
Radius Plots for Mining Tera-byte Scale Graphs:
Algorithms, Patterns, and Observations

U Kang
SCS, CMU

Charalampos E. Tsourakakis
SCS, CMU

Ana Paula Appel∗

CSD, USP at São Carlos
Christos Faloutsos

SCS, CMU

Jure Leskovec†

CSD, Stanford

Abstract
Given large, multi-million node graphs (e.g., FaceBook,
web-crawls, etc.), how do they evolve over time? How are
they connected? What are the central nodes and the outliers
of the graphs? We show that the Radius Plot (pdf of node
radii) can answer these questions. However, computing the
Radius Plot is prohibitively expensive for graphs reaching
the planetary scale.

There are two major contributions in this paper: (a)
We propose HADI (HAdoop DIameter and radii estimator),
a carefully designed and fine-tuned algorithm to compute
the diameter of massive graphs, that runs on the top of
the HADOOP /MAPREDUCE system, with excellent scale-up
on the number of available machines (b) We run HADI on
several real world datasets including YahooWeb (6B edges,
1/8 of a Terabyte), one of the largest public graphs ever
analyzed.

Thanks to HADI, we report fascinating patterns on
large networks, like the surprisingly small effective diameter,
the multi-modal/bi-modal shape of the Radius Plot, and its
palindrome motion over time.

1 Introduction
How do real, Terabyte-scale graphs look like? Is it true
that the nodes with the highest degree are the most central
ones, i.e., have the smallest radius? How do we compute the
diameter and node radii in graphs of such size?

Graphs appear in numerous settings, such as social net-
works (FaceBook, LinkedIn), computer network intrusion
logs, who-calls-whom phone networks, search engine click-
streams (term-URL bipartite graphs), and many more. The
contributions of this paper are the following:

1. Design: We propose HADI, a scalable algorithm, to
compute the radii and diameter of network. As shown
in Figure 1, our method is 7.6× faster than the naive

∗Work performed while visiting CMU.
†Work performed while at CMU.

version.
2. Optimization and Experimentation: We carefully fine-

tune our algorithm, and we tested it on one of the largest
public web graph ever analyzed, with several billions of
nodes and edges, spanning 1/8 of a Terabyte.

3. Observations: Thanks to HADI, we find interesting
patterns and observations, like the “Multi-modal and
Bi-modal” pattern, and the surprisingly small effective
diameter of the Web. For example, see the Multi-
modal pattern in the radius plot of Figure 1, which also
shows the effective diameter and the center node of the
Web(‘google.com’).

The HADI algorithm (implemented in
HADOOP) and several datasets are available at
http://www.cs.cmu.edu/∼ukang/HADI. The
rest of the paper is organized as follows: Section 2 defines
related terms and a sequential algorithm for the Radius
Plot. Section 3 describes large scale algorithms for the
Radius Plot, and Section 4 analyzes the complexity of the
algorithms and provides a possible extension. In Section 5
we present timing results, and in Section 6 we observe inter-
esting patterns. After describing backgrounds in Section 7,
we conclude in Section 8.

2 Preliminaries; Sequential Radii Calculation
2.1 Definitions In this section, we define several terms
related to the radius and the diameter. Recall that, for a node
v in a graph G, the radius r(v) of v is the distance between
v and a reachable node farthest away from v. The diameter
d(G) of a graph G is the maximum radius of nodes v ∈ G.
That is, d(G) = maxv r(v).

Since the radius and the diameter are susceptible to
outliers (e.g., long chains), we follow the literature and
define the effective radius and diameter as follows.

DEFINITION 1. (EFFECTIVE RADIUS) For a node v in a
graph G, the effective radius reff (v) of v is the 90th-
percentile of all the distances from v.

Figure 1: (Left) Radius Plot(Count versus Radius) of the YahooWeb graph. Notice the effective diameter is surprisingly
small. Also notice the peak(marked ‘S’) at radius 2, due to star-structured disconnected components.
(Middle) Radius Plot of GCC(Giant Connected Component) of YahooWeb graph. The only node with radius 5 (marked
‘C’) is google.com.
(Right) Running time of HADI with/without optimizations for Kronecker and Erdős-Rényi graphs with billions edges. Run
on the M45 HADOOP cluster, using 90 machines for 3 iterations. HADI-OPT is up to 7.6× faster than HADI-plain.

Symbol Definition
G a graph
n number of nodes in a graph
m number of edges in a graph
d diameter of a graph
h number of hops

N(h) number of node-pairs reachable in ≤ h
hops (neighborhood function)

N(h, i) number of neighbors of node i reachable in
≤ h hops

b(h, i) Flajolet-Martin bitstring for node i at h
hops.

b̂(h, i) Partial Flajolet-Martin bitstring for node i
at h hops

Table 1: Table of symbols

DEFINITION 2. (EFFECTIVE DIAMETER) The effective di-
ameter deff (G) of a graph G is the minimum number of
hops in which 90% of all connected pairs of nodes can reach
each other.

We will use the following three Radius-based Plots:

1. Static Radius Plot (or just “Radius Plot”) of graph G
shows the distribution (count) of the effective radius of
nodes at a specific time, as shown in Figure 1.

2. Temporal Radius Plot shows the distributions of effec-
tive radius of nodes at several times(see Figure 9 for an
example).

