. However, one can
even obtain a more efficient representation using Zero-
suppressed BDDs (ZDDs or ZBDDs) [8], especially if the
itemsets are small compared to n.

If there are many similar itemsets then the sub-

342

Jump

NOT
-

Figure 3: ZDD reduction rules

graphs are shared resulting in a smaller representation.
In addition, ZDDs have a special type of node deletion
rule. Asshown in Fig. 3, All nodes whose 1-edge directly
points to the O-terminal node are deleted. Because of
this, the nodes of items that do not appear in any item-
set are automatically deleted as shown in Fig. 1. This
7DD reduction rule is extremely effective if we handle a
family of sparse itemsets. If the average appearance ra-
tio of each item is 1%, ZDDs are possibly more compact
than ordinary BDDs, up to 100 times.

7ZDD representation has another good property in
which each path from the root node to the 1-terminal
node corresponds to each itemset in the family. Namely,
the number of such paths in the ZDD exactly equals the
cardinality of the family. This property indicates that,
even if there are no equivalent nodes to be shared, the
ZDD structure explicitly stores all itemsets as well as
using an explicit linear linked list data structure. In
other words, (the order of) ZDD size never exceeds the
explicit representation. If more nodes are shared, the
ZDD is more compact than the linear list.

Figure 4 summarizes the primitive operations of the
ZDDs. In these operations, “f,” “1,” and S.top can be
obtained in a constant time. S.offset(k), S.onset(k),
and S.change(k) operations require a constant time if
item k is at the root node of S; otherwise, they consume
linear time for the number of ZDD nodes located at a
higher position than item k. The union, intersection,
and difference operations can be performed in almost
linear time to the size of the ZDDs. S.count is also linear
to the ZDD size and does not depend on the cardinality.

Recently, Knuth [6] presented a new fascicle of his
famous book series. This new fascicle has a section en-
tirely devoted for BDDs with total 140 pages including
236 exercises, and ZDDs are also discussed minutely in
30 pages including 70 exercises. He re-arranged a set of
primitive ZDD operations and named it “Family Alge-
bra.” His own BDD/ZDD package is available on his
home page.

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

“p” Returns empty family. (O-terminal node)

“1” Returns singleton family of null-itemset. (1-terminal node)
S.top Returns item-ID at root node of S.

S.offset(k) | Sub-family of itemsets not including item k.

S.onset(k) | Gets S\ S.offset(k) and then deletes item k from each itemset.
S.change(k) Inverts existence of item &k (add or delete) on each itemset.
S1US, Returns union of the two families.

S1 NSy Returns intersection of the two families.

S1\ S2 Returns difference of the two families. (in S; but not in S».)
S.count Counts cardinality of S.

Figure 4: Primitive ZDD operations

L NFA for frequentness- L

time-segmented
databases

transition query

v;;

ZDDs for
current states
q0
v

> C ZDD operations for state transition)

(repeat)

frequent

: v
1itemsets
ZDDs for
next states / 40

Figure 5: ZDD-based symbolic processing for finite automata

4 Frequentness-Transitional Itemset Mining
from Time-Segmented Databases

The basic scheme of our method is to evaluate all
the frequentness-sequences using the NFA of the given
query. Suppose that we have an NFA A and are
going to evaluate frequentness-sequences in the set S
of frequentness-sequences using this NFA. We first place
all frequentness-sequences in S on the start state gg. We
call an edge of an NFA H-edge (L-edge) if it is labeled
‘H> (‘L).

As the first iteration, we move the sequences whose
first position is ‘H’ along the out-going H-edges, and the
sequences whose first position is ‘L’ along the out-going
L-edges. If there are k out-going edges, a sequence on
qo will be duplicated and moved to k states. If there is
no out-going edge, that is £ = 0, we simply delete the
sequences whose first position is ‘H’. We do the same
for sequences having ‘I’ on the first position. Similarly,
in the i-th iteration, for each state g of A, we move the
sequences on ¢ such that

e sequences whose i-th position is ‘H’ are moved via

343

out-going H-edges , and

e sequences whose i-th position is ‘I’ are moved via
out-going L-edges.

