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Abstract
State-of-the-art learning algorithms accept data in feature vector format as input. Examples
belonging to different classes may not always be easy to separate in the original feature space. One
may ask: can transformation of existing features into new space reveal significant discriminative
information not obvious in the original space? Since there can be infinite number of ways to
extend features, it is impractical to first enumerate and then perform feature selection. Second,
evaluation of discriminative power on the complete dataset is not always optimal. This is because
features highly discriminative on subset of examples may not necessarily be significant when
evaluated on the entire dataset. Third, feature construction ought to be automated and general,
such that, it doesn't require domain knowledge and its improved accuracy maintains over a large
number of classification algorithms. In this paper, we propose a framework to address these
problems through the following steps: (1) divide-conquer to avoid exhaustive enumeration; (2)
local feature construction and evaluation within subspaces of examples where local error is still
high and constructed features thus far still do not predict well; (3) weighting rules based search
that is domain knowledge free and has provable performance guarantee. Empirical studies indicate
that significant improvement (as much as 9% in accuracy and 28% in AUC) is achieved using the
newly constructed features over a variety of inductive learners evaluated against a number of
balanced, skewed and high-dimensional datasets. Software and datasets are available from the
authors.
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1 Introduction
For most inductive learning algorithms, examples are assumed to be in feature vector
format. Having a good set of features is the key to high accuracy. There are various reasons

NIH Public Access
Author Manuscript
Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2011 May 2.

Published in final edited form as:
Proc SIAM Int Conf Data Min. 2010 ; 2010: 629–640.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



why a given feature set may have only limited discriminative power. For example, each
feature itself has little information gain, but some significant discriminative information can
be revealed if a number of these features are combined and transformed. For problems like
this, feature selection is often not very effective, as its basic assumption that good features
exist in the original feature set is violated. As a result, techniques that consider multiple
features at the same time or their nonlinear transformation [10] become important. Let us
consider a synthetic example in Figure 1. Figure 1(a) shows an XOR-like problem, whereas
positive and negative examples cannot be separated by any linear decision boundaries.
However, if we construct a new feature F3 = F1*F2 and project the data points onto the
space spanned by F1 and F3 instead (Figure 1(b)), a simple linear boundary can perfectly
separate the two classes. This example shows that constructing new features can be very
useful to capture intricate complexity in the instance space, thus to closely represent and
model the concept of interest. As compared to feature selection, there is a relatively fewer
methods on feature construction. As reviewed below, existing methods have problems of
inefficiency, non-optimality and use of domain heuristics.

1.1 Limitations of Existing Approaches
Some techniques [14,17] use a two-step batch-process that first builds a set of expanded
features, and then perform feature selection. Since the combinatorics to construct new
features from original features can be infinite, it is impossible to exhaust all candidates and
select the most discriminant ones. Even we limit operators to come from a finite set, these
methods can still produce a significantly large number of new features that are inefficient in
practice. For example, if there are only 4 binary operators and the number of original
features is n, there can be up to 4 × n2 new features. On the other hand, kernel-based
methods, e.g., kernel discriminant analysis (KDA) [1] and kernel principal component
analysis (KPCA) [16], compute good features without exhaustive search. For KDA, nc − 1
most discriminant features over the entire data set are chosen for classification, where nc
represents the number of classes. However, this might not be always optimal. A feature
insignificant on the whole data set can be highly discriminant in a local region that is not
covered well by features constructed so far. Let us consider the example in Figure 2. F1 is
obviously the most discriminant over the entire data set, and can be the only feature chosen
by a feature selection technique. Thus, F2 can be overlooked, but is actually highly
predictive in the region above the horizontal dashed line. Some methods employ decision
tree to avoid the above two problems [11,13,15,12], but they require domain knowledge.
The approach in [12] requires such knowledge to select constructors as well as filters to
reject undesirable candidate features. Similarly, the framework described in [11] uses
specifications written by the user, based on knowledge of the application.