3. Radius-Degree Plot shows the scatter-plot of the effec-
tive radius reff (v) versus the degree dv for each node
v, as shown in Figure 8.

Table 1 lists the symbols used in this paper.

2.2 Computing Radius and Diameter To generate the
Radius Plot, we need to calculate the effective radius of
every node. In addition, the effective diameter is useful for
tracking the evolution of networks. Therefore, we describe
our algorithm for computing the effective radius and the
effective diameter of a graph. As described in Section 7,
existing algorithms do not scale well. To handle graphs with
billions of nodes and edges, we use the following two main
ideas:

1. We use an approximation rather than an exact algo-
rithm.

2. We design a parallel algorithm for HADOOP
/MAPREDUCE (the algorithm can also run in a
parallel RDBMS).

To approximate the effective radius and the effective
diameter, we use the Flajolet-Martin algorithm [17][29] for
counting the number of distinct elements in a multiset. While
many other applicable algorithms exist (e.g., [6], [10], [18]),
we choose the Flajolet-Martin algorithm because it gives an
unbiased estimate, as well as a tight O(logn) bound for the
space complexity [3].

The main idea is that we maintain K Flajolet-Martin
(FM) bitstrings b(h, i) for each node i and current hop
number h. b(h, i) encodes the number of nodes reachable
from node i within h hops, and can be used to estimate
radii and diameter as shown below. The bitstrings b(h, i) are
iteratively updated until the bitstrings of all nodes stabilize.
At the h-th iteration, each node receives the bitstrings of its
neighboring nodes, and updates its own bitstrings b(h− 1, i)
handed over from the previous iteration:

(2.1) b(h, i) = b(h−1, i) BIT-OR {b(h−1, j)|(i, j) ∈ E}

where “BIT-OR” denotes bitwise OR. After h iterations,
a node i has K bitstrings that encode the neighborhood
function N(h, i), that is, the number of nodes within h hops
from the node i. N(h, i) is estimated from the K bitstrings
by

(2.2) N(h, i) =
1

0.77351
2

1
K

∑K
l=1 bl(i)

where bl(i) is the position of leftmost ’0’ bit of the lth

bitstring of node i. The iterations continue until the bitstrings
of all nodes stabilize, which is a necessary condition that the
current iteration number h exceeds the diameter d(G). After
the iterations finish at hmax, we can calculate the effective
radius for every node and the diameter of the graph, as
follows:

• reff (i) is the smallest h such that N(h, i) ≥ 0.9 ·
N(hmax, i).
• deff (G) is the smallest h such that N(h) =∑

i N(h, i) ≥ 0.9 ·N(hmax).

Algorithm 1 shows the summary of the algorithm de-
scribed above.
Algorithm 1 Computing Radii and Diameter
Input: Input graph G and integers MaxIter and K
Output: reff (i) of every node i, and deff (G)

1: for i = 1 to n do
2: b(0, i)← NewFMBitstring(n);
3: end for
4: for h = 1 to MaxIter do
5: Changed← 0;
6: for i = 1 to n do
7: for l = 1 to K do
8: bl(h, i) ← bl(h − 1, i)BIT-OR{bl(h − 1, j)|∀j

adjacent from i};
9: end for

10: if ∃l s.t. bl(h, i) 6= bl(h− 1, i) then
11: increase Changed by 1;
12: end if
13: end for
14: N(h)←

∑
i N(h, i);

15: if Changed equals to 0 then
16: hmax ← h, and break for loop;
17: end if
18: end for
19: for i = 1 to n do {estimate eff. radii}
20: reff (i) ← smallest h′ where N(h′, i) ≥ 0.9 ·

N(hmax, i);
21: end for
22: deff (G)← smallest h′ where N(h′) ≥ 0.9 ·N(hmax);

The parameter K is typically set to 32[17], and
MaxIter is set to 256 since real graphs have relatively small
effective diameter. The NewFMBitstring() function in line 2
generates K FM bitstrings [17]. The effective radius reff (i)

is determined at line 20, and the effective diameter deff (G)
is determined at line 22.

Algorithm 1 runs in O(dm) time, since the algorithm
iterates at most d times with each iteration running in O(m)
time. By using approximation, Algorithm 1 runs faster
than previous approaches (see Section 7 for discussion).
However, Algorithm 1 is a sequential algorithm and requires
O(n log n) space and thus can not handle extremely large
graphs (more than billions of nodes and edges) which can not
be fit into a single machine. In the next sections we present
efficient parallel algorithms.

3 Proposed Method
In the next two sections we describe HADI, a parallel
radius and diameter estimation algorithm. As mentioned in
Section 2, HADI can run on the top of both a MAPREDUCE
system and a parallel SQL DBMS. In the following, we
first describe the general idea behind HADI and show the
algorithm for MAPREDUCE. The algorithm for parallel SQL
DBMS is sketched in Section 4.

3.1 HADI Overview HADI follows the flow of Algo-
rithm 1; that is, it uses the FM bitstrings and iteratively up-
dates them using the bitstrings of its neighbors. The most ex-
pensive operation in Algorithm 1 is line 8 where bitstrings of
each node are updated. Therefore, HADI focuses on the ef-
ficient implementation of the operation using MAPREDUCE
framework.

