arXiv:0909.4969v1 [cs.DS] 27 Sep 2009

MACH: Fast Randomized Tensor Decompositions

Charalampos E. Tsourakakis

July 20, 2021

Abstract imaging) scans, one of the most popular neuroimaging

techniques, result in multi-aspect data: voxelsubjects
Tensors naturally model many real world processes whightrials x task conditionsx< timeticks. Monitoring sys-
generate multi-aspect data. Such processes appeaeins result in three-way data, machinedidype of mea-
many different research disciplines, e.g, chemometrissrementx timeticks. The machine depending on the set-
computer vision, psychometrics and neuroimaging anéihg can be for instance a sensor (sensor networks) or a
ysis. Tensor decompositions such as the Tucker decaomputer (computer networks). Large data volumes gen-
position are used to analyze multi-aspect data and extracited by personalized web search, are frequently mod-
latent factors, which capture the multilinear data streestueled as three way tensors, i.e., usergjueriesx web
Such decompositions are powerful mining tools, for epages.

tracting patterns from !arge data volumes. Howe_vgr, m_OStIgnoring the multi-aspect nature of the data by flat-
frequently used algorithms for such decompositions iRsning them in a two-way matrix and applying an ex-

volve the computationally expensive Singular Value Dgjoratory analysis algorithm, e.g., singular value decom-
compo_smon. ) position (SVD) ([22]), is not optimal and typically hurts

In this paper we propose MACH, a new sampling akjgnificantly the performance (e.d-, [51]). The same holds
gorithm to compute such decompositions. Our meth@gihe case of applying e.g., SVD on different 2-way slices
is of significant practical value for tensor streams, sugh the tensor as observed Hy [28]. On the contrary, mul-
as environmental monitoring systems, IP traffic matricggay data analysis techniques succeed in capturing the

over time, where large amounts of data are accumulaigtilinear structures in the data, thus achieving better
and the analysis is computationally intensive but also jarformance than the aforementioned ideas.

“post-mortem” data analysis cases where the tensor doe‘?‘ensor decompositions have found the last vears man
not fit in the available memory. We provide the theoretical P y y

analysis of our proposed method, and verify its ef“ficacyt pII|cat|ons Itn d|ff§rent s(;nepuﬁcl dISCIp|II’I.eS. IEJ'C;
monitoring system applications. Ively, computer vision and signal processing (e.0.l [51,

[35,[43]), neuroscience (e.d.] [5]), time series anomaly de-
Categoriesand Subject Descriptors: tection (e.qg.,[[417]), psychometrics (e.d..][49]), chembme
General Terms: Algorithms; Experimentation. rics (e.g., [44]), graph analysis (e.d..[25] 45]), data-min
ing (e.g., [48]). Two recent surveys of tensor decomposi-
tions and their applications are [26],[2], with a wealth of
references on the topic.

1 Introduction Two broad families of decompositions are used in the

multiway analysis, each with its own characteristics: the
Numerous real-world problems involve multiple aspe&e\nonical decomposition (parallel factor analysis),aa.k.
data. For example fMRI (functional magnetic resonanSNDECOMP (PARAFAC) [6[.18], and the Tucker fam-
ily of decompositions[[49]. In this paper, we focus on

*SCS, Carnegie Mellon University the latter. The Tucker decomposition can be thought of
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as the generalization of the Singular Value Decomposig tensors are very dense. This is the typical case in a
tions (SVD) to the multiway case. Even if there exist atnonitoring system, since at timetiékwe receive a mea-
gorithms which cast the Tucker decomposition as a n@surement of typg for machinei, resulting in a non zero
linear optimization problem (e.g[ [41[.1[1]), currently i in (7, j, k).

practice the approach followed is the Alternating Least

Squares, which involves the computationally expensive name Per centage of non-zer os
SVD. To speed up tensor decompositions, randomized Sensor 85 %
algorithms [14/°34] have appeared in the recent years. Network Data [10]

This family of randomized algorithms are generalizations Computer 81%

of fast low rank approximation methods [11,133,] 13],Network Data ([21])
adapted appropriately to the multiway case.