After the process of T-th iteration, the sequences re-
maining on the final states belonging to the model given
by X, that is, the itemsets with these frequentness-
sequences are the frequentness-transitional patterns.

In fact, this computation can be done by inputting
the sets of itemsets instead of frequentness sequences.
At the beginning, we place all the itemsets in FI(D),
whose frequentness sequences will be evaluated, on the
start state go. Then, as the first iteration, we move the
itemsets that are frequent in D; along the out-going
H-edges, and move those that are infrequent along the
out-going L-edges. Let I;(q) be the set of itemsets on
the state ¢ after the i-th iteration, and Iy(q) is an empty
set for ¢ # qo and is the set of all itemsets for ¢ = ¢p.
In the i-th iteration, for each state g of A, we move

e itemsets in I;_1(q) being frequent in D; along out-
going H-edges, and

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ALGORITHM Mine-FrqTransPattern (D, o, A)

Input: time-segmented database D = {Dx,..

., D7}, minimum support threshold o,

frequentness-transition query (FNA) A = [£,Q, 0, g0, F]

Output:

fori:=1toT
compute a ZDD representing F'I(D;)

end for

e

all frequentness-transitional patterns

. determine the item ordering used by ZDDs

. for each state ¢ € Q, ¢ # qo, assign an empty ZDD Z(q)
. assign a ZDD representing all itemsets to go

for each state g €), set Z(q) to a ZDD representing I;(q)

. output all itemsets in the ZDD on each accepted state

Figure 6: Algorithm for finding frequentness-transitional patterns

e itemsets in I;_1(q) being infrequent in D; along
out-going L-edges.

Then, at the end of the T-th iteration, the itemsets
remaining on the final states are the frequentness-
transitional itemsets. For a state ¢, § (g, H) denotes
the set of states ¢’ with an edge from ¢’ to ¢ labeled
‘H, §7'(q, L) denotes that for ‘L.’ In the term of set
operations, the above process can be written as

U

q'€51(q,H)

Li(q) = (Ii—1(¢") N FI(D;))

U Uieild) \ FI(Dy)). (1)

q'€s~1(q,L)

LEMMA 4.1. An itemset P is in I;(q) if and only if
the frequentness-sequence of P is on q after the i-th
transition.

Proof. Since Ip(qo) is the set of all itemsets and
Iy(q),q # qo is the emptyset, I[;(q) satisfies the state-
ment of the lemma. Suppose that I;(q) satisfies the
statement of the lemma for any ¢ < k. Then, from
Eq. (1), It(q) is the set of itemsets whose frequentness-
sequences are on ¢ after the i-th transition. Thus, by
induction, the statement holds.

We can see that the computation fits to ZDD
quite well. We represent each I;(q) using a ZDD. The
operation in each iteration is composed of computing
the intersection, the difference, and the union of set
families; thus, the computation time in an iteration is
reduced by ZDD operations. In our experiments, we
successfully represented quite many, up to 103, frequent
itemsets by using a small ZDD, thus we could compute
frequentness-transitional itemsets in a short time while

344

saying that straightforward approaches cannot compute
them. An intuitive image of the process with ZDDs is
illustrated in Fig. 5.

4.1 Example of Execution of Algorithm Fig-
ure 7 shows that the frequentness-transition query

is “L*HHL*’, and the time-segmented database
D is composed of five transaction databases
Dy,...,D5. The frequent itemsets are shown, by

writing only maximal frequent itemsets to the con-
ciseness. Ds; has maximal frequent itemsets {1,2}
and {2,3,4}, thus the frequent itemsets of Dj are
0, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {2,4}. {3, 4}, {1.3,4}
and {2,3,4}.

First, we construct an NFA to accept the same se-
quence set as the given frequentness-transitional query.
The state transition graph is shown in this figure. The
NFA has three states, qo,¢1 and ¢g» where qq is the start
state and ¢ is the final state, and the transition function
is shown as 1-edges of (go,q1) and (g1, ¢2) and 0-edges
of (go,q0) and (g2, ¢2).