It is important to notice that HADI is a disk-based
algorithm; indeed, memory-based algorithm is not possible
for Tera- and Peta-byte scale data. HADI saves two kinds
of information to a distributed file system (such as HDFS
(Hadoop Distributed File System) in the case of HADOOP):

• Edge has a format of (srcid, dstid).
• Bitstrings has a format of (nodeid, bitstring1, ...,

bitstringK).

Combining the bitstrings of each node with those of its
neighbors is very expensive operation which needs several
optimization to scale up near-linearly. In the following sec-
tions we will describe three HADI algorithms in a progres-
sive way. That is we first describe HADI-naive, to give the
big picture and explain why it such a naive implementation
should not be used in practice, then the HADI-plain, and fi-
nally HADI-optimized, the proposed method that should be
used in practice. We use HADOOP to describe the MAPRE-
DUCE version of HADI.

3.2 HADI-naive in MAPREDUCE HADI-naive is ineffi-
cient, but we present it for ease of explanation.

Data The edge file is saved as a sparse adjacency matrix
in HDFS. Each line of the file contains a nonzero element
of the adjacency matrix of the graph, in the format of

Figure 2: One iteration of HADI-naive. First stage: Bit-
strings of all nodes are sent to every reducer. Second stage:
sums up the count of changed nodes. The multiple arrows
at the beginning of Stage 2 mean that there may be many
machines containing bitstrings.

(srcid, dstid). Also, the bitstrings of each node are saved
in a file in the format of (nodeid, flag, bitstring1, ...,
bitstringK). The flag records information about the status
of the nodes(e.g., ‘Changed’ flag to check whether one of
the bitstrings changed or not). Notice that we don’t know the
physical distribution of the data in HDFS.

Main Program Flow The main idea of HADI-naive is
to use the bitstrings file as a logical “cache” to machines
which contain edge files. The bitstring update operation
in Equation (2.1) requires that the machine which updates
the bitstrings of node i should have access to (a) all edges
adjacent from i, and (b) all bitstrings of the adjacent nodes.
To meet the requirement (a), it is needed to reorganize the
edge file such that edges with a same source id are grouped
together. That can be done by using an Identity mapper
which outputs the given input edges in (srcid, dstid) format.
The most simple yet naive way to meet the requirement (b)
is sending the bitstrings to every machine which receives the
reorganized edge file.

Thus, HADI-naive iterates over two-stages of MAPRE-
DUCE. The first stage updates the bitstrings of each node
and sets the ‘Changed’ flag if at least one of the bitstrings
of the node is different from the previous bitstring. The sec-
ond stage counts the number of changed nodes and stops it-
erations when the bitstrings stabilized, as illustrated in the
swim-lane diagram of Figure 2.

Although conceptually simple and clear, HADI-naive is
unnecessarily expensive, because it ships all the bitstrings to
all reducers. Thus, we propose HADI-plain and additional
optimizations, which we explain next.

3.3 HADI-plain in MAPREDUCE HADI-plain improves

HADI-naive by copying only the necessary bitstrings to each
reducer. The details are next:

Data As in HADI-naive, the edges are saved in the
format of (srcid, dstid), and bitstrings are saved in the
format of (nodeid, flag, bitstring1, ..., bitstringK) in
files over HDFS. The initial bitstrings generation, which
corresponds to line 1-3 of Algorithm 1, can be performed
in completely parallel way. The flag of each node records
the following information:

• Effective Radii and Hop Numbers to calculate the
effective radius.

• Changed flag to indicate whether at least a bitstring has
been changed or not.

Main Program Flow As mentioned in the beginning,
HADI-plain copies only the necessary bitstrings to each
reducer. The main idea is to replicate bitstrings of node j
exactly x times where x is the in-degree of node j. The
replicated bitstrings of node j is called the partial bitstring
and represented by b̂(h, j). The replicated b̂(h, j)’s are
used to update b(h, i), the bitstring of node i where (i, j)
is an edge in the graph. HADI-plain iteratively runs three-
stage MAPREDUCE jobs until all bitstrings of all nodes
stop changing. Algorithm 2, 3, 4 shows HADI-plain. We
use h for the current iteration number, starting from h=1.
Output(a,b) means to output a pair of data with the key a and
the value b.

Stage 1 We generate (key, value) pairs, where the key
is a node id i and the value is the partial bitstrings b̂(h, j)’s
where j ranges over all the neighbors adjacent from node i.
To generate such pairs, the bitstrings of node j are grouped
together with edges whose dstid is j. Notice that at the very
first iteration, bitstrings of nodes do not exist; they have to
be generated on the fly, and we use the Bitstring Creation
Command for that. Notice also that line 22 of Algorithm 2
is used to propagate the bitstrings of one’s own node. These
bitstrings are compared to the newly updated bitstrings at
Stage 2 to check convergence.

Stage 2 Bitstrings of node i are updated by combining
partial bitstrings of itself and nodes adjacent from i. For
the purpose, the mapper is the Identity mapper (output the
input without any modification). The reducer combines
them, generates new bitstrings, and sets flag by recording
(a) whether at least a bitstring changed or not, and (b)
the current iteration number h and the neighborhood value
N(h, i) (line 9). This h and N(h, i) are used to calculate
the effective radius of nodes after all bitstrings converge,
i.e., don’t change. Notice that only the last neighborhood
N(hlast, i) and other neighborhoods N(h′, i) that satisfy
N(h′, i) ≥ 0.9 · N(hlast, i) need to be saved to calculate
the effective radius. The output of Stage 2 is fed into the
input of Stage 1 at the next iteration.