1.2 The Proposed Approach
To address these challenges, we propose a generalized approach based on local feature
construction, divide-conquer search and weighting rule-based operator selection. The basic
idea is to build a decision tree by evaluating and selecting both the original and newly
computed features. At each node, an operator most likely to produce good features is chosen
to build new features. The decision as to which feature (either new or original) to choose and
then split the node is evaluated on the local data or subset of examples contained in the
current node. Candidates include information gain, gain ratio, gini-index and Kearns-
Mansour criteria. The recursion stops when either examples in the node all belong to the
same class or the number of examples is below a given threshold. The main flow is
summarized in Figure 3(a). Once a tree has been built, features chosen at internal decision
nodes are the set of constructed features to project the data. In addition, the tree itself is a
classifier. During the feature construction and evaluation process, an adjustment rule updates
weights associated with each operator, to give more weights to those having produced
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highly predictive features in earlier steps. Thus, these good operators have more chance to
be chosen again. The detail is illustrated in Figure 3(b).

To summarize, the proposed method constructs features on the basis of finite but
dynamically chosen and adjusted set, thereby to avoid searching in a large and potentially
infinite pool. It estimates features' significance on local data subspaces rather than always on
the complete data set. This insures optimal coverage for the set of constructed features as a
whole on the entire dataset. In addition, the weights of constructor operators are dynamically
adjusted according to their performance on the dataset, therefore, avoid the use of domain
knowledge. As stated in Section 3, this approach avoids over-fitting with performance
bound guarantee.

2 Local Feature Construction
In this section, we formulate the local feature construction problem, followed by a
discussion on the divide-and-conquer based solution. The notations and terminologies are
summarized in Table 1.

2.1 Problem Formulation
Suppose that the training data L={XL,YL} contain ℓ instances, XL = {x1, …, xℓ}, YL = {y1,
…, yℓ}. Assume the original feature set of the data is  with nf continuous features, and the
number of class labels is nc. This paper focuses on the binary classification problem, namely
nc = 2 and Y = {−1, 1}. Also, let Δ be the set of operators or mapping functions that can be
applied to the original features . Because of the unlimited number of ways to apply Δ, the
extended feature set  can be infinite. The problem of feature construction is defined as
follows,

DEFINITION 2.1. (Feature Construction) A constructed feature  is an element in ,
where opk is the kth operator in Δ, and  is a subset of . Furthermore, we define the
constructed feature set as , where nt is the number of constructed
features.

After feature construction, both original feature set  and constructed feature set  can be
used for classification. There are three aspects inherent to the problem of feature
construction:

1. search the feature set  for the best features.

2. select the constructors Δ.

3. evaluate the constructed features.

2.2 Algorithm
Algorithm 2 shows the main flow of the divide-and-conquer based feature construction
approach, called FCTree (Feature Construction Tree). The basic idea is to partition the
training data top-down using the best features, which can be either the original or those
automatically constructed. At each node, we generate a new feature set  as follows: we
randomly select an operator from Δ according to their weights and a subset of features from

 to construct a new feature α. This process is iterated for ne times. Then, the best feature is
selected from  and  according to information gain computed from the examples at the
current node. We partition examples at the current node into disjoint subsets by testing
against the selected feature. Then, the selected feature is removed from the feature pool to
avoid being chosen again. After that, the weights associated with the operators are updated.
The idea here is to allocate more weight to those operators having produced highly
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discriminate features in earlier steps, so that they are more likely to be selected for feature
construction at later iterations. The weights are updated as follows. Let I be the criterion
values of Δ, Ik be its k-th element, nk be the number of features in  generated by the k-th

operator and  be the information gain of i-th feature constructed by the k-th operator.
Then, Ik is defined as:

(2.1)

The weights of Δ are updated using the following rule:

(2.2)

where wk is the weight of the kth operator in Δ and it is normalized at each iteration.

The FCTree process recursively partitions the data and builds best features until the
following stopping conditions are met: (1) the number of instances in the node is smaller
than a threshold, e.g. m = 3; (2) the node only contains examples from one class. At the end,
we combine all features from  and  into an expanded feature space. At the same time,
FCTree also generates a decision tree classifier that can be used for prediction.