In this paper we propose a simple randomized algo- o ]
rithm that speedups significantly the Tucker decompc?;rﬁble 1: Tensors from monitoring system are typically
tion while at the same time results with guarantees in 4RNSe-
accurate estimate of the tensor decomposition. MACH, h . ibuti fthi zed
the proposed method, can be applied both to “post—T emam_cor.\tn utions of this paper are summarized as

. . in the following:
mortem” data analysis and to tensor streams to perform
data mining tasks such as network anomaly detection, ané MACH, a randomized algorithm to compute the
in general the set of mining tasks which rely on the study Tucker decomposition of a tensdf. MACH is
of a low rank Tucker approximation. MACH is useful  embarrassingly parallel, and adapts easily to tensor
when the data does not fit into the available memory and streams.
also in tensor streams, such as computer monitoring sys- ) o ) )
tems, which is also the main motivation behind this work. ® The following theorem, which is our main theoreti-
Specifically, one of the monitoring systems of Carnegie @ result:
Mellon University, monitors and uses data mining tech-
niques to detect failures. Currently, it monitors over 100
hosts in a prototype data center at CMU. It uses the SNMP
protocol and it stores the monitoring data in an mySQL andb = maxi,,...i, | Xi....ial-
da_tabase. Mining anomalies in this systgm ?s perform(_ed For p > max; (8 Zgzl,k¢j log )"
using the SPIRIT method and its extension in the multi- P (k=125 Tk) ) _
way case, i.e., the two heads method which uses a Tucker R™*™72" "¢ be a tensor whose entries are inde-
decomposition and treats the time aspect using wavelets Pendently distributed as;, i, = == with
[37,[21,[47]. Applying the aforementioned methods on  Probability p, otherwise 0.
large volumes of data is a challenge. Let X be the(ry, .. .,r4)-rank approximation oft

Itis worth outlining at this point that in many data min-  given by its HOSVD :
ing applications preserving a constant number of principal . R
cogmp?opnents aIn?ost the sgame is of high practiczl vallloje: (1) X=X x AVANT 5y g ADADT
a low rank approximation typically captures a significant
proportion of the variance in many real world processes
and outliers can be detected by examining their position
relative to the subspace spanned by the PCs. R

It is also worth noting that despite many cases where Let X, X(i)r, denote the rank-; approxima-
the formulated tensor is sparse, i.e., few non zero elements tion of the matricizations{;,, X(i) of tensorst, X
as observed in[27], there exist real world problems where along mode respectively. Then with probability at
the tensor is dense. As talble 1 shows, for both monitoring Ieastl'[le(l —exp(—19 Zizlk# log I1,)) the fol-
system we use in the experimental secfibn 4, the result- lowing holds:

Theorem 1 Let X € Rirxl2x...xIa g d-mode ten-
sor. Letl, > 76, I2 < [[1_, I forn = 1,....d

let ¥ €

whereA(™) is a I, x r,, matrix containing the-,,
top left singular vectors of the matricization &f
along them-th mode.



| Symbol | Definition and Description

y d number of modes
() ¥ —X| <t I dimensionality of
j-th mode
wheret is given by the following equation: X,Y,...e R [ d-mode

tensor (calligraphic)

t = min;=;. qt; where X tensor obtained upon
ti = || X (i) — X(oy.r, || + 4b(Z HZ:L,C# L)+ applying MACH onX
: J : AU, ...e Rm*n matrices (upper case)
AUX (i), 110)2 (5 TTem s L) o, B, i T, scalars (lower case)
d . . Xy X(iy matricization ofX’, X
Zj:l,j;éi 11X Gy = Xy along mode
_ o X (i) X (i), r; rank approximation
e Experiments on monitoring systems, where we ’ ’ of the matricizations
demonstrate the success of our proposed algorithm. X X(-)

The outline of the paper is the following: in Sectign 2 Xgo| r:ioiz":giggggrtho onal
we briefly present the necessary theoretical backgroun qH Ite?ation [30] g
in Sectior B we describe and analyze the proposed methegd OSVD Hiaher Order Snadl
and in Sectiofill4 we present the experimental results. Wé:] \gher Lrder singuiar

conclude in Sectiofl5. Value Decompositiori[8]

Table 2: Symbols

2 Background

In this secttljoln we brllefly pregent.the bj_(;lé?ro;ng beh y array. We will callt” a tensor, i.e., we will use the
tensors and low rank approximations. € 2 SNOWS Il multiway array and tensor interchangeably. The or-

symbols and the abbreviations we use and their explaagf of a tensor is the number of dimensions, also known

tion. as ways, modes or aspects and is equdlfar tensorX.
The dimensionality of thg-th mode is equal td;.