Stage 3 We calculate the number of changed nodes and

Algorithm 2 HADI Stage 1
Input: Edge data E = {i, j)},

Current bitstring B = {(i, b(h− 1, i))} or
Bitstring Creation Command BC = {(i, cmd)}

Output: Partial bitstring B′ = {(i, b(h− 1, j))}
1: Stage1-Map(key k, value v);
2: if (k, v) is of type B or BC then
3: Output(k, v);
4: else if (k, v) is of type E then
5: Output(v, k);
6: end if
7:
8: Stage1-Reduce(key k, values V []);
9: SRC← [];

10: for v ∈ V do
11: if (k, v) is of type BC then
12: b̂(h− 1, k)←NewFMBitstring();
13: else if (k, v) is of type B then
14: b̂(h− 1, k)← v;
15: else if (k, v) is of type E then
16: Add v to SRC;
17: end if
18: end for
19: for src ∈ SRC do
20: Output(src, b̂(h− 1, k));
21: end for
22: Output(k, b̂(h− 1, k));

Algorithm 3 HADI Stage 2

Input: Partial bitstring B = {(i, b̂(h− 1, j)}
Output: Full bitstring B = {(i, b(h, i)}

1: Stage2-Map(key k, value v); // Identity Mapper
2: Output(k, v);
3:
4: Stage2-Reduce(key k, values V []);
5: b(h, k)← 0;
6: for v ∈ V do
7: b(h, k)← b(h, k) BIT-OR v;
8: end for
9: Update flag of b(h, k);

10: Output(k, b(h, k));

sum up the neighborhood value of all nodes to calculate
N(h). We use only two unique keys(key for changed and
key for neighborhood), which correspond to the two calcu-
lated values. The analysis of line 2 can be done by checking
the flag field and using Equation (2.2) in Section 2.

When all bitstrings of all nodes converged, a MAPRE-
DUCE job to finalize the effective radius and diameter is per-
formed and the program finishes. Compared to HADI-naive,
the advantage of HADI-plain is clear: bitstrings and edges
are evenly distributed over machines so that the algorithm
can handle as much data as possible, given sufficiently many

Algorithm 4 HADI Stage 3
Input: Full bitstring B = {(i, b(h, i))}
Output: Number of changed nodes, Neighborhood N(h)

1: Stage3-Map(key k, value v);
2: Analyze v to get (changed, N(h, i));
3: Output(key for changed,changed);
4: Output(key for neighborhood, N(h, i));
5:
6: Stage3-Reduce(key k, values V []);
7: Changed← 0;
8: N(h)← 0;
9: for v ∈ V do

10: if k is key for changed then
11: Changed← Changed + v;
12: else if k is key for neighborhood then
13: N(h)← N(h) + v;
14: end if
15: end for
16: Output(key for changed,Changed);
17: Output(key for neighborhood, N(h));

machines.

3.4 HADI-optimized in MAPREDUCE HADI-optimized
further improves HADI-plain. It uses two orthogonal ideas:
“block operation” and “bit shuffle encoding”. Both try
to address some subtle performance issues. Specifically,
HADOOP has the following two major bottlenecks:

• Materialization: at the end of each map/reduce stage,
the output is written to the disk, and it is also read at the
beginning of next reduce/map stage.

• Sorting: at the Shuffle stage, data is sent to each reducer
and sorted before they are handed over to the Reduce
stage.

HADI-optimized addresses these two issues.
Block Operation Our first optimization is the block en-

coding of the edges and the bitstrings. The main idea is to
group w by w sub-matrix into a super-element in the adja-
cency matrix E, and group w bitstrings into a super-bitstring.
Now, HADI-plain is performed on these super-elements and
super-bitstrings, instead of the original edges and bitstrings.
Of course, appropriate decoding and encoding is necessary
at each stage. Figure 3 shows an example of converting data
to block.

By this block operation, the performance of HADI-plain
changes as follows:

• Input size decreases in general, since we can use fewer
bits to index elements inside a block.

• Sorting time decreases, since the number of elements to
sort decreases.

• Network traffic decreases since the result of matching a
super-element and a super-bitstring is a bitstring which

Figure 3: Converting the original edge and bitstring to
blocks. The 4-by-4 edge and length-4 bitstring are converted
to 2-by-2 super-elements and length-2 super-bitstrings. No-
tice the lower-left super-element of the edge is not produced
since there is no nonzero element inside it.

can be at maximum block width times smaller than that
of HADI-plain.

• Map and Reduce functions takes more time, since the
block must be decoded to be processed, and be encoded
back to block format.

For reasonable-size blocks, the performance gains (smaller
input size, faster sorting time, less network traffic) outweigh
the delays (more time to perform the map and reduce func-
tion). Also notice that the number of edge blocks depends on
the community structure of the graph: if the adjacency ma-
trix is nicely clustered, we will have fewer blocks. See Sec-
tion 5, where we show results from block-structured graphs
(‘Kronecker graphs’ [24]) and from random graphs (‘Erdős-
Rényi graphs’ [15]).