3 Formal Analysis
We analyze the following problems related to the three aspects stated in Section 2.1: (1)
How does the proposed feature construction method avoid exhaustive search and obtain
good stability? (2) What role does the weighting rule play in FCTree? (3) How discriminant
are the features selected by FCTree, including the original and constructed ones?

3.1 Scalability of FCTree
The first concern is how many features will be constructed and returned in the proposed
method. Here we provide a bound on search space. Let |L| be the number of training
examples. As stated in Section 2.2, the number of instances in one leaf node cannot be less
than a threshold m. When all leaf nodes in a FCTree contain m instances, its size is maximal
in terms of the number of leaf nodes. As a result, the number of constructed features Nt has
the following upper bound

(3.3)

where ne is the number of constructed features at each node. Thus, the number of selected
constructed features nt will not exceed O(|L|) because FCTree selects only one feature at a
node. From Equation Eq.(3.3), we observe that the number of constructed features is
bounded and will not exceed the number of training examples.

From the above bound, we analyze the complexity of the FCTree algorithm. In the worst
case, it requires O(log2 |L|*|L|*ne) computations to evaluate and select the best features and
O(|L|*no) computations to update the weights associated with operators, where no is the
number of operators. In addition, it takes O(log2|L| * |L|) computations for all instances to
traverse down the tree (from the root to a leaf node). Thus, given that no is substantially
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smaller than ne = O(nf), and in practice the proposed FCTree algorithm has the complexity
of O(log2|L| * |L| * nf), where nf represents the number of original features.

For comparison, let us consider the computational complexity of batch processing. Suppose

that the operators are all binary. Batch processing will need  computations to

generate features and  computations to evaluate them. This implies that the

computational complexity of batch processing is given by . That is, the
complexity of batch processing grows quadratically with the number of features. In contrast,
the complexity of FCTree grows linearly with nf. Thus, it is much more efficient in practice.

3.2 Analysis of the Weighting Rule
We show that if an operator has a higher weight at the current node, it is expected to perform
well in its splits.

As defined in Section 2.2, operators that produce features with higher information gain will
receive higher weight. Thus, suppose that at the current node we have two operators op1 and
op2 with w1 > w2. Then

where E[*] is the expectation value of *, f1 is the feature produced by op1, f2 is produced by
op2, and IG(f) is the information gain of feature f. Assume that when splitting the data along
f1 and f2, both place most positive instances at the right sub-node and most negative
instances at the left sub-node. As follows, we show that if IG(f1) > IG(f2) at the current node,
then on average this inequality still holds at the two sub-nodes.

Assume that the current node is split by feature f*. There are Pl positive instances and Nl
negative instances at the left sub-node, Pr positive and Nr negative instances at the right sub-
node. In addition, we use Pl1, Nl1, Pr1 and Nr1 to represent the split result if f1 is selected.
Similarly, we use Pl2, Nl2, Pr2 and Nr2 to indicate the result when using f2. For ease of
discussion, we assume Pl1 > Pr1, Nl1 < Nr1, Pl2 > Pr2 and Nl2 < Nr2 because IG(f1) > IG(f2),
Pl1 > Pl2 and Nl1 < Nl2. Now, we consider the left sub-node. The analysis of the right sub-

node is similar. On average, there are  positive instances and

 negatives in the left sub-node for feature f1. Also, for feature f2,

there are  and  instances, respectively.
Moreover, we define
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In addition, f2 has similar relationships. Because Pl1 > Pl2 and Nl1 < Nl2, we have 

and . This means the two sub-nodes produced by f1 are “purer” than those by f2.
Thus, the information gain of f1 at the left sub-node is expected to be higher than the one
obtained by f2. We can conclude that the operator good at the current node is expected to be
good at two sub-nodes.

3.3 Feature selection under exhaustive search
If we were able to enumerate all features in  apriori, we could consider FCTree as a
feature selection algorithm. We show that under this ideal situation, the features selected by
FCTree are still the best ones. We compare FCTree with a forward-based feature selection
algorithm using a decision tree, called fDT as in [4]. Without loss of generality, we assume

 is finite. Furthermore, we assume that both fDT and FCTree select K
features from the candidates in  and FCTree obtains K features when it reaches the
stopping condition.