Then, we place F'I(D) at qo. For the first iteration,
we compute FI(D) N FI(D;) and put it on ¢;, and
compute FI(D) \ FI(D;) and put it on go. In the
second iteration, we put FI(D) N FI(Dy)NFI(D3) on
g2, (FI(D)\ FI(D1)) NFI(Ds) on ¢q1, and (FI(D) \
FI(Dy)) \ FI(D3) on qo. The itemsets in (FI(D) N
FI(D,)) \ FI(D,) disappear from the NFA. Similarly,
in the i-th iteration of the algorithm, we

e take the set I on go, put INFI(D;) on ¢, and put
I\ FI(D;) on qo,

e remove the set I on ¢, put I N FI(D;) on ¢
(itemsets in I\ FI(D;) disappear from the NFA),
and

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

finite automaton

A

time-segmented database

3 3 3 [13y 3

maximal
frequent {1.2} {1} {23}
itemsets 1134} {12} {2,3,4} 234 {3.4} {5}

-%%Q‘- ® 0 ® ®O

TElle® fge O

after 2nd
iteration

after 1st

initial ization iteration

{3.1,2,3,4,5, 2,5 ({3, 1,34, {},
12,13,14,23.| = | 12,23, 13,14 = 23 12 1
24, 34,134,234 24,234 34,134 24,
234
after 3rd after 4th {ifter Sth
iteration iteration iteration

@W®©w 0w

234 234 234

Figure 7: Example of finite automaton and frequent itemsets in time-segmented database; transition of itemsets

on each state is shown below

e remove the set I on ¢y, put I N FI(D;) on ¢
(itemsets in I\ FI(D;) disappear from the NFA)

The itemsets on each state is illustrated in Fig. 7 for
each end of the iteration. These set family operations
are done via ZDD arithmetic operations, and the ZDDs
representing FI(D;)’s are constructed by LCM over
ZDDs. Note that in the i-th iteration, we do not take
the itemsets on g; that have moved from the other node
in the same (i-th) iteration. Finally, at the end of the
5th iteration, we obtain {1,2}, {2,4} and {2,3,4} on
qz-

4.2 Further Improvement The algorithm we state
above is a kind of 2-pass algorithm; first compute FI(D)
then evaluate using an NFA. This subsection shows the
procedure for executing in 1-pass.

For 1-pass execution, we do not have FI(D) at the
initialization, and a trivial solution is to put the set of all
itemsets 2¢ on the start state. The difficulty is that the
set of itemset on each state is no longer sparse, thus the
7ZDDs will be quite large. To cope with this problem,
we use a mark to represent the complement set.

After the initialization, the set of all the itemsets,
2¢is on the start state. In the first iteration, we
compute FI(D;), then put FI(D;) to some node, and
2¢ \ FI(D;) to some node. Instead of computing the
ZDD for 2¢ \ FI(D,) = FI(D;), we put the ZDD
representing F'I(D;) and the mark of “complement”. In
the second iteration, we compute F'I(Dsy) and compute
FI(Dy)NFI(Dy) and FI(Dy)\ FI(Ds). They, in fact,
hold

FI(D1) N FI(D,) = FI(D,) \ FI(D;),and

FI(Dy)\ FI(Dy) = FI(Dy) UFI(Ds).

345

Generally, for a set I of itemsets on a state with a
“complement” mark,

INFI(Dy) = FI(D,) \ I,and
T\ FI(D,) = TUFI(Ds).

This is not a heavy task since the set families we deal
with are still sparse, thus we do not lose efficiency by
omitting the computation of FI(D).

