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Abstract

We introduce a novel Bayesian framework for hybrid
community discovery in graphs. Our framework,HCDF
(short for Hybrid Community Discovery Framework),
can effectively incorporate hints from a number of
other community detection algorithms and produce
results that outperform the constituent parts. We
describe two HCDF-based approaches which are: (1)
effective, in terms of link prediction performance and
robustness to small perturbations in network structure;
(2) consistent, in terms of effectiveness across various
application domains; (3) scalable to very large graphs;
and (4) nonparametric. Our extensive evaluation on
a collection of diverse and large real-world graphs,
with millions of links, show that our HCDF-based
approaches (a) achieve up to 0.22 improvement in link
prediction performance as measured by area under ROC
curve (AUC), (b) never have an AUC that drops below
0.91 in the worst case, and (c) find communities that are
robust to small perturbations of the network structure
as defined by Variation of Information (an entropy-
based distance metric).

1 Introduction

Graph analysis methods have recently attracted signif-
icant interest. In this paper, we focus on the problem
of discovering community structures in large, real-world
graphs. In this context, three desirable properties are:

(P1) Effective: The global connectivity patterns of the
network are successfully factored into communities,
which are highly predictive of individual links and
robust to small perturbations in network structure.

(P2) Scalable: Time and space complexity are strictly
sub-quadratic w.r.t. the number of nodes, scaling
up to graphs with millions of links.

(P3) Nonparametric: The number of communities need
not be specified a priori, instead it is determined
from the data itself.

Graphs have attracted interest because they arise nat-
urally in many different settings, and across a very di-
verse set of domains, including bibliographic analysis,

social networks, the World-Wide Web, computer net-
works, product recommendations, and so on. Conse-
quently, a fourth property is also desirable:

(P4) Consistent: The effectiveness of the discovered
community structure, as defined in (P1), is con-
sistently high, across a wide range of data sets.

Despite the recent interest, approaches that possess all
of the above properties, (P1) through (P4), are rare.
Here, we introduce two hybrid approaches that exhibit
all of them. Our approaches are based on a novel
Bayesian framework, HCDF (for Hybrid Community
Discovery Framework), which can successfully incorpo-
rate communities discovered via other, non-Bayesian ap-
proaches as hints that lead to improved effectiveness of
results and consistency across various domains.

Why is a hybrid community discovery a good idea?
Intuitively, soft clustering approaches with mixed-
membership (most of them Bayesian) have more leeway
to explain a node’s links, compared to hard clustering
approaches (most of them non-Bayesian). On one hand,
if a node’s links cannot be explained by a single mem-
bership, soft clustering has an advantage. On the other
hand, if a node’s links can be explained almost equally
well by a number of single and mixed memberships, hard
clustering may make a simpler assignment. Therefore,
combining these two clustering approaches can poten-
tially lead to improved community factorization.

However, designing a framework that can success-
fully combine different approaches is not a trivial task.
We extensively studied three orthogonal aspects, which
we summarize next.
Core Bayesian model. This serves as the foundation,
upon which HCDF is built. We chose Latent Dirichlet
Allocation on Graphs (LDA-G) [12] as the core Bayesian
method for community detection, because it is simple
and satisfies properties (P1) to (P3).
Hint sources. Among known methods, we examined
two that also satisfy properties (P1) to (P3). The first
is Fast Modularity (FM) [5, 18], which is a spectral
partitioning method. The second is Cross-Associations
(XA) [3], which is an MDL-based approach. Both
methods produce hard clusters (also referred to as



communities or groups).
Coalescing strategies. We explored three options
for incorporating hints into the core Bayesian model:
seed which uses hints only as an initial configuration for
the inference procedure; prior which propagates hints
from one configuration to the next; and attribute which
incorporates hints as additional link-attributes.