21 Tensors The norm of tenso#’ is defined to be the square root
of the sum of all entries of the tensor squared, i.e.,

Historical Remarks Tensors traditionally have been L 7

used in physics (e.g., stress and strain tensors). After E@ 1] = Z Z Z 2

stein presented the theory of general relativity tensokan o Jiseesd

ysis became popular. Certain ideas on multi-way analysis

data back in 1944 and 1952 and are due to Raymond G&g-we see the norm of a tensor is the straight-forward gen-

tell [38,[39]. Tucker introduced tensor analysis in psycheralization of the Frobenius norm of a matrix (2 modes)

metrics [49] (Tucker family). Harshmah [19] and Carto NV modes.

rol and Chang[[6] independently proposed the canoni-The inner product of two tensors with the same num-

cal decomposition of a tensor (CANDECOMP family)oer of modes and equal dimensionality per mote) €

These two families of decompositions come with differefit’* * /2> -4 is defined by the following equation:

names, seé [26]. The difference between them is visual- LI I

ized for a three way tensor in figure .1. In the followingyy (X, v = § : § : § : T e
we will focus on Tucker decompositions. < > S d

iég\sor Concepts Let X € RI1xl2x.-xIa phe a multi-
¥

J1=1j2=1 Jja=1

Ji=1j2=1 Ja=1
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Figure 1: CANDECOMP/PARAFAC and Tucker tensof 9Ure 2: Matricization of athree-waly x I x I, Iy = 3,
decompositions. tensor along the first mode. The three slices are denoted

with different color.

Observe that equatidd 3 can equivalently be written as _ ) L
x| = \/{X,X) A tensor fiber (slice) is a one (two)- The importance of this equation lies in the fact that the

dimensional fragment of a tensor, obtained by fixing aﬁlrder of execution of the tensor matrix products does not

indices but one (two). For more details on tensor fibe??y any role, as long as the multiplications are along dif-
and slices, seé [26] erent modes. When we multiply a tensor and two matri-

Matricization along modek, results in al, x ces along the same mode the following equation holds:
H?:l,j;ﬁk I, matrix. The(iq,...,iq) elementis mapped
to (ix,j) wherej = 1+ 30, ;. (iq — 1)J, where (7) X X A Xy B=X x,, (BA)

Jg = an;llﬂm#k I,,. Figure[Z1 shows the concept of

o . .
matricization for a three-way tensor. The operation fFurthermore, U™ = I then the following equation

matricization naturally introduces the concept of a ve olds:

tor containing ranksry, ..., r4): r; is equal to the rankf(8) 1A, U|| = [|4]|

of the X;), the matrix resulting by the matricization o

the tensort’ along thei-th mode. The rankR of thed-way tenso#Y is the minimum num-

Then-mode product oft’ with a matrix A/ € R’*™»  per ofd-linear components to fit exactly, i.e.,:
is denoted byX' x,, M and is a tensor of sizé x Iy x

coidy_1 x J X Inyq x ... I4. Specifically, ©) e zR: (D) 0e® oo e
In m=1
(B) (X X M)y i jiniria = D Tirio.ig M, , ,
in=1 Wherecgj), ceey cg_%) are theR components for thg-th
mode and denotes the tensor product. Even if the above

Some important facts concerningmode products, is the A X o
following'p P generalization is a straightforward generalization of the

rank of a matrix, the concept of the tensor rank is special.
For example, for a matrixd € R?*2 the column rank
(6) X Xpp AXy B=X X, BX,;, Am#mn R, and the row rank®, are equalR. = R, = r to the



matrix rankr. Furthermoreyr < 2. However for a tensor Tucker3 Algorithms The algorithm which should be

X € R?X2x2 the rank can be 2 or 83]29]. Therefore thased to compute the Tucker3 decomposition of a tensor

word rank can have different meanings: a) The individudépends on whether or not the data is noise free. In

rank, i.e., for a specific instance of a tensor what®sb) the former case, an exact, closed form solution exists,

The typical rank is the rank that we almost surely obserwehereas in the latter case the alternating least squares al-

For example fo x 2 x 2 tensors the typical rank i, 3}.  gorithm (ALS) is frequently used. However, it is worth

c) Vector of rankgry, ..., r4). The value of; is equal to noting that even in cases where there is noise in the data,

the rank of the matricized versioxy;, of the tensor. the closed form solution a.k.a. as HOSVD][25, 8] is satis-
Consider figur€2]1, which depicts a three mode tendactory in practice([32].