In summary, an iteration involves a construction of
a ZDD representing FI(D;) and performs O(A) ZDD
operations in an iteration where A is the number of
edges in the NFA. Although in the worst case, the num-
ber of itemsets on each state can increase up to |F'I(D)|
as the iterations proceed, in practice many itemsets will
disappear; thereby, the ZDDs on the states are expected
to be small on average. We can also observe this in the
example. Therefore, roughly speaking, the computation
time of the algorithm is O(ZZ,T:1 |Z;|) where |Z;| is the
size of a ZDD representing FI(D;).

THEOREM 4.1. For a given time-segmented database
composed of T transaction databases, a minimum sup-
port threshold o, and a frequentness-transitional query
A, a ZDD representing all frequentness-transitional
itemsets can be obtained in O(|A|FZT) time, where |A]
is the number of edges in the transition graph of A, and
F (resp., Z) is the mazximum size of ZDD to represent

FI(D;) (resp., 1;(q)).

4.3 LCM over ZDDs for Large-Scale Itemset
Mining In this subsection, we briefly review the LCM
over ZDDs algorithm proposed by Minato et al. [9]
to efficiently generate and store a large number of
frequent itemsets on the main memory. The algorithm
is obtained by attaching ZDD operations in the inside
of the LCM algorithm.

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

LCM_Backtrack(P: itemset)
1. Output P
2. For e = n to the maximum item in P+1 step —1 do

3.

If P U {e} is frequent then LCM_Backtrack(P U {e})

ZDD LCMovZDD(P: itemset)
1.ZDD F «+ P

2. For e = n to the maximum item in P+1 step —1 do

3. If PU{e} is frequent then F <~ FULCMovZDD(P U {e})
Figure 8: Basic structure of LCM and LCM over ZDDs
Table 1: Comparison of LCM over ZDDs with original LCM

Database #Item [#Trans- [|D]| Min. #Frequent | LCM over ZDDs [LCM-count [LCM-dump

name action |(size of D) support itemsets |ZDD]| [Time(s) Time(s) Time(s)

mushroom 119 8,124 186,852 1,000 123,287 760 0.50 0.49 0.64

300 5,259,786 4,412 2.25 2.22 9.96

100 || 66,076,586 | 11,584 5.06 4.87 114.21

50 198,169,866 17,830 8.17 7.86 357.27

BMS-Web 497 | 59,602 149,639 50 8,192 3,415 0.11 0.11 0.12

View-1 40 48,544 | 10,755 0.18 0.18 0.22

36 461,522 28,964 0.49 0.42 0.98

34 4,849,466 49,377 1.30 1.07 8.58

32 ||1,531,980,298 71,574 31.90 29.73 3,843.06

BMS-Web 3,340 | 77,512 | 358,278 5 || 26,046,004 | 353,001 184 3.62 51.28
View-2

T10I4D100K 870 | 100,000 | 1,010,228 2 19,561,715 (3,270,977 9.68 5.09 22.66

chess 75 3,196 118,252 1,000 29,442,849 53,338 | 197.58 197.10 248.18

connect 129 | 67,557 | 2,004,951 | 40,000 || 23,081,184 3,067 | 5.42 5.40 19.21

pumsb 2,113 | 49,046 | 3,629,404 | 32,000 7,733,322 5,443 | 60.65 60.42 75.29

(2.4GHz Core2Duo E6600 PC, 2 GB memory, SuSE Linux 10, GNU C++)

LCM over ZDDs does not touch the core algorithm
of LCM, and just generates a ZDD for the solutions
(or set of solutions, such as “{a,b} plus any subset
of {¢,d,e}”) obtained using LCM. Figure 8 shows the
basic structure of the LCM. We omit the description
of detailed techniques used in LCM for checking the
frequency of each itemset. LCM explores all frequent
itemsets in a backtracking (or depth-first) manner,
and when a frequent itemset is found, the itemset is
appended to the output file one by one. On the other
hand, LCM over ZDDs constructs a ZDD, which is
the union of all the itemsets found in the backtracking
search, and finally returns a pointer to the root node of
the ZDD. A basic modification is described in Fig. 8.