Once fDT has selected k features, it chooses the (k + 1)-th feature from remaining ones to
achieve the highest prediction accuracy measured using the k selected features. Without loss
of generality, we assume that the accuracy never decreases before it obtains K features. On
the other hand, at each iteration, FCTree selects a feature from the original and constructed
features. Importantly, this feature has not yet been used along the decision path starting from
the root to the current node, and achieves the maximal accuracy increase for those instances
at the current node. By simple induction, the analysis below shows that fDT and FCTree
choose the same subset of features. The analysis is adopted from [4].

At the root node, both FCTree and fDT will select the same feature because they evaluate
features using the same criterion on the same data set. Assume after selecting k − 1 features,
fDT and FCTree construct the same partial tree. We show that when considering the k-th
feature, the trees built by fDT and FCTree will be the same. First, neither fDT nor FCTree
will reconstruct the partial tree. For fDT, if a new feature would reconstruct this partial tree,
it would have been chosen previously and already been the selected feature of a non-
terminal node of the partial tree. For FCTree, it does not select those features along the path
from the root to the current node. Thus, FCTree does not reconstruct the partial tree.
Therefore, when fDT and FCTree expand identical nodes, there is only one unique best
feature to select for both FCTree and fDT.

3.4 Error Bound for FCTree classifier
One important advantage to use a decision tree for feature construction is that the decision
regarding which feature to select for splitting is entirely based on the local data contained in
each node (or region). Thus, it potentially creates features that provide “local” relevance at
different prediction locations in the feature space. When they are combined, they provide a
good coverage for the feature space. We now provide an error bound for the FCTree
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algorithm, as adapted from [6]. For a tree with N leaves, the leaf function hi, the conjunction
of all tests on the path from the root to leaf i, can be defined as hi: X → {0, 1} by hi(x) = 1
iff x reaches leaf i, for i = {1, …, N}.

Then for every internal decision node, we choose one feature from original and constructed
features to split the node into two sub-nodes. Notice that constructed features are simply a
function of the original features. Threshold functions (original and constructed features)
form a class  of boolean functions that label internal decision nodes. For the labeled data L,
let Qi = PL[hi(x) = 1]. Then Q = (Q1, …, QN) is a probability vector. Let us define the class
of leaf functions for leaves up to depth j as

(3.4)

Then the VC dimension of , denoted by , is less than or equal to
. Let di denote the depth of leaf i, so , and let d = maxi di.

Moreover, let  be the quadratic distance between the probability
vector P and the uniform probability vector Up = {1/N, …,1/N}. Thus, the effective number

of leaves in the tree can be defined as . From these definitions, the error
bound for FCTree in terms of N* can be established based on the labeled data.

THEOREM 3.1. For a fixed θ > 0, there is a constant c satisfies the following. Let  be the
distribution on X × Y. Consider the decision tree T achieved by FCTree with depth d and
decision function in . With probability at least 1 − θ over the training set L, T is consist
with L has

(3.5)

where N* is the effective number of leaves of T.

The detail of the proof can be found in [6].

Notice that N* and  are dominant terms in the bound. While a tree created by FCTree
potentially has a higher complexity class  of boolean functions due to constructed features,
the same tree can have a much smaller effective number of leaves, again due to constructed
features. This can be seen from the simple example shown in Figure 1, where a tree with
constructed features has two leaves, while a tree with the original features only that is
consistent with the sample points requires four leaves. If a decrease in the effective number
of leaves outweighs an increase in the complexity of the function class , a tighter bound
can be achieved. This shows that FCTree has the potential to achieve better generalization
performance, as we shall see later.

4 Experimental Results
Twenty two real-world datasets collected from four different domains are used to
empirically evaluate the proposed algorithm. The performances measured in accuracy or
AUC are compared with standard machine learning algorithms on different feature spaces.
Three sets of studies are also conducted to further examine the sensitivity and scalability of
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the proposed method, as well as the strength of the weighting rule. In addition, we illustrate
the utility of feature construction using an image categorization example.