Bit Shuffle Encoding In our effort to decrease the input
size, we propose an encoding scheme that can compress the
bitstrings. Recall that in HADI-plain, we use K (e.g., 32,
64) bitstrings for each node, to increase the accuracy of our
estimator. Since HADI requires K · ((n + m) log n) space,
the amount of data increases when K is large. For example,
the YahooWeb graph in Section 6 spans 120 GBytes (with
1.4 billion nodes, 6.6 billion edges). However the required
disk space for just the bitstrings is 32 · (1.4B +6.6B) ·8 byte
= 2 Tera bytes (assuming 8 byte for each bitstring), which is
more than 16 times larger than the input graph.

The main idea of Bit Shuffle Encoding is to carefully
reorder the bits of the bitstrings of each node, and then use
run length encoding. By construction, the leftmost part of
each bitstring is almost full of one’s, and the rest is almost
full of zeros. Specifically, we make the reordered bit strings
to contain long sequences of 1’s and 0’s: we get all the
first bits from all K bitstrings, then get the second bits, and
so on. As a result we get a single bit-sequence of length
K ∗ |bitstring|, where most of the first bits are ‘1’s, and
most of the last bits are ‘0’s. Then we encode only the length
of each bit sequence, achieving good space savings (and,
eventually, time savings, through fewer I/Os).

4 Analysis and Discussion
In this section, we analyze the time/space complexity of
HADI and its possible implementation at RDMBS.

4.1 Time and Space Analysis We analyze the algorithm
complexity of HADI with M machines for a graph G with n
nodes and m edges with diameter d. We are interested in the
time complexity, as well as the space complexity.

LEMMA 4.1. (TIME COMPLEXITY OF HADI) HADI takes
O(d(n+m)

M logn+m
M) time.

Proof. (Sketch) The Shuffle steps after Stage1 takes
O(n+m

M logn+m
M) time which dominates the time complex-

ity. �

Notice that the time complexity of HADI is less than previ-
ous approaches in Section 7(O(n2+nm), at best). Similarly,
for space we have:

LEMMA 4.2. (SPACE COMPLEXITY OF HADI) HADI re-
quires O((n + m) log n) space.

Proof. (Sketch) The maximum space k · ((n + m) log n)
is required at the output of Stage1-Reduce. Since k is a
constant, the space complexity is O((n + m) log n). �

4.2 HADI in parallel DBMSs Using relational database
management systems (RDBMS) for graph mining is a
promising research direction, especially given the findings
of [31]. We mention that HADI can be implemented on top
of an Object-Relational DBMS (parallel or serial): it needs
repeated joins of the edge file with the appropriate file of bit-
strings, and a user-defined function for bit-OR-ing. See [20]
for details.

5 Scalability of HADI
In this section, we perform experiments to answer the fol-
lowing questions:

• Q1: How fast is HADI?
• Q2: How does it scale up with the graph size and the

number of machines?
• Q3: How do the optimizations help performance?

5.1 Experimental Setup We use both real and synthetic
graphs in Table 2 for our experiments and analysis in Sec-
tion 5 and 6, with the following details.

• YahooWeb: web pages and their hypertext links in-
dexed by Yahoo! Altavista search engine in 2002.

• Patents: U.S. patents, citing each other (from 1975 to
1999).

• LinkedIn: people connected to other people (from 2003
to 2006).

Graph Nodes Edges File Desc.
YahooWeb 1.4 B 6.6 B 116G page-page

LinkedIn 7.5 M 58 M 1G person-person
Patents 6 M 16 M 264M patent-patent

Kronecker 177 K 1,977 M 25G synthetic
120 K 1,145M 13.9G

59 K 282 M 3.3G
Erdős-Rényi 177 K 1,977 M 25G random Gn,p

120 K 1,145 M 13.9G
59 K 282 M 3.3G

Table 2: Datasets. B: Billion, M: Million, K: Thousand, G:
Gigabytes

• Kronecker: Synthetic Kronecker graphs [24] using a
chain of length two as the seed graph.

For the performance experiments, we use synthetic Kro-
necker and Erdős-Rényi graphs. The reason of this choice is
that we can generate any size of these two types of graphs,
and Kronecker graph mirror several real-world graph charac-
teristics, including small and constant diameters, power-law
degree distributions, etc. The number of nodes and edges
of Erdős-Rényi graphs have been set to the same values of
the corresponding Kronecker graphs. The main difference
of Kronecker compared to Erdős-Rényi graphs is the emer-
gence of a block-wise structure of the adjacency matrix, from
its construction [24]. We will see how this characteristic
affects in the running time of our block-optimization in the
next sections.

HADI runs on M45, one of the fifty most powerful
supercomputers in the world. M45 has 480 hosts (each with
2 quad-core Intel Xeon 1.86 GHz, running RHEL5), with
3Tb aggregate RAM, and over 1.5 Peta-byte disk size.

Finally, we use the following notations to indicate dif-
ferent optimizations of HADI:

• HADI-BSE: HADI-plain with bit shuffle encoding.
• HADI-BL: HADI-plain with block operation.
• HADI-OPT: HADI-plain with bit shuffle encoding and

block operation.

5.2 Running Time and Scale-up Figure 4 gives the wall-
clock time of HADI-OPT versus the number of edges in
the graph. Each curve corresponds to a different number
of machines used (from 10 to 90). HADI has excellent
scalability, with its running time being linear on the number
of edges. The rest of the HADI versions (HADI-plain,
HADI-BL, and HADI-BSE), were slower, but had a similar,
linear trend, and they are omitted to avoid clutter.