X e RIixI2xIs  The PARAFAC/CANDECOMP model Let X € RI1xT2xTs and(rl, Ta, 7.3) the vector contain-

is given by equatioi 10, whereas the Tucker modelji§; the desired approximation ranks along each mode. In

given by equation 1. the case of noise-free data, the algorithm matricizes the
tensor along each mode and computes-hep left sin-
R gular vectorss = 1,2,3. Let A, be thel, x r; matrix
(10) Xijk = Za”bﬁcq,,/\r + €ijk containing in its columns those vectors. The core tensor
r=1 is computed with the following equation:
P Q R 12 G =X x; AT x5 AT x5 AT
(11) Xijk = Z Z Z QipbjqChr Ypgr + €ijk (2 ' ’ ’
p=1qg=1r=1

. _ In the case of noise in the data, one performs the al-
Few brief remarks on the above two models: &) Wrnating least squares algorithm. To solve the nonlinear

terms of the fit, the Tucker family is at least as goqghimization problem that tries to optimize the fit of the
as the PARAFAC/CANDECOMP since as we see frofg,y rank approximation with respect to the original ten-

the above equations, the PARAFAC model can be viewgg one converts the problem into a linear one, by “fix-
as a restrictive Tucker model, where the core terij;oringu all modes but one and optimizing along that mode.

is superdiagonal, i.egp,r # O only if p = g = 7. This method is also known as Higher Order Orthogonal
However, it is worth noting that better fit is not neCrieration (HOOI). This procedure is continued until some
essarily optimal (se€_[44], Ch.7) b) The Tucker modgjopping criterion is met, i.ec,improvement in terms of

does not result in unique solutions since it has rotationgl

freedom. Typically one chooses a solution that satis-

fies a certain criterion, as the all-orthogonality core ten-

sor: (G(m,:,:),G(n,::)) = (G(:ym,:),G(:,n,:)) =

(G(:,:,m),G(:,;,n)) = 0 whenm # n ([8]). c) Ba- Further Remarks Hastad proved that the tensor rank

sic concepts as the uniqueness of the canonical tensorisien NP-complete problem [20]. Lek-Heng Lim has pro-

composition, degeneracy of the rank, border rank are paised a theory for eigenvalues, eigenvectors, singular val

discussed. A good referencelis[26] and the related refees and singular vectoris [31]. Maximum constraint sat-

ences therein. isfaction problems (MAX-rCSP) have been casted as a
In the following we focus on the Tucker family. Com+iensor decomposition problem (sum of rank one compo-

pressingn out of thed modes of a tensor results iments). In[[7] is proved that there is a PTAS (polynomial

a Tuckern decomposition [[24]). For example, for a&ime approximation scheme) for a family of MAX-rCSP

three mode tensor we can have the Tuckerl, Tucker2 &nel., core-dense). Sheehan and Saad in [42] give a unified

Tucker3 decomposition. In the following we discuss aldiew of different dimensionality reduction techniques un-

gorithms for the Tucker3 decomposition and briefly statker the tensor framework. A wealth of applications that

some facts about Tucker2 and Tuckerl decompositionse tensor decompositions exist,[[26] contains a wealth of

Generalization t@l modes is straightforward. such references.



2.2 SVD and Fast Low Rank Approxima- Randomized Tensor Algorithms As already dis-
tion cussed, the most computationally expensive step for the
Tucker decomposition is the SVD part. To alleviate this

Any matri.xA € R™>" can be written as a sum of rankgst two randomized algorithms which select columns
one matrices, i.e.A = >, U] wherew;,i = according to a biased probability distribution for tensor
1...r (left singular vectors) and;,i = 1. T (right sin- decompositions [14] have been proposed, extending the
gular vegtors) are qrthonormal and the singular valges #8ults of [T1]and[L3] to the multiway case and Tensor-
ordered in decreasing orde}r >...>0.>0. Heref IS CUR [34], the extension of the CUR methad [33]iR

the rank ofA. We denote with4, the k-rank approxima- modes. Roughly speaking, the bounds proved are of the
tion of 4, i.e., A, = 35| oyu]. Among all matrices form[I3. Another approach to approximating the Tucker
C € R™*" of rank at mostt, A is the one that mini- decomposition for the case of a three-way tensor is pre-
mizes||A — C||r ([22]). Since the computational cost okented in[[35]. The proposed method matricizes the tensor
the SVD is high,O(min (m*n,n*m)) for the full SVD  as in all aforementioned algorithms and employes appro-

approximation algorithms that give a close to the optimgfiately the matrix approximation described[in|[18].
solution A, have been developed. Frieze, Kannan and

Vempala showed in a breakthrough paper [15] that an ap-

proximate SVD can be computed by a randomly chosg&  Proposed M ethod

submatrix ofA. It is remarkable that the complexity does

not depend at all om,n. Their Monte-Carlo glgorithm The proof of theoreml1 follows:

with probability at leasi — ¢ outputs a matrix4 of rank

at mostk that satisfies the following equation: Proof1 Let & = X — X where X = X x;
AR a2 2 AW AT sy AD ADT Without loss of generality,