4.1 Dataset Description and Experimental Setting
Table 2 summarizes the statistics of twenty two binary datasets respectively obtained from
UCI repository1, Caltech-256 database [8], Landmine collection2 and Nuclear Ban data
source3. Among them, Landmine contains data collected from real landmines via remote
sensing techniques. Each data point is represented by a 9-dimensional feature vector
extracted from radar images, and the class label is either true or false mine. Caltech-256 is
an image database of 256 object categories. To form the six binary classification problems
listed in this group, we select four categories and they are “ak47”, “American-flag”,
“backpack” and “baseball-bat”. Each category is processed via a 177-dimensional color
correlogram [9]. Nuclear Ban data source is a nuclear explosion detection problem used by
ICDM'08 contest. “V ~ Z” denote the data collected at each individual station, and “All”
refers to the entire dataset from all stations. In addition, relatively balanced class distribution
is preserved in the datasets obtained from UCI repository and Caltech-256, while skewness
is introduced into the data acquired from Landmine and Nuclear Ban data source. By doing
so, we can fully investigate how the proposed algorithm could be affected as the class
distribution varies.

In the following studies, we set the number of expanded features in each node equal to the
number of original features, i.e. ne=nf. Six straightforward base and domain independent
operators are employed and they are , x2, x + y, x − y, x * y and exp[−(x − y)2], where x
and y represent different features. As one of the baselines for comparison, a two-step (batch
process) feature construction method “TFC” is implemented. TFC first enumerates all
possible features generated by operators and then selects the top nf with the highest
information gain based on the whole dataset as the obtained feature set. For each dataset,
three standard machine learning algorithms, naive Bayes, SVM (with polynomial kernel)
and C45 (J48 in Weka) are respectively trained on the original feature set, the feature space
obtained through TFC, as well as the feature set constructed by FCTree. Therefore, there are
three results for each algorithm. In the tables and figures shown below, “Ori” represents the
result achieved on the original feature set. “TFC” is for the result acquired on the feature
space obtained through TFC, and “FCT” denotes the result on the feature set constructed by
FCTree. It is worth noting that, besides the constructed feature set, the proposed algorithm
FCTree itself can also serve as a decision tree classifier, thus we use “FCTree” to represent
this learner. All of the classifiers' performances are measured in accuracy for balanced
datasets, and AUC is used instead if the underlying class distribution is skewed. Standard
10-fold cross validation is used to conduct the comparisions, and the algorithm
implementations are based on Weka [18].

4.2 Accuracy Comparison on Balanced Datasets
Table 3 summarizes the accuracy of three classifiers achieved on the different feature sets.
For each distinct combination of the dataset, learning model and feature set, we highlight the
best result in bold. It is evident that, compared to the original feature space (Ori), the feature
set constructed by FCTree (FCT) allows different classifiers to achieve much higher
accuracy for 23 out of 33 comparisons. A more explicit summary is illustrated in Figure
4(a). Each cross on the plots is the accuracy ratio achieved between the FCT feature set and
the original features by a specific algorithm on a dataset. When a cross is above the the line

1http://www.ics.uci.edu/~mlearn/MLRepository.html
2http://www.ee.duke.edu/~lcarin/LandmineData.zip
3http://www.cs.uu.nl/groups/ADA/icdm08cup/
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“y=x”, it indicates that the accuracy obtained on the FCT feature set is better than that on
original features for the corresponding dataset. In particular, when SVM is applied to the
UCI data, its accuracy numbers on the FCT feature sets are consistently higher than those
obtained using the original features. The overall accuracy is boosted by as much as 9%.
When either naive Bayes or C45 serves as the classifier, for 15 out of 22 cases, they perform
much better on the feature sets constructed by FCTree. This indicates that the proposed
algorithm is not sensitive with respect to different learners. In addition, compared to the
feature sets obtained through TFC, different classifiers still tend to achieve higher accuracies
on the FCT features. The win-lose-tie statistics between FCT and TFC is 22-7-4. On the
other hand, FCTree outperforms naive Bayes, SVM and C45 on 5 out of 11 datasets. For
example, FCTree improves the accuracy at least 5% in Caltech1 dataset compared to other
classifiers trained on any feature spaces. This could be ascribed to its good generalization
performance and the discriminative power of constructed features as discussed in Section 3.