Figure 5 gives the throughput 1/TM of HADI-OPT.
We also tried HADI with one machine; however it didn’t
complete, since the machine would take so long that it would
often fail in the meanwhile. For this reason, we do not report
the typical scale-up score s = T1/TM (ratio of time with 1
machine, over time with M machine), and instead we report

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
un

 ti
m

e
in

 h
ou

rs

Number of edges in billions

HADI: 10 machines
HADI: 30 machines
HADI: 50 machines
HADI: 70 machines
HADI: 90 machines

Figure 4: Running time versus number of edges with HADI-
OPT on Kronecker graphs for three iterations. Notice the
excellent scalability: linear on the graph size (number of
edges).

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

’’S
ca

le
 u

p’
’:

1/
T

M

Number of machines

Graph on 2 billion edges
Ideal scale up

Figure 5: “Scale-up” (throughput 1/TM) versus number of
machines M , for the Kronecker graph (2B edges). Notice the
near-linear growth in the beginning, close to the ideal(dotted
line).

just the inverse of TM . HADI scales up near-linearly with
the number of machines M , close to the ideal scale-up.

5.3 Effect of Optimizations Among the optimizations
that we mentioned earlier, which one helps the most, and
by how much? Figure 1 plots the running time of differ-
ent graphs versus different HADI optimizations. For the
Kronecker graphs, we see that block operation is more ef-
ficient than bit shuffle encoding. Here, HADI-OPT achieves
7.6× better performance than HADI-plain. For the Erdős-
Rényi graphs, however, we see that block operations do
not help more than bit shuffle encoding, because the adja-
cency matrix has no block structure, as Kronecker graphs do.
Also notice that HADI-BLK and HADI-OPT run faster on
Kronecker graphs than on Erdős-Rényi graphs of the same
size. Again, the reason is that Kronecker graphs have fewer
nonzero blocks (i.e., “communities”) by their construction,
and the “block” operation yields more savings.

6 HADI At Work
HADI reveals new patterns in massive graphs which we
present in this section.

6.1 Static Patterns
Diameter What is the effective diameter of the Web?

Barabasi et al. [2] conjectured that it is around 19 for the
1.4 billion-node Web, and Broder et al. [7] reported 6.83 by
sampling from ≈ 200 million-nodes Web. What should be
the diameter, for a significantly larger crawl of the web, with
billions of nodes? Figure 1 gives the surprising answer:

OBSERVATION 1. (SMALL WEB) The effective diameter of
the YahooWeb graph (year: 2002) is surprisingly small (≈
7 ∼ 8).

Shape of Distribution The next question is, how are
the radii distributed in real networks? Is it Poisson? Log-
normal? Figure 1 gives the surprising answer: multimodal!
In other relatively small networks, however, have bi-modal
structures. As shown in the Radius Plot of Patent and
LinkedIn network in Figure 6, they have a peak at zero, a dip
at a small radius value (9, and 4, respectively) and another
peak very close to the dip. Other small networks (includ-
ing IMDB), had similar bi-modal behavior but we omitted
here for brevity. Given the prevalence of bi-modal shape,
our conjecture is that the multi-modal shape of YahooWeb
is possibly due to a mixture of relatively smaller sub-graphs,
which got loosely connected recently.

OBSERVATION 2. (MULTI-MODAL AND BI-MODAL) The
Radius distribution of the Web graph has a multi-modal
structure. Many smaller networks have bi-modal structures.

About the bi-modal structures, a natural question to
ask is what are the common properties of the nodes that
belong to the first peak; similarly, for the nodes in the
first dip, and the same for the nodes of the second peak.
After investigation, the former are nodes that belong to
the disconnected components (‘DC’s); nodes in the dip are
usually core nodes in the giant connected component (GCC),
and the nodes at the second peak are the vast majority of
well connected nodes in the GCC. Figure 7 exactly shows
the radii distribution for the nodes of the GCC (in red), and
the nodes of the few largest remaining components. Notice
that the first peak disappeared, exactly because it consists of
nodes from the DCs (Disconnected Components), that we
omitted here.

In Figure 6, ‘outsiders’ are nodes in the disconnected
components, and responsible for the first peak and the neg-
ative slope to the dip. ‘Core’ are the central nodes from
the giant connected component. ‘Whiskers’ [26] are the
nodes connected to the GCC with long paths(resembling a
whisker), and are the reasons of the second negative slope.

Figure 7: Radius plot (Count versus radius) for several
connected components of the Patent data in 1985. In red:
the distribution for the GCC (Giant Connected Component);
rest colors: several DC (Disconnected Component)s. Notice
that the first peak from Figure 6(a) disappeared.

Figure 8: Radius-Degree plot of Patent at 1985. Notice that
the hubs are not necessarily the nodes with smallest radius
within GCC, and whiskers have small degree.

Radius plot of GCC Figure 1(b) shows a striking
pattern: all nodes of the GCC of the YahooWeb graph have
radius 6 or more, except for 1 (only!). Inspection shows that
this is google.com. We were surprised, because we would
expect a few more popular nodes to be in the same situation
(eg., Yahoo, eBay, Amazon).