To quantitatively measure the effectiveness of the
discovered community structure, we use link prediction
performance and robustness to small perturbations in
the network structure. Why is link prediction a good
measure? A factorization of the graph’s connectivity
structure into a number of communities is good, if
it can be used to predict the presence or absence of
links between a pair of nodes based on their respective
communities. Therefore, we evaluate effectiveness by
randomly holding out a number of links, building the
model under evaluation, and then trying to predict
the held-out links. We use area under the ROC curve
(AUC), as an accurate measure of performance.1 Why
is robustness to small perturbations in the network
structure a good measure? As Karrer et al. argue,
community structures that are “significant / believable”
should be able to withstand small perturbations in the
network structure [13]. We utilize their quantification
of robustness, measured by Variation of Information
∆: an entropy-based distance metric that measures the
distance between two clusterings – one on the original
network and one on the perturbed network.

We describe an extensive evaluation on several
real data sets from a diverse range of domains (see
Section 4). Our methods, HCD-X (which utilizes
hints from Cross-Associations as link-attributes) and
HCD-M (which utilizes hints from Fast Modularity
as link-attributes), achieve significant improvements
in effectiveness across the board, while maintaining
scalability. We observe up to 0.22 improvement in AUC
scores for link prediction. The average AUC scores for
HCD-M and HCD-X (across nine data sets and five trial
runs) are 0.95 and 0.96, respectively. Furthermore, the
AUC of our hybrid methods never drops below 0.91 in
the worst case.

With respect to robustness to small perturbations
in the network structure, both of our hybrid meth-
ods maintain low values for Variation of Information,
∆ ∈ [0, 1]. For example, with 10% of the links ran-
domly rewired (while maintaining the same degree dis-
tribution), our hybrid methods have on average ∆ of

1AUC is equal to the probability of a model ranking a
randomly chosen positive instance higher than a randomly chosen

negative instance. The default value for AUC is 0.5. In our case,
a positive instance is a nonzero entry in the adjacency matrix
versus a negative instance is a zero entry.

0.19 (indicating that “significant / believable” commu-
nities were found).

Summarizing, the main contributions of the paper
are:

• We propose a generic Bayesian framework, HCDF ,
for hybrid community discovery; and present three
ways for coalescing hints from various community
discovery algorithms.

• We propose two novel solutions, HCD-X and HCD-
M, for the task of community discovery that are (1)
effective in terms of link prediction and robustness
to small perturbations in network structure, (2)
scalable, (3) nonparametric, and (4) consistent
across various application domains.

• We present results from an extensive evaluation
of HCD-X and HCD-M on several large real-
world graphs, with millions of links. Our results
demonstrate that HCD-X and HCD-M are highly
effective and consistent across different application
domains

The rest of the paper is organized as follows. Next,
we review the related work. We present our proposed
method in Section 3, followed by experimental results
and discussion. We conclude the paper in Section 5.

2 Related work

Bayesian Approaches to Community Discov-
ery in Graphs. There are only a handful of scalable
Bayesian approaches to community discovery in graphs
[26, 23, 22, 15, 12], most extend Latent Dirichlet Allo-
cation (LDA) [2]. LDA is a latent variable model for
topic modeling. SSN-LDA [23] and LDA-G [12] are the
simplest adaptions of LDA for community discovery in
graphs. GWN-LDA [22] introduces a Gaussian distribu-
tion with inverse-Wishart prior on a LDA-based model
to find communities in social networks with weighted
links. LDA-based models have also been used to find
communities in textual attributes and relations [24, 15].
For simplicity’s sake, we chose LDA-G for the Bayesian
constituent of HCD-X and HCD-M. We could have eas-
ily chosen one of the other scalable Bayesian approaches.
The effectiveness and consistency of these non-hybrid
Bayesian models to community discovery in a diverse
collection of real-world graphs is unknown.

In [15], the authors propose a multi-step approach
involving LDA to cluster large document collections
containing both text and relations. In [16, 10], the
authors propose a two-step approach to find clusters
in data containing attributes and relations (namely,
citation graphs and a gene-interaction network). The
strategies used to incorporate information from one step
to the next is different in HCDF than in these methods.



Also, it is not clear how these methods would perform
across a diverse collection of real-world graphs (besides
citation networks and biological networks).

Non-Bayesian Approaches to Community
Discovery in Graphs. There are numerous non-
Bayesian methods for community detection, including
the popular METIS [14], spectral methods [4] maximum
flow methods [9], co-clustering [7], multi-level clustering
(Graclus) [6] and others [25]. All of the above methods
do not satisfy the nonparametric property of the prob-
lem statement because they require the user to specify
the number of clusters k, or some other, related thresh-
old.