4.3 An image object classification example
Figure 6(a)–(c) show three images selected from the Caltech-256 benchmark dataset [8],
where image (a) is from the “AK-47” category, and image (b) and (c) are from the “baseball
bat” category. A 177-dimensional color correlogram [9] are extracted as the original image
features. Figure 6(d) summarizes that, under the original feature space, the Euclidean
distance between images (b) and (c) is even larger than that between images (a) and (b),
even if (a) and (b) belong to the different categories. This is mainly because image (c) has a
dominant area of the background clutter, while image (b) does not. This thus leads to
dissimilar color-spatial distribution between the two “baseball bat” images. However, after
the feature space is converted using FCTree, the most prominent features of these images
can be automatically extracted, i.e., the color features on the horizontal center of the images.

Figure 6(e) presents the leave-one-out validation results of three classifiers on the original
feature space and the transformed feature space via FCTree. “Y” represents that the image is
correctly classified, and “N” indicates the misclassification. The classifiers are trained on all
the data from “AK-47” and “baseball-bat” except for the testing images. We observe that in
the original feature space, image (c) is misclassified by all three classifiers, and image (b) is
misclassified by naive Bayes. However, after the conversion by FCTree, three learners can
correctly predict image (b), and only naive Bayes fails on the image (c). This demonstrates
that FCTree is able to construct a better feature space for more precise image classification.

4.4 AUC Comparison on Skewed Datasets
Table 4 presents the AUC scores of three classifiers obtained on the different feature sets. It
is apparent that, for most of the scenarios, the classifiers can achieve much higher AUCs on
the FCT feature sets compared to the original feature space (Ori). Similarly, an explicit
summary is illustrated in Figure 4(b). Each cross on the plots is the AUC ratio obtained
between the FCT feature set and the original features by a specific algorithm on a dataset.
When a cross is above the line “y=x”, it indicates that the AUC achieved on the FCT feature
set is higher than that on original features for the corresponding dataset. Typically, on the
Landmine datasets, when the classifier is naive Bayes, constructed FCT features boost AUC
scores at least by 5% with respect to the original feature sets. In addition, classifiers'
performances on the FCT feature sets are comparable to those obtained on the TFC features.
The win-lose-tie statistics between FCT and TFC is 10-8-15. This indicates that even though
FCT does not perform exhaustive searching, it still be able to capture those discriminative
features. Importantly, FCTree outperforms other classifiers on any feature spaces for the
Landmine datasets. This suggests that the proposed algorithm can not only construct the
useful feature space but also produce a generalized classifier with good performance for
skewed distributions.
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4.5 Scalability study
As discussed in the introduction, exhaustive searching is ineffective due to the infinite
feature space. Even if the number of operators is limited, exhaustive searching can also
result in combinatorial explosion. In the following, for each dataset, we compare the number
of constructed features generated by FCT and TFC. The results are summarized in Figure 7.
In general, for most of the datasets, the feature sets generated by FCT are much smaller than
those obtained through TFC. This is especially true for those high-dimension datasets. For
example, on Caltech-256, the TFC feature sets are at least ten times larger than the feature
sets produced by FCT. This provides empirical evidence for the analysis in Section 3.1 that
the proposed approach can significantly reduces the computation cost.

4.6 FCTree versus global feature construction
As pointed out in the Introduction, FCTree is a local transform approach. It would be
interesting to compare this local transformer to its global counterparts such as SVM with
Gaussian kernel. Figure 5 presents the accuracies of FCTree and SVM on the balanced
datasets, as well as their AUC scores on the skewed distributions. Each point on the plots is
the accuracy or AUC ratio between FCTree and SVM on a specific dataset. When a point is
above the line “y=x”, it indicates that FCTree performs better than SVM on the
corresponding dataset in terms of accuracy or AUC. It is evident that FCTree achieves better
accuracies on 8 out of 11 balanced datasets. For all of the skewed distributions, FCTree
outperforms SVM without any loss. The overall AUC score is enhanced at least 10% by
FCTree.