“Whisker” nodes The next question is, what can we
say about the connectivity of the core nodes, and the whisker
nodes? For example, is it true that the highest degree nodes
are the most central ones (i.e. minimum radius)? The answer
is given by the “Radius-Degree” plot in Figure 8: This is a
scatter-plot, with one dot for every node, plotting the degree
of the node versus its radius. We also color-coded the nodes
of the GCC (in red), while the rest are in blue.

OBSERVATION 3. (HIGH DEGREE NODES) The highest de-
gree nodes (a) belong to the GCC but (b) are not necessarily
the ones with the smallest radius.

(a) U.S. Patent (b) LinkedIn
Figure 6: Static Radius Plot(Count versus Radius) of U.S. Patent and LinkedIn. Notice the bi-modal structure with
‘outsiders’, ‘core’, and ‘whiskers’.

The next observation is that whisker nodes have small de-
gree, that is, they belong to chains (as opposed to more com-
plicated shapes)

6.2 Temporal Patterns Here we study how the radius
distribution changes over time. We know that the diameter
of a graph typically grows with time, spikes at the ‘gelling
point’, and then shrinks [28],[25]. Indeed, this holds for our
datasets (plots omitted for brevity).

The question is, how does the radius distribution change
over time? Does it still have the bi-modal pattern? Do the
peaks and slopes change over time? We show the answer in
Figure 9 and Observation 4.

OBSERVATION 4. (EXPANSION-CONTRACTION) The
radius distribution expands to the right until it reaches the
gelling point. Then, it contracts to the left.

Another striking observation is that the two decreasing
segments seem to be well fit by a line, in log-lin axis, thus
indicating an exponential decay.

OBSERVATION 5. (EXPONENTIAL DECAYS) The decreas-
ing segments of several, real radius plots seem to decay ex-
ponentially, that is
(6.3) count(r) ∝ exp (−cr)
for every time tick after the gelling point. count(r) is the
number of nodes with radius r, and c is a constant.

For the Patents dataset, the correlation coefficient was
excellent, (typically, -0.98 or better).

7 Background
We briefly present related works on algorithms for radius and
diameter computation, as well as on large graph mining.

Computing Radius and Diameter The typical algo-
rithms to compute the radius and the diameter of a graph

include Breadth First Search (BFS) and Floyd’s algorithm
([11]). Both approaches are prohibitively slow for large
graphs, requiring O(n2 + nm) and O(n3) time, where n
and m are the number of nodes and edges, respectively. For
the same reason, related BFS or all-pair shortest-path based
algorithms like [16], [4], [27], [34] can not handle large
graphs.

A sampling approach starts BFS from a subset of nodes,
typically chosen at random as in [7]. Despite its practicality,
this approach has no obvious solution for choosing the
representative sample for BFS.

Large Graph Mining There are numerous papers on
large graph mining and indexing, mining subgraphs([22],
[39], ADI[37], gSpan[38]), graph clustering([33], Gr-
aclus [13], METIS [21]), partitioning([12], [9], [14]),
tensors([23]), triangle counting([5], [35], [36]), minimum
cut([1]), to name a few. However, none of the above com-
putes the diameter of the graph or radii of the nodes.

Large scale data processing using scalable and paral-
lel algorithms has attracted increasing attention due to the
needs to process web-scale data. Due to the volume of the
data, platforms for this type of processing choose “shared-
nothing” architecture. Two promising platforms for such
large scale data analysis are (a) MAPREDUCE and (b) par-
allel RDBMS.

The MAPREDUCE programming framework processes
huge amounts of data in a massively parallel way, using thou-
sands or millions commodity machines. It has advantages of
(a) fault-tolerance, (b) familiar concepts from functional pro-
gramming, and (c) low cost of building the cluster. HADOOP,
the open source version of MAPREDUCE, is a very promis-
ing tool for massive parallel graph mining applications, (e.g.,
cross-associations [30], connected components [20]). Other
advanced MAPREDUCE-like systems include [19], [8], and
[32].

(a) Patent-Expansion (b) Patent-Contraction
Figure 9: Radius distribution over time. “Expansion”: the radius distribution moves to the right until the gelling point.
“Contraction”: the radius distribution moves to the left after the gelling point.

Parallel RDBMS systems, including Vertica and Aster
Data, are based on traditional database systems and provide
high performance using distributed processing and query
optimization. They have strength in processing structured
data. For detailed comparison of these two systems, see [31].
Again, none of the above articles shows how to use such
platforms to efficiently compute the diameter of a graph.

8 Conclusions
Our main goal is to develop an open-source package to mine
Giga-byte, Tera-byte and eventually Peta-byte networks. We
designed HADI, an algorithm for computing radii and diam-
eter of Tera-byte scale graphs, and analyzed large networks
to observe important patterns. The contributions of this pa-
per are the following:

• Design: We developed HADI, a scalable MAPREDUCE
algorithm for diameter and radius estimation, on mas-
sive graphs.

• Optimization: Careful fine-tunings on HADI, leading
to up to 7.6× faster computation, linear scalability on
the size of the graph (number of edges) and near-linear
speed-up on the number of machines. The experiments
ran on the M45 HADOOP cluster of Yahoo, one of the
50 largest supercomputers in the world.

• Observations: Thanks to HADI, we could study the di-
ameter and radii distribution of one of the largest pub-
lic web graphs ever analyzed (over 6 billion edges);
we also observed the “Small Web” phenomenon, multi-
modal/bi-modal radius distributions, and palindrome
motions of radius distributions over time in real net-
works.