(13)  [[A-Allp <[lA— Akllr + €l|Allz let's assume of equatior 2 is minimum for indek the

Drineas et al. in[[12] showed how to find such a low ranlst mode. Observe first that matrix = A®AOT for

approximation inO(mk?) time. A lot of work has fol- ; — 1 ... d s an orthogonal projector. Specifically,

lowed on this problem. Here, we present the results M)jects on the subspace Spanned by th@:tdﬁft Singu-

Achlioptas-McSherry[[3] which are used in our wlrk |ar vectors of the-th matricization of tensai’. Therefore
The main theorem that is of interest to us is thedrém 2.\ye have the following:

Theorem 2 (AchlioptasMcSherry [3]) Let A be any  |I€]l = [|& =& x1 AW AN sy g AD AT =
mxn matrix wherer6 < m < nand leth = max;; | A,;]. ||X1 — & X A(d)é(d)i & X A(fi)A(d)Z —
For p > (8logn)!/n. Let A be a randomm x n AW AWT "'Xdé)( ){11)(,[) < ||X_)(Z>_<{1)A((;ﬁ(); I+
matrix whose entries are independently distributed, wiH{ff _d); xy AATTL Xg—l fT A ) Xd
Ai; = Ay, /p with probability p and 0 with probability A AT < (| = & xq ADADT| 4 [|X = X
J J ' - M AWT o Ald=1) g(d=1)T
1 — p. Then with probability at least 1-expd(logn)?), A o hd-l : ||. )
the matrixN = A — A satisfies the following two equa- Ve obtained the above inequality by adding and sub-
tions: tracting tensort’ x4 A AT and applying the trian-
gle inequality for a norm. The last line was obtained by
using the fact thatd() A(DT is a projector thus we can
(14) [|Nk|l2 < 4b\/§ only reduce the norm if we project thieth matricization
p oftensorX — X x; AW AMT x4 AWd=D gld=DT
along thed-th mode.
nk Now consider the ternj|X — X x; ADADT|],
(15) INkllF < 4b\/; If we matricize this tensor along thé-th mode the
Frobenius norm remains unchanged. Therefgré —

P d) ADT|| — %
1We call our proposed method MACH, to acknowledge the fadt the Xd A AC ) || = ||)_((d) - X(d)-,m”- NOW We_
it is based on théchlioptasM cSherry work. use the following inequality to further bound this resid-
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Figure 3: (a) Top approximate Principal Component (PC) ef ‘tmachine-id” mode using the sampling MACH
method vs. the exact PC. The PC was computed using a Tuckeodngesition of the three-way tensor machine
id x type of measurement timeticks, formulated by data from the CMU monitoring syst{21]. MACH used
approximately 10% of the original data. Pearson’s cori@tadoefficient is shown in the inset, and is almost equal to
the ideal value 1. Such PCs are of high practical value simegdre used in outlier detection algorithins|[21,[37, 47].
(b) Exact PC for the time aspect (c) Approximate PC using MAEElarson’s correlation coefficient for the two time
series equals 0.9772, again close to the ideal value 1.

ual norm: [|X — X x4 ADADT|| = ||X, — thesame procedure to the last term and observing that for
o [rq T1d—1 termk for k=1,..,d-1 the norm does not change if we ma-
Xaprall = 1||X(d) h X(d)]’”H b 7Hk:1]k+ tricize with respect to that mode, we obtain the following
A X (ay.ral )2 (52 TTiz) T simple upper bound:
The last inequality follows by combining two argu- ||)2 — X x; AVAWT A(dfl)A(dfl)TH <
ments which appear iri [3]. Namely, for any matrices AZZj ||Xk — X ol
and B, the following holdsi|A — By < |[A—Ak|lr+ "By combining the above results we get the desired in-
2V/1[(A = B)ille[[Axllr +[[(A— B)k|[» Now substitut- o0 aiity Three final remarks: observe tieis the maxi-
ing for A the matrixX ) and for B, the matrixX(a) ,, mum of any matricization of our tensor and it is clear that
and using equatiof 15 to upper-boufidA — B)i|| = since the above procedure gives for each aspext in-
I(X = X),|| gives the last inequality, whefe = 74 in - equality of the forn{|X — X|| < t; then||X — X|| <
our case. Observe that we can use equdfion 15 since g, +,. Finally the probability of success follows as the
assumptions of Theordrh 2 hold by our assumptions. product of the success probabilities along each mode
Now consider the terfX — X x; AW AMT 5,
Ald=1) A@=DT|| We will recursively apply simple prop-
erties of a norm and of a projector. Specifically:

Remarks (1) Theorenil suggests algorithm 1, MACH-
JI?? C X o, ADADT A(d—l)A(d—l)TH _ H?EVIXDI. The algorithm take§ as input a .tenstjr €
X=X 5 g1 A-DAG@=DT L x5, | A=) g@-DT _ R7->% and a vector containing the desired ranks of
X ox, AVAOT A(dfl)A(d*UTH < apprOX|mat|qn along each mod&,, ..., R;). MACH
5 5 Ald—1) g(d-D)T 5 tosses a coin for each non-zero engty, . ,, of the
IV = & X I G tensor with probabilityp of keeping it andl — p for
X oxy ADADT o A= AW=DT) o or with p yp Of Ke€eping —pror
A(d‘1>A(d‘1>T|| < ||93 X oy A(d—l)A(d‘”TH n zeroing it. 2I(n caise of keeping it, we reweigh |t,_|.e.,
||)2 — X xy ADAWMT s, Ald=2) A(d=2)T |, Xiy...i, < =t==4 Then we return as an approxima-

Again we used the triangle inequality plus the fact théibn to the HOSVD of tensai’ the HOSVD of tensoft'.
we can only reduce the norm if we project. Now repeatifidne key idea behind proposing this algorithm is that for

12000
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Figure 4: Principal component for the “type of measuremeasect for the Intel Lab Berkeley sensor network
[10]. Ids 1 to 4 correspond to voltage, humidity, temperatamd light intensity. As we observe, the PC captures the
correlations between those types and MACH succeeds withlpr@reserving them accurately.

any matricization along modeof tensorX we getthat: p. (4) The expected speedup depends on the “under-the-

X — X xp ADABT|| = ||X;) — X | < hood” method to find the top singular vectors of a ma-
(k) k)il = .
p—— trix. Lanczos method [17] is such a method. Recently, ap-
Xy = Xwwdl + 4b\/? Hmzl,msék It proximation algorithms approximate tierank approxi-
A(bX ()., )2 (2 Hiﬁl_m# L), mation of a matrix in linear timé [40]. Thus, if such a fast

algorithm is used, the expected speedu%.is(S) Theo-

rem[1 refers to the HOSVD of a tensor. We can apply
e same idea to the HOOI. This results in algorithm 2.
e do not analyze the performance of algorithm 2 here,

since it would require the analysis of the convergence of

X(w)re- the alternating least squares method which does not ex-
(2) Frequently smalt;'s result in a satisfactory approx-st yet. As we will show in the experimental sectioh 4,

imation of the original tensor. The sparsification procefACH-HOOI gives satisfactory results.

we propose due to its simplicity is easily parallelizable

and can easily be adapted to the streaming c¢ase [21] by

tossing a coin each time a new measurement arri@s. 4 Exper iments

Picking the optimap in a real world application can be

hard, especially in the context we are interested in, i.Experimental Setup We used the Tensor Toolbox

monitoring systems, where data is constantly arrivin@l], which contains MATLAB implementations of the

Another potential problem are the assumptions of the tH¢OSVD and the HOOI. Our experiments ran in a 2GB

orem which may be violated. Fortunately, this does nBAM, Intel(R) Core(TM)2 Duo CPU at 2.4GHz Ubuntu

render MACH algorithm useless. On the contrary, pickilgnux machine. Tabl&]3 describes the datasets we use.

a constanp even for small tensors which do not satisffrhe motivation of our method as already mentioned, is to

the conditions of the theorem result turns out to be acqurovide a practical algorithm for tensor decompositions

rate enough to perform data analysis. Therefore, a praethich involve streams, such as monitoring systems. It

cioner in whose application constant factor speedups asidlso worth noting that the assumptions of theofém 1

space savings are significant can just choose a constimhot hold. Nonetheless, results are close to ideal. Fi-

Intuitively if tensor X has a goodry,...,rq) Tucker
approximation, then matricization along moéiehas a
good r; rank approximation. The sparsification allow,
us to approximate this low rank approximati&iy, ., by



- - Principal Component
Algorithm 1 MACH-HOSVD "Time" Mode (Tucker3)
Require: X € RIvxx1

Require: (r1,...,7q4)