Recent itemset mining algorithms contain a tech-
nique called “equi-support”, which is to find a set of fre-
quent itemsets with the same frequency at once. Specifi-
cally, equi-support finds two itemsets Y and Z such that
each itemset in S = {X U Z|X C Y} has the same fre-
quency. It reduces the computation of the frequency
of each itemset in the set, thus we can decrease the
computation time if Y is not small. Considerable im-
provements by equi-support are demonstrated with the

346

experiments in FIMI repository [5]. However, if we out-
put the frequent itemsets to file, we generate each item-
set in S and output it to the file, spending a long time
even if we find S in a short time. On the contrary, a
ZDD allows the addition of such an exponential number
of itemsets in one step, in precise with |Y| operations,
thus it can drastically reduce memory usage and the
computation time. LCM over ZDDs usually takes quite
a short time compared with usual itemset mining algo-
rithms that output the frequent itemsets to a file.

Minato et al. demonstrated the performance of
LCM over ZDDs [9]. The benchmark datasets, listed in
Table 1, were chosen from the FIMI2003 repository [5].
|ZDD| represents the number of ZDD nodes representing
all frequent itemsets. “LCM-count” is the computation
time of LCM only for counting the number of itemsets
(i.e., not output itemsets to a file), and “LCM-dump”
is the time for outputting all frequent itemsets to a
file (using /dev/null), that corresponds to usual itemset
mining algorithms. “LCM over ZDDs” shows the time
of LCM over ZDDs.

The computation time of LCM over ZDDs is almost
the same as LCM-count, which does not output item-

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 2: Number of itemsets and ZDD sizes for each state of NFA

7 FI(D;)) q Q2 g3 (solutions)
(seg.) | #Itemset ||ZDD| #ltemset ||ZDD| | #Itemset ||[ZDD| [#Itemset |ZDD| #Itemset |ZDD|
0 = — 0 0 0 0 0 0 0 0
1 345,095 | 1,483 345,095 | 1,483 345,095 | 1,483 0 0 0 0
2 131,908 | 447 476,592 | 1,660 131,417 | 316 491 | 314 0 0
3 340 | 228 476,557 | 1,688 45 50 23 31 233 | 172
4 701 | 374 476,774 | 1,792 217 | 190 8 12 39 52
5 1,393 | 562 477,528 | 2,005 754 | 368 59 70 18 29
6 2,230 | 797 478,867 | 2,444 1,339 | 611 109 96 37 53
7 1,668 | 666 479,695 | 2,741 828 | 479 199 | 150 33 55
8 |(1.49-10%°) (12,147 ||(1.49 -10%°) (15,082 |(1.49 - 10%°) (15,862 500 | 322 186 | 136
9 328 | 260 |(1.49-10%°) (15,096 10 16 29 43 174 | 150
55 1,598 | 737 |[(7.14 - 10**) 26,499 361 | 248 109 82 878 | 313
56 425 | 336 [|[(7.14-10**) 26,516 19 25 3 4 877 | 320
57 443 | 322 ||(7.14 - 10**) [26,560 17 26 0 0 872 | 318
58 455 | 342 |(7.14-10**) 26,607 57 63 5 8 866 | 312
59 1,610 | 723 |[(7.14 - 10**) 6,817 676 | 287 17 18 852 | 302

sets. We can observe that LCM over ZDDs is much
more efficient when large numbers of frequent itemsets
are output. The original LCM-dump is known as an
output linear time algorithm, but LCM over ZDDs is
much faster than the original one, especially when the
ZDD size is sub-linear to the number of frequent item-
sets.

5 Experimental Results

To evaluate our algorithm, we conducted experiments
for the benchmark datasets. For example, “BMS-
WebView-1" is known as a set of click streams for an
online shopping site. FEach transaction shows a set
of visited web pages from one customer’s consecutive
action. This dataset consists of 59,602 transactions
without any timing information, but we assume that
they are sorted by time, and we partitioned them with
1,000 transactions per segment, i.e., we had 59 segments
in total (the last fragment was not used).