4.7 Strength of the weighting rule
We conduct one more experiment to study the strength of the weighting rule which allows
FCTree to select constructors automatically without the use of manually crafted domain
knowledge. For comparison purpose, we implement FCTree without the weighting rule and
represent it as FCTW. As compared to FCTree, FCTW randomly selects operators without
considering the operators' weights. C45 (Weka's J48 implementation) is respectively trained
on the two feature spaces generated by FCTree and FCTW. The comparison results on the
balanced and skewed distributions are summarized in Figure 8. It is obvious that FCTree
outperforms FCTW, and J48's performance on the FCTree feature set (J48) is better than its
performance on the FCTW features (J48w). For the balanced datasets, the win-lose between
FCTree and FCTW (or J48 and J48w) is 9-2. On the skewed L2 set, AUC of FCTree is 15%
higher than that of FCTW. This empirical result suggests that the weighting rule is not trivial
but e ective.

4.8 Parameter study
As shown in Algorithm 2, the number of constructed features in each node ne should be
fixed before applying the proposed algorithm. As the result, we carry out this set of
experiments to test the sensitivity and adaptiveness of the proposed algorithms with respect
to this parameter. More specifically, we examine the accuracy or AUC learning curves of
different classifiers when the number of constructed features ne changes from nf to 3.5 × nf,
where nf is the number of original features. The accuracy learning curves on four balanced
datasets are presented in Figure 9(a)–(d). It can be observed that, for the same classifier, its
accuracy is actually rather stable. The overall accuracy fluctuation of the studied classifiers
does not exceed 5%. At the same time, as shown in Figure 9(e)–(h), the AUC scores of
different classifiers on the skewed distributions are also not affected much by the varied
values of this parameter. The average deviation of AUC is less than 6%. This demonstrates
that the proposed algorithm is not sensitive with respect to the different numbers of the
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constructed features at each node. Most importantly, this property suggests that the proposed
method could select a set of compact yet discriminative features.

5 Related Work
State-of-the-art learning techniques are still based on feature vectors. One of the main
challenges in classification is to find good feature representation so that an effective
classifier can be built from labeled data. Several methods use two-step batch feature
construction to extend the original features [10,14,17]. For example, the technique proposed
in [10] constructs task-relevant discriminant features based on explanation-based interaction
of training examples and prior domain knowledge. The work in [14] presents an iterative
construction algorithm as a pre-processing step of classification, exhausting all obtained
features and then selecting the best ones. However, exhaustive search can be
computationally infeasible.

Many other techniques have been proposed for achieving better representations, such as
kernel discriminant analysis (KDA) [1] and kernel principal component (KPCA) analysis
[16]. More recently, techniques based on frequent pattern mining [4] have been proposed for
constructing discriminant features. They are very effective in problems that do not have
well-structured feature representations. The proposed approach is related to the one
proposed in [4]. While they both employ divide and conquer strategy, the proposed approach
introduces feature operators and weighting rules to select operators, that can be adjusted on
the fly.

Some previous work avoid exhaustive search using decision tree, such as [13,15,12]. The
approach in [13] enlarges the attribute set with high level attributes by modifying the initial
bias determined on the primitive attributes. But the features constructed by these methods
have no generalization guarantee for other classifiers. The framework in [11] improves over
[13]. It takes as input a set of classified objects, a set of attributes, and a specification for a
set of domain specific constructor functions and produces as output a set of generated
features. But it needs the domain information to select constructors.

A number of tree-based feature selection methods has been proposed in the literature, such
as [3,5,7]. A variable selection technique based on flexible neural trees is proposed in [3],
where trees are constructed using genetic programming (GP) and parameters are optimized
with the mimetic algorithm (MA). The work presented in [5] is a two-stage method that
applies a permutation test for selecting features in a decision tree. The technique described
in [7] performs feature selection during decision tree construction using the Separability of
Split Value (SSV) criterion. The major difference between FCTree and these tree based
methods is that the FCTree algorithm creates new features during feature selection, while
these other methods do not. In addition, the Multivariate Decision Tree (MDT) algorithm [2]
combines multiple features at each node to split data, but it is simply a classifier, not a
feature construction technique.