0.08-

Re?uire: p} o | \ U " r
MACH E | 1 % ﬂ
for eachd;, . ;,,%; = 1...1; toss a coin with proba- Zﬂj I t\ f'l M r Y ‘ | ﬂ \‘
bility p of keeping it. 2 o] | m | / ‘ N
if successthen o.oz—Lv | H \JH | 1l } “
Xil;---7id <_ e - 0'01\ N\\\ | My -‘ iy } Wy
el% g 0 : J ! 2“\00LH k :O(TJ ! ‘H ‘000‘ ‘ 1200
le .0

""" Timetick

end |f{HOSVD}
fori=1toddo

A« r; leading left singular vectors of ;)
end for
G+ X x1 AVT ) AQT  «, AT
return G, AW, ... A

Figure 5: Principal component for the time aspect using
MACH with p=0.1. Daily periodicity appears to be the
dominant latent factor for the time aspect.

nally, in this section we report experimental results for

Algorithm 2 MACH-HOOI t_he MAQH-HOOI. T_he reason is that Tucker de<_:omp05|_-
tions using alternating least squares are used in practice

more than the HOSVD and also, they have already been

Require: X e RI1x--x1

Require: (r1,...,7a) successfully applied to the real world problems we con-
Require: p sider in the following[[47]. The results for HOSVD are
{MACH o consistently same or better than the results we report in
for eachd;, . ;,,%; = 1...1; toss a coin with proba- this section.
bility p of keeping it.
if successthen, name I x I x I
Xipig 6~ Sensor 54-by-4-by 5385
else Network Data ([I0]])
Xiyoig <0 Intemon 100-by-12-by-1008(
end if Data ([21l1)
{HOOI}
initialize A®) € RT=*"* for k = 1...d using HOSVD
repeat Table 3: Dataset summary. The third aspect is the time
for i = 1tod do aspect.

Y <« )e X1 A(l)T Xi—1 A(iil)T X441
AGHDT X 4 ADT

AW « r; leading left singular vectors af ;) 41 Monitoring computer networks

end for
until fit stops improving or maximum number of iteraAs already mentioned in Secti@h 1, a prototype monitor-
tions is reached ing system in Carnegie Mellon University uses data min-
G X xy AT 5y ADT 5y ADT ing techniques successfully [37,121,] 47] to spot anoma-
return G, AW .. A lies and detect correlations among different types of mea-

surements and machines. Analyzing and applying these
techniques on large amounts of data however is a chal-
lenge. A natural way to model this type of data is a three-
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(a) SENSOR Concept 1 (b) SENSOR Concept 1 using MACH

Figure 6: (a) shows the distribution of the most dominamtdré€b) shows the distribution of the most dominant trend,
using MACH algorithm with p=0.1. Pearson’s correlation fficeent equals 0.93, and thus the qualitative analysis
of the dominant sensor/spatial correlations remains entdtl by the sparsification. Colored bars indicate positive
weights of the corresponding sensors. As suggestéd ingd/dlues assigned to the sensors are more or less uniform
suggesting that the dominant trend is strongly affectechbydiily periodicity.

way tensor, i.e., machine idype of measuremertime. which ideally would be the machines that face a function-
The data on which we apply MACH is a tensat € ality problem. FigureBl3(b]L]3(c) show the exact top and
R100x12x10080 -~ The first aspect is the “machine id” asthe MACH PC for the time aspect. Pearson’s correlation
pect and the second is the “type of measurement” asefficient is equal to 0.98. We observe that there is no
pect (bytes received, unicast packets received, bytes seleiar periodic pattern in this time series. The important
unicast packets sent, unprivileged CPU utilization, othfact is that MACH using only 10% of the data, results in a
CPU utilization, privileged CPU utilization, CPU idlegood approximation. This is of significant practical value
time, available memory, number of users, number of prand can be used also in conjunction with DTAI[46] to per-
cesses and disk usage). The third aspect is the time asgeot dynamic tensor analysis in larger time windows.
Figure[3(a) plots the Principal Component (PC) of the
“ma_c_hine |d aspect after performing a Tucker3 deco_rgf—_z Environmental Monitoring
position using MACH versus the exact PC. Our sampling
approach thus kept approximately the 10% of the original this application we use data from the Intel Berkeley
data. As the figure shows, the results are close to id&ssearch Lab sensor network|[10]. The data is collected
and similar results hold for the other few top PCs. Specffom 54 Mica2Dot sensors which measure at every timet-
ically, Pearson’s correlation coefficient is 0.99, close tok humidity, temperature, light and voltage.
the ideal 1 which is the perfect linear correlation betweenlt has been shown in_[47] that tensor decompositions
the exact and the approximate top PC. This fact is imp@long with a wavelet analysis can efficiently capture
tant since these PCs can be used to find outlier machiresgmmalies in the network, i.e., battery outage as well as
spatial and measurement correlations. In this section we