We then applied our algorithm to extract the item-
sets whose frequentness-sequence belongs to X. Table 2
lists the results of the number of itemsets and ZDD sizes
during the symbolic simulation for “BMS-WebView-
1” with a minimum support ratio p = 0.4% and the
frequentness-transition query X = “L*HHHL*”. We
observed that 852 itemsets were finally extracted from
713623846352979940529143133451627984798184096 (=
.7.14-10**) of itemsets in FI(D). The total computation
time was less than five seconds, including the execution
of LCM over ZDDs. To check the correctness, we con-
firmed that the itemset {18631, 18643} is frequent only
in D50,D51 and D52. Similarly, {46293,46285,46281}
is frequent only in Dg, D7 and Dg. This means that we
discovered local events only seen in these time-segments.

Our algorithm can be applied flexibly for various

347

settings. Table 3 shows the performance for differ-
ent datasets, parameters, and frequentness-transition
queries.

The next experiment was done for investigating
the scalability of the algorithm. The scalability of the
mining process is already known in [9], thus we look
only at the scalability concerned with the increase in
the number of segment databases. We used the click-
stream data “kosarak”, which has 990,000 transactions,
for this experiment. We segmented the database so
that each fragment has 1,500 transactions and executed
our algorithm with the same setting as the previous
experiment, for 10 to 640 generated databases. The
frequentness-transition query was “L*HHHL*” and the
minimum support ratio p = 0.2%. The results are
listed in Table 4. Against the increase in the number of
segment databases, the computation time per segment
database did not increase, thus we can say our algorithm
scales to large-scale databases.

We remark that our algorithm repeats the same
procedure for each time-segment, so the computation
time is basically linear in 7', but it depends on ZDD sizes
for representing FI(D;)’s and the itemsets on ¢;’s. We
can apply this algorithm for large T, if we appropriately
control the ZDD sizes by the minimum support ratio p.

6 Conclusions

We proposed a new mining problem called frequentness-
transitional pattern mining by introducing time-
segmented databases, which are sequences of databases.
We modeled the problem by using a frequentness-
transition query, which is a set of sequences com-
posed of symbols meaning “frequent” and “infrequent”,
in the term of regular expressions. Frequentness-
transition queries can represent many kinds of signifi-

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 3: Experimental results for benchmark data

Dataset p Freq. trans. F#ltemset Time
(#Segment) (%) query X FI(D) solutions | (sec)
BMS-WebView-1 | 0.5 | L*HHHL* 7.21-10'° 37 | 0.40
(59 segments) 0.4 | L*HHHL* 7.14 -10* 852 | 4.51
0.3 | L*HHHL* 1.18 -10% | 3.57-10% | 42.00

0.5 | HH*LL*HH* | 7.21-10"° 7| 0.40

0.4 | HH*LL*HH* | 7.14-10* 6 | 4.41

0.3 | HH*LL*HH* | 1.18 -10*° 19 | 42.90

BMS-WebView-2 | 0.4 | L*HHHL* 666,654 300 | 1.75
(77 segments) 0.3 | L*HHHL* 9,236,264 1,493 | 2.69
0.2 | L*HHHL* 1.44 - 107 38,895 | 7.04

(2.4GHz Core2Duo PC, 2 GB mem., SuSE 10, GNU C++)

Table 4: Experimental results for scalability

#seg. |FI(D)| | ZDD size of | #solution time | time per
T FI(D) (sec) #seg.

10 37,383,478,401,664 12,165 1,253 1.04 0.104

20 147,573,954,513,903,795,412 18,944 104 1.65 0.083

40 147,573,954,513,906,985,334 30,313 186 3.02 0.076

80 147,880,476,351,967,382,435 65,077 63 6.39 0.080
160 182,478,254,595,792,811,136 142,507 10 | 15.29 0.096
320 | 1311313142758880369213142447574 255,443 7| 38.93 0.122
640 | 1311313147794829058480599311461 656,965 4 | 108.94 0.170

cant/periodical changes in natural ways, thus we hope
it will help in the mining tasks of change detections in
real-world problems. We also proposed an efficient al-
gorithms obtained by combining ZDDs and the LCM
by using ZDD-based symbolic processing of finite au-

ing association rules between sets of items in large
databases. In P. Buneman and S. Jajodia, editors,
Proc. of the 1993 ACM SIGMOD International Con-
ference on Management of Data, Vol. 22(2) of SIG-
MOD Record, pages 207-216, 1993.

Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Com-

Efficient mining of emerging
patterns: discovering trends and differences. In Proc
of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining (SIGKDD’99),

B. Goethals. Survey on frequent pattern mining, 2003.
http://www.cs.helsinki.fi/u/goethals/publications/survey.ps.
B. Goethals and M. J. Zaki. Frequent itemset mining
Frequent Itemset Mining
Implementations (FIMI’03), http://fimi.cs.helsinki.fi/.
D. E. Knuth. The Art of Computer Programming: Bit-
wise Tricks € Techniques; Binary Decision Diagrams,

Fast mining of high di-
mensional expressive contrast patterns using zero-
In Proc. The
Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD2006),

tomata. Our algorithm performs quite well compared 2] R. E. Bryant.
to straightforward algorithn.ls and terr.ni‘nates alrpost at puters, C-35(8):677-691, 1986.
the same time as the usual itemset mining algorithms. 3] G. Dong and J. Li.

As we mentioned in the introduction, the Apriori
property does not hold in this kind of problem, so it is
hard to prune the search space. Also, closed/maximal
itemset mining techniques are not effective for this pages 43-52, 1999.
problem because the frequentness-transitional itemsets [4]
are not always closed/maximal in each segment of
databases. On the other hand, ZDDs provide automatic [5]
compressed graph representation for a large number dataset repository, 2003.
of itemsets, and the compressed representation can

. . . [6]

be processed and analyzed efficiently using various set
operations without decompression. volume 4, fascicle 1. Addison-Wesley, 2009.

Future research may be to apply this algorithm 171 g Loekit and J. Bailey.
to real-world problems and to other pattern mining
problems, and consider classes of sequence sets that suppressed binary decision diagrams.
cannot be represented by regular expressions.
References pages 307-316, 2006.

[8] S. Minato.

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Min-

348

Zero-suppressed BDDs for set manipu-

lation in combinatorial problems. In Proc. of 30th

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[10]

[11]

[12]

[13]

[14]

[15]

ACM/IEEE Design Automation Conference, pages
272-277, 1993.

S. Minato, T. Uno, and H. Arimura. LCM over ZB-
DDs: Fast generation of very large-scale frequent item-
sets using a compact graph-based representation. In
Proc. of 12-th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2008), (LNAI
5012, Springer), pages 234-246, 5 2008.

L. Parida, I. Rigoutsos, A. Floratos, D. E. Platt,
and Y. Gao. Pattern discovery on character sets and
real-valued data: linear-bound on irredandant motifs
and efficient polynomial time algorithms. In Proc.
SODA 00, 2000.

N. Pisanti, M. Crochemore, R. Gross, and M. F.
Sagot. A basis of tiling motifs for generating repeated
patterns and its complexity of higher quorum. In Proc.
MFCS’03, 2003.

T. Uno, Y. Uchida, T. Asai, and H. Arimura.
LCM: an efficient algorithm for enumerating frequent
closed item sets. In Proc. Workshop on Frequent
Itemset Mining Implementations (FIMI’03), 2003.
http://fimi.cs.helsinki.fi/src/.

Q. Wan and A. An. Transitional patterns and their
significant milestones. In Proc of Seventh IEEE In-
ternational Conference on Data Mining (ICDM 2007),
pages 691-696, 2007.

J. Wang and J. Han. Bide: Efficient mining of frequent
closed sequences. In Proc. IEEE ICDE 2004, pages 79—
90, 2004.

M. J. Zaki. Scalable algorithms for association mining.
IEEE Trans. Knowl. Data Eng., 12(2):372-390, 2000.

349

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