Cross-Associations (XA) [3] is one of the few meth-
ods that automatically determines the number of clus-
ters, as the one that minimizes the description length of
the whole graph. Graphically, XA rearranges the rows
and columns of the adjacency matrix such that each
row-group/column-group intersection is as dense or as
sparse as possible. The runtime complexity of XA for
a graph G = [V,E] is O(|E|), which is usually much
smaller than O(|V |2).

Extensions of XA that detect communities in time-
evolving graphs are: timeFalls [8] and GraphScope [20].
They determine communities, as well as merge and split
of them, as time grows. Although scalable and effective,
XA can not handle hints, neither in its base form, nor
in its extensions above.

Another popular method, that also does not require
the number of communities a priori, is based on the
concept of “modularity” [18], a spectral partitioning
method. However, its original version has prohibitive
complexity. Its fast version (FM) [5] addresses the
runtime complexity, with O(|V | · log2(|V |)), though it
only operates on the largest connected component of a
graph and not the entire graph. None of the modularity
approaches are able to handle hints.

Different Notions of a Good Community.
FM’s notion of a good community is one in which
the density of intra-community linkage is more than
inter-community linkage as compared to the expected
number. XA’s notion of a good community is based on
minimizing the total encoding cost, where community
members tend to have the same set of neighboring
nodes and may not be linked to each other at all.
LDA-G’s notion of a good community is similar to
XA’s except that community structure is found by
maximizing likelihood and community members tend
to have the same set of neighboring nodes in similar
proportions (i.e. it produces soft memberships in
communities).

3 Proposed Method

Table 1 lists the notations used in this paper. We first
briefly describe LDA-G, which is core Bayesian model in
our proposed HCDF , as well as an extension to LDA-G,
which handles hints as additional observed attributes.
Then, we provide details on HCDF .

3.1 Preliminaries LDA-G [12] is an extension of
Latent Dirichlet Allocation (LDA) [2] for use in graphs
rather than text corpora. LDA-G models each source
node in the graph as a multinomial distribution over
some set of communities Z. The cardinality of Z is
unknown a priori and is learned during inference (by
adopting a Dirichlet prior). In LDA-G, each source node
generates a series of communities from its multinomial;
and each community is a multinomial distribution over
target nodes. Any time a community is generated by a
source node, that community generates a target node
from its distribution. The distributions over source-
node to community and community to target-node
are learned using MCMC techniques (most commonly
Gibbs sampling) [11]. To simplify inference, it is
assumed that the roles of a node as a source-node and
as a target-node are probabilistically independent. The
generative model for LDA-G is as follows:

vi|zi, φ
(zi) ∼ Discrete(φ(zi))(3.1)

φ ∼ Dirichlet(β)(3.2)
zi|θui ∼ Discrete(θui)(3.3)

θ ∼ Dirichlet(α)(3.4)

Then, LDA-G’s update equation is:

(3.5) p(zi = k|z−i,v) ∝ nk
u + α

nu + αK
· nv

k + β

nk + βN

Unlike most approaches to community discovery,
LDA-G only requires present links (i.e., non-zero entries
in the adjacency matrix). This property helps its
runtime and space complexities. Its runtime complexity
is O(NKM); its space complexity is O(N(K + M)).
Since K � N and M ∼ log(N), LDA-G runs in
O(N · log(N)) ≈ O(|E|).

3.2 Extending LDA-G to Handle Node-
Attributes For use in HCDF , we extend LDA-G to
graphs with attributes by augmenting communities
with a new collection of multinomial distributions, one
per link-attribute. Each node-attribute generates two
link-attributes since source and target nodes are treated



V set of nodes ui ith source node (analogous to a document in LDA)

E set of links vi ith target node (analogous to a word in LDA)

N number of nodes = |V | zi ith community (analogous to a topic in LDA)

M average node degree ζi community for graph element i

Z set of communities ζr
i row-group for graph element i

K number of communities = |Z| ζc
i column-group for graph element i

R set of attributes to be added to the graph as hints aij jth attribute value on link i