10



show that a random subset about 10% of the initial dati@w to choosep? Choosing the best possihlas an is-
volume suffices to perform the same analysis as if we hsuk. We use a constant p, i.e., p=10% in our experilﬂents
used the whole tensor. Constanp’s are of significant practical value in such set-
Figure[4 shows the correlations revealed by the things where it is not clear how one should péb sparsify
principal component for the “type of measurement” aghe underlying tensor optimally. For “post-mortem” data
pect. As we observe, voltage, temperature and light eRalysis, one can try setting lower values for p according
tensity are positively correlated, whereas at the same titngheoreni 1.
the latter types of measurement are negatively correlated

with humidity. This is because during the day, tempergpeedupS & Synthetic Experiment Speedups due to
ture and light intensity go up but humidity drops becau$gs small size of the two datasets and the implemen-
the air conditioning system is on. Similarly , during the .o \was less than the expectedd Qtypically 2-3x
night, temperature and light intensity go down but humigier herformance). However, as the size of the tensor
ity increases because the air conditioning system is cgfows bigger (i.e., the number of non-zeros) the speedup

Furthermore, the positive correlation between voltage al\d,, 14 become apparent. For example consider a tensor
temperature is due to the design of MICA2 sensors. AS\%EG ROXnXn \ith X, = —
’ gk —

: . o C ——— and assume we want
observe again, MACH gives the same qualitative analysis itk

by examining the principal component. Pearson’s corig- (r,r,7) approximation. As shown iri]16.%0] for an

lation coefficient is close to the ideal value 1. Figure %ptﬁrommgnon \;yltfh_err(_)f the rzla_rskgé(_)ws logarithmically
shows the principal component for the time aspect. \Q-Q n ande, satisfying inequaliti.T6:

periodic pattern is apparent and corresponds to the daily
periodicity. Performing a Tucker2 decomposition as Su§I6)
gested by[[4]7] and plotting the fiber of the core tensor
corresponding to the principal components of the tensorrjs tensor appears in numerical solutions of integral
for the “sensor id” and “measurement type” mode, the '8quations[36]. A small numerical example foe= 4 and
sults are again close to ideal. Figlile 6(a) shows the prip—_ o gives the results in tab[@ 4 for = 0.1. The

cipal component for the “sensor id” aspect using the exaglcond column of the table contains a vector of three val-
Tucker decomposition and Figurk 6(b) using MACH W!tl]es(pl, pa.p3). p; i=1,2,3 is the correlation coefficient
p=0.1. The top component captures spatial correlatifisveen the principal component of the exact Tucker3
and MACH preserves them with a random subset of siggcomposition and the MACH Tucker3 decomposition
approximately 10% of the original data. Pearson’s corgr aspect i. As we see the correlation is almost perfect
lation coefficient is equal to 0.93. for all aspects. This is significant since the single im-
portant interaction is betwen the first principal compo-
4.3 Discussion nents. This can be seen by examining the core tBnsor

] ‘The third column contains the accuracy of the approxima-
General The above experiments show MACH results Iﬁon e 1 X —Zx  AD AT 5 5  AD A@DT ) As we

a good approximation of the desired low rank Tucker ap-" "’ h. " q b I[X1] | o T
proximation of a tensor. Similar result hold for the oth e the speedup now becomes apparent, I.e.x er.

few top principal components of the Tucker decompoé:lina”yhvvh_en we attempt to run Tucllfer3 ona Iarger ten-
tion. Also, as already mentioned, results for HOSVD ar@" With =500, MATLAB runs %Ut ° rr:(emgry, whereas
consistently better or same with the reported ones, a\NBen using p=0.1 we can run the Tucker decomposition

the above appllcathns were selected since it has al_r_eadYFor both applications that value of p, gives excellent rssuf we
been shown by previous work that Tucker decompositiogs p=5% for the first application results get significanttyrse whereas
and SVD can detect anomalies and correlations. Thus, i¢ighe second results remain good.

. . . . : f 3 The exact core tensor value which determines the interatt®
main goal of this section is -rather than introducing new - top PCs ig(1,1, 1) — 18.4856 and 18.4887 for the MACH

applications- to ShC_)W that keeping a small random subggdomposition. The next largest core tensor value has wtbsahlue
of the tensor can give good results. 2.61<<18.5.

r < C(lognlog®€)
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