Future work includes algorithms for additional graph
mining tasks like computing eigenvalues, and outlier detec-
tion, for graphs that span Tera- and Peta-bytes.

Acknowledgments
This work was partially funded by the National Science
Foundation under Grants No. IIS-0705359, IIS-0808661,
CAPES (PDEE project number 3960-07-2), CNPq, Fapesp
and under the auspices of the U.S. Dept. of Energy by
Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. We would like to thank YAHOO!
for the web graph and access to the M45, and Adriano A.
Paterlini for feedback. The opinions expressed are those of
the authors and do not necessarily reflect the views of the
funding agencies.

References
[1] C. C. Aggarwal, Y. Xie, and P. S. Yu. Gconnect:

A connectivity index for massive disk-resident graphs.
PVLDB, 2009.

[2] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of
the world wide web. Nature, (401):130–131, 1999.

[3] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments,
1996.

[4] D. A. Bader and K. Madduri. A graph-theoretic analy-
sis of the human protein-interaction network using mul-
ticore parallel algorithms. Parallel Comput., 2008.

[5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis.
Efficient semi-streaming algorithms for local triangle
counting in massive graphs. In KDD, 2008.

[6] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for distinct-value estimation
under multiset operations. SIGMOD, 2007.

[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph
structure in the web. Computer Networks 33, 2000.

[8] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy

and efficient parallel processing of massive data sets.
VLDB, 2008.

[9] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and
C. Faloutsos. Fully automatic cross-associations. In
KDD, 2004.

[10] M. Charikar, S. Chaudhuri, R. Motwani, and
V. Narasayya. Towards estimation error guarantees for
distinct values. PODS, 2000.

[11] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. The MIT Press, 1990.

[12] S. Daruru, N. M. Marin, M. Walker, and J. Ghosh.
Pervasive parallelism in data mining: dataflow solution
to co-clustering large and sparse netflix data. In KDD,
2009.

[13] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph
cuts without eigenvectors a multilevel approach. IEEE
TPAMT, 2007.

[14] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In KDD, 2003.

[15] P. Erdős and A. Rényi. On random graphs. Publica-
tiones Mathematicae, 1959.

[16] J.-A. Ferrez, K. Fukuda, and T. Liebling. Parallel
computation of the diameter of a graph. In HPCSA,
1998.

[17] P. Flajolet and G. N. Martin. Probabilistic counting al-
gorithms for data base applications. Journal of Com-
puter and System Sciences, 1985.

[18] M. N. Garofalakis and P. B. Gibbon. Approximate
query processing: Taming the terabytes. VLDB, 2001.

[19] R. L. Grossman and Y. Gu. Data mining using high
performance data clouds: experimental studies using
sector and sphere. KDD, 2008.

[20] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus:
A peta-scale graph mining system - implementation
and observations. ICDM, 2009.

[21] G. Karypis and V. Kumar. Parallel multilevel k-
way partitioning for irregular graphs. SIAM Review,
41(2):278–300, 1999.

[22] Y. Ke, J. Cheng, and J. X. Yu. Top-k correlative graph
mining. SDM, 2009.

[23] T. G. Kolda and J. Sun. Scalable tensor decompositions
for multi-aspect data mining. In ICDM, 2008.

[24] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and
C. Faloutsos. Realistic, mathematically tractable graph
generation and evolution, using kronecker multiplica-
tion. PKDD, pages 133–145, 2005.

[25] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In KDD, 2005.

[26] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney. Statistical properties of community structure
in large social and information networks. In WWW ’08,
2008.

[27] J. Ma and S. Ma. Efficient parallel algorithms for some
graph theory problems. JCST, 1993.

[28] M. Mcglohon, L. Akoglu, and C. Faloutsos. Weighted
graphs and disconnected components: patterns and a
generator. KDD, 2008.

[29] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: a
fast and scalable tool for data mining in massive graphs.
KDD, pages 81–90, 2002.

[30] S. Papadimitriou and J. Sun. Disco: Distributed co-
clustering with map-reduce. ICDM, 2008.

[31] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
Dewitt, S. Madden, and M. Stonebraker. A comparison
of approaches to large-scale data analysis. SIGMOD,
June 2009.

[32] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall.
Scientific Programming Journal, 2005.

[33] V. Satuluri and S. Parthasarathy. Scalable graph cluster-
ing using stochastic flows: applications to community
discovery. KDD, 2009.

[34] B. P. Sinha, B. B. Bhattacharya, S. Ghose, and P. K.
Srimani. A parallel algorithm to compute the shortest
paths and diameter of a graph and its vlsi implementa-
tion. IEEE Trans. Comput., 1986.

[35] C. E. Tsourakakis, U. Kang, G. L. Miller, and
C. Faloutsos. Doulion: Counting triangles in massive
graphs with a coin. KDD, 2009.

[36] C. E. Tsourakakis, M. N. Kolountzakis, and G. L.
Miller. Approximate triangle counting. CoRR,
abs/0904.3761, 2009.

[37] C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. Scalable
mining of large disk-based graph databases. KDD,
2004.

[38] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. ICDM, 2002.

[39] C. H. You, L. B. Holder, and D. J. Cook. Learning
patterns in the dynamics of biological networks. In
KDD, 2009.