A number of attributes = |R| Ai maximum number of possible values for attribute i

nk
u count of community k in source-node u θ Dirichlet prior on source-to-community distributions

nu

∑K
i=1 n

k
u α hyperparameter for Dirichlet on source-to-community

nv
k count of target-node v in community k φ Dirichlet prior on community-to-target distributions

nk

∑N
i=1 n

v
k β hyperparameter for Dirichlet on community-to-target

nai
k count of attribute ai in community k ρ Dirichlet prior on attribute distributions

γ hyperparameter for Dirichlet on attributes

Table 1: Notations used in the paper.

vz

a

Figure 1: Graphical model for LDA-G with Attributes.
The observables are the target nodes v and the at-
tributes a. The latent variable are the communities z.

separately and independently. The generative model
for LDA-G with link-attributes adds the following
generators to the aforementioned LDA-G model:

aij |zi, ρ
(zi)
j ∼ Discrete(ρ(zi)

j )(3.6)

ρ ∼ Dirichlet(γ)(3.7)

Figure 1 depicts the graphical model for LDA-G
with attributes. This model is appropriate for categori-
cal attributes. However, attributes can be binary-valued

or real-valued attributes, so long as they are given the
appropriate priors. We use Gibbs sampling [11] for the
inference procedure. The runtime complexity of LDA-G
on graphs with attributes is O(NKMA) ≈ O(E). The
update equation for LDA-G on graphs with attributes
is:

p(zi = k|z−i,u,v,a1,a2, · · · ,aA) ∝

nk
u + α

nu + αK
· nv

k + β

nk + βN

A∏
i=1

nai

k + γ

nk +Aiγ
(3.8)

3.3 Hybrid Community Detection Framework
(HCDF) HCDF takes any pair of 〈non-Bayesian,
Bayesian〉 community discovery algorithms and a coa-
lescing strategy, and produces an algorithm for finding
community structure in graphs.

3.3.1 HCDF(algorithm1, LDA-G, ATTR)
HCDF ’s coalescing strategy, ATTRIBUTE or
ATTR for short, incorporates the communities found
by algorithm1 with LDA-G by treating them as
attributes. In other words, the group assignments
of algorithm1 became attributes of the input graph.
Then, LDA-G learns a model of the community
structure given both the network structure and these
attributes.

To make our discussion more concrete here, assume
we have chosen XA for algorithm1. Algorithm 1



presents our HCD-X algorithm (an instantiation of
HCDF). Given a graph G = [V,E], HCD-X runs XA
and treats its row- and column-groups as link-attributes.
Then, HCD-X runs LDA-G on the attributed graph
(i.e., G with these link-attributes).

HCD-X treats each node’s row-group (i.e. cluster
label) as one categorical attribute and its column-
group as another categorical attribute (rather than
treating each row-group/column-group intersection as
a single attribute). In graphs with non-symmetric
adjacency matrices, these row- and column-groups are
often different.

In Algorithm 1, XA can be replaced with any other
scalable community detection algorithm. Specifically,
when we replace XA with FM, we refer to it as HCD-M.

Algorithm 1 HCDF(XA, LDA-G, ATTR) = HCD-X
Require: Graph: G = [V,E]

/∗ Run Cross-Association on G ∗/
[rowGroups, colGroups] = XA(G)
R = [rowGroups, colGroups]

Ensure: ∀i ∈ [1, A] and ∀ < u, v >∈ E: R ≡ {a<u,v>
i }

/∗ Run LDA-G on graph G with attributes R and
hyperparameters γ ≈ 10 and α = β ≈ 1 ∗/
/∗ Set the prior ∗/
ai1 ← a<u,·>

i ; ai2 ← a<·,v>
i

Initialize all count variables nu, nk
u, nk, nv

k, nai1
k , nai2

k

to 0
for each link < u, v >∈ E do

Sample community zi = k using Equation 3.8
Increment count variables nu, nk

u, nk, nv
k, nai1

k , nai2
k

by 1
end for
/∗ Run Gibbs sampling ∗/
for each edge < u, v >∈ E with in community k do