6 Conclusion
State-of-the-art inductive learners still mainly work on feature vectors. One important
challenge is to construct new features using existing feature vector, that has highly
discriminative information not obvious in its original feature space. This paper studies how
to efficiently and automatically construct highly predictive features that can be generalized
over a large number of classifiers. It works by applying a set of local mapping functions on
one or a set of features. The significance of new features is evaluated on subspace of
examples, not necessarily obvious if evaluated on the complete set of examples. To solve the
computational challenge of a possibly infinite search space, we have explored a divide-
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conquer based decision tree approach. To avoid the use of domain knowledge, the choice of
which construction operator to apply is computed dynamically based on their performance
via the use of a weighting rule. Formal analysis shows that: (1) the number of selected
features is bounded; (2) the weighting rule can effectively assist FCTree to construct highly
predictive features without domain related heuristics; (3) it can select best features without
running into exhaustive search; (4) the error rate of the the classifier built on the new feature
space is bounded. Empirical studies have used balanced, unbalanced, normal and high
dimensional datasets. The results demonstrate that the proposed method generates new
feature space that increases the accuracy and AUC of state-of-the-art classification methods,
i.e., Naive Bayes, C45 and SVM polynomial kernel, by as much as 9% and 28%
respectively as compared to the same algorithm trained on the original feature space.
FCTree outperforms the batch-based construction method in 22 out 33 comparisons but
reduces the computation cost by at least 10 times.
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Figure 1.
Synthetic Example of Feature Construction. The ∇/* refers to positive/negative.
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Figure 2.
Different Discriminability. The ∇/* refers to positive/negative.
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Figure 3.
Main Flow of Divide-conquer based Feature Construction
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Figure 4.
Comparison of Ori and FCT
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Figure 5.
Comparison of FCTree and SVM

Fan et al. Page 18

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2011 May 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Image Examples and Classification Performance
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Figure 7.
Scalability Analysis
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Figure 8.
Strength of weighting rule
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Figure 9.
Parameters Analysis

Fan et al. Page 22

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2011 May 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fan et al. Page 23

Table 1

Definition of notation

Notation Notation Description

L Training data

X Instance Space

Y Label Space

Δ Base Operators Set

F Original Feature Set

E Constructed Feature Set

A Feature Set can be extended from F

WO
Weights of Operators

nf Number of Original Features

nc Number of Classes

ne Number of Expanded Features in each node

nt Number of Features in E

no Number of Operators
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Algorithm 1

Update Weights

1 Input: Constructed features: F̂ , Weights of operators: WO

2 Output: New weights of operators: WO

3 Calculate the information gain of each feature in F̂
4 Calculate the criterion value of each operators I using Equation Eq.(2.1)

5
Update WO : ∀wj

∈ WO, wj = wj ∗ exp( − 1
1 + Ij )

6 Normalize WO : ∀wj
∈ WO, wj = wj ∕ ∑wj∈WO

7 Return WO
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Algorithm 2

FCTree

1 Input: Original features: F, Training data: L, Operators: Δ, Number of constructed features at each node ne

2 Output: Constructed features: E, Decision Tree: FCTree

3 Let every element in WO be 1.0, E = ∅

4 Let root node of the tree as Node (L , WO)
5 For the current node, generate a subset F̂ = ∅
6 for j=1 to ne do

7 Select an operator op from Δ according to WO by weighted roulette wheel

8 Select features Ft  from F randomly

9 Generate a new feature αj = op(Ft)
10 F̂ = F̂ ∪ αj
11 end for

12 Combine F̂  and F, SF = F̂ ∪ F

13 Select the best discriminative and not used before feature f* from SF

14
IF f ∗ ∈ F̂  Then Add f* E, E = E ∪ f ∗

15 Update the WO using Algorithm 1

16 Split node into two sub-nodes based on f*, obtaining Node (L l, WO) and Node (L r, WO)
17 Repeat the above process for the sub-nodes until the node is “pure” or just contains very few instances

18 Let FCTree be the obtained decision tree

19 Return E, FCTree
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