Decrement count variables nu, nk
u, nk, nv

k, nai1
k ,

nai2
k by 1

Sample community zi = k using Equation 3.8
Increment count variables nu, nk

u, nk, nv
k, nai1

k , nai2
k

by 1
end for

3.3.2 HCDF(algorithm1, LDA-G, SEED)
HCDF ’s coalescing strategy, SEED, is the sim-
plest way of fusing the output of a given commu-
nity discovery algorithm, algorithm1 with LDA-G.
HCDF(algorithm1, LDA-G, SEED) merely uses the
communities from algorithm1 to set the initial configu-
ration for LDA-G, then discards this information (i.e.,
forgets the hints) in subsequent sampling. Algorithm 2
outlines HCDF(algorithm1, LDA-G, SEED), where
Gibbs sampling is used to conduct inference in LDA-G

and algorithm1’s communities are used to initialize the
count variables.

Algorithm 2 HCDF(algorithm1, LDA-G, SEED)
Require: Graph: G = (V,E)

/∗ Run community discovery algorithm algorithm1

on G ∗/
hint = algorithm1(G)

Ensure: hint ≡ [su, s
k
u, sk, s

v
k]

/∗ Run LDA-G on graph G ∗/
/∗ Set the prior ∗/
/∗ Initialize all count variables ∗/
nu ← su; nk

u ← sk
u; nk ← sk; nv

k ← sv
k

/∗ Select initial configuration ∗/
for each edge < u, v >∈ E do

Sample community zi = k using Equation 3.5
Increment count variables nu, nk

u, nk, nv
k by 1

end for
/∗ Forget the hint ∗/
nu ← nu − su; nk

u ← nk
u − sk

u; nk ← nk − sk;
nv

k ← nv
k − sv

k

/∗ Run Gibbs sampling ∗/
for each edge < u, v >∈ E with in community k do

Decrement count variables nu, nk
u, nk, nv

k by 1
Sample community zi = k using Equation 3.5
Increment count variables nu, nk

u, nk, nv
k by 1

end for

3.3.3 HCDF(algorithm1, LDA-G, PRIOR)
HCDF ’s coalescing strategy, PRIOR, is similar to
SEED, but it does not discard algorithm1’s hints
(i.e., community information) after choosing an initial
configuration. Instead, the multinomial distributions
for each source-node and community are comprised
of (1) the empirical prior imparted by algorithm1’s
results and (2) the learned distribution from LDA-G’s
inference. There is no speed-penalty for retaining the
empirical prior because the Gibbs sampler requires only
the nk

u and nv
k counts (which refer to the count of com-

munity k in source-node u and the count of target-node
v in community k, respectively). Algorithm 3 presents
HCDF(algorithm1, LDA-G, PRIOR).

4 Experiments

This section presents an empirical comparison of link-
prediction performance and community robustness to
small perturbation in network structure. Link predic-
tion demonstrates a community structure’s ability to
model the underlying connectivity of the graph. Com-
munity robustness to small perturbations in the network
structure measures the “significant / believability” of
the discovered community structure. Specifically, if a



Algorithm 3 HCDF(algorithm1, LDA-G, PRIOR)
Require: Graph: G = (V,E)

/∗ Run community discovery algorithm algorithm1

on G ∗/
hint = algorithm1(G)

Ensure: hint ≡ [su, s
k
u, sk, s

v
k]

/∗ Run LDA-G on graph G ∗/
/∗ Set the prior ∗/
/∗ Initialize all count variables ∗/
nu ← su; nk

u ← sk
u; nk ← sk; nv

k ← sv
k

/∗ Select initial configuration ∗/
for each edge < u, v >∈ E do

Sample community zi = k using Equation 3.5
Increment count variables nu, nk

u, nk, nv
k by 1

end for
/∗ Run Gibbs sampling ∗/
for each edge < u, v >∈ E with in community k do

Decrement count variables nu, nk
u, nk, nv

k by 1
Sample community zi = k using Equation 3.5
Increment count variables nu, nk

u, nk, nv
k by 1

end for

community structure is significant, then it should be
able to withstand small perturbations to network struc-
ture [13].

4.1 Experimental Setup

4.1.1 Data Sets and Algorithms Tables 2 and 3
summarize the graphs used in our experiments. In-
ternet Topology Data: Autonomous Systems (AS )
Graph2 is an AS-level connectivity graph collected on
May 26, 2001. It includes Oregon route-views, Look-
ing glass data, and Routing registry data. IP Traffic
Data: (IP1 through IP5 ) are composed of IP traffic3

collected at the perimeter of an enterprise network over
five days in 2007. PubMed Data: AxK and AxA are
collections of data from the PubMed database.4 AxK is
a bipartite Author × Knowledge graph, where author
nodes connect to knowledge-theme5 nodes. A link ex-
ists from an author u to a knowledge-theme k for every
article in which u is a coauthor and k is a theme appear-
ing in the abstract. AxA is a coauthorship graph. It is
composed of 4555 connected components. The largest
connected component has 8763 authors (approximately

2Available at http://topology.eecs.umich.edu/data.html.
3This data is proprietary.
4PubMed is a repository containing millions of citations from

biomedical articles (see http://www.pubmedcentral.nih.gov/).
5Knowledge themes were extracted based on term frequency

in PubMed abstracts.

24% of the entire graph). WWW Data: This graph
was originally created to measure the diameter of the
Web [1]. It was collected by a Web crawler that started
from a nd.edu site.6

Table 4 outlines the different algorithms used in our
experiments. Details of each method were provided in
Sections 2 and 3.

4.1.2 Experimental Methodology for Link Pre-
diction Our experimental methodology for measuring
link-prediction performance on a single graph is a three-
step process. First, we randomly select a subset of
links from a graph. When selecting links, we pick both
present and absent links. A present link has a non-zero
entry in the graph’s adjacency matrix. An absent link
has a zero entry in the graph’s adjacency matrix. The
selected links comprise the held-out test set. Second,
each algorithm is given the remaining graph in which to
discover communities.7 Third, each algorithm uses its
discovered communities to estimate the probability that
a link in the held-out test set was a present link. These
estimates are then used to calculate the area under the
ROC curve (AUC).

For each data set, we ran five trials. In each trial,
the held-out test-set contains 1000 randomly chosen
links, with 500 present links and 500 are absent links.
Across the different methods (XA, LDA-G, HCD-X,
etc), the held-out test sets are the same for each graph.
The reported AUC-scores are averages of the AUC-
scores over the five trials.

Using Communities to Predict Links To pre-
dict a link between source-node u and target-node v in
LDA-G, HCD-X -SEED, and HCD–X -PRIOR, we use
the following formula:

(4.9)
scoreLDA−G(< u, v >) =

∑
k∈K

p(ζ<u,v> = k|Z,E)

Recall that K is the number of communities dis-
covered, Z is the discovered communities and E is the
graph’s links. p(ζ<u,v> = k|Z,E) is the same as LDA-
G’s update equation (see Equation 3.5).

To predict a link between source-node u and target-
node v in HCD-X and HCD-M, we use the following
formula:

6Available at http://www.nd.edu/ networks/resources.htm.
7LDA-G handles the held-out links as “unknown” observa-

tions. However, XA and FM treat them as absent links (with
zero entries in the adjacency matrix).



Real-World Graphs Acronym | V | | E | # Components % of LCC in V

Autonomous Systems AS 11,461 32,730 1 1

Day 1: IP × IP IP1 34,449 303,175 4 99.98%

Day 2: IP × IP IP2 33,732 320,754 8 99.96%

Day 3: IP × IP IP3 34,661 428,596 2 99.99%

Day 4: IP × IP IP4 34,730 425,368 2 99.99%

Day 5: IP × IP IP5 33,981 112,271 13 99.92%

PubMed Author × Knowledge AxK 37,346 (A) & 117 (K) 119,443 1 1

PubMed Coauthorship AxA 37,225 143,364 4,556 23.54%

WWW Graph WWW 325,729 1,497,135 1 1

Table 2: Summary of real-world graphs used in experiments. LCC refers to the Largest Connected Component.

Data Maximum Average Clustering Average Diameter # of Articulation % of Articulation

Graph Edge Weight Degree Coefficient Path Points Points in V

AS 2,432 2.86 0.258 3.67 11 828 7.2%

IP1 19,623 8.80 0.198 3.23 7 1,258 3.7%

IP2 23,130 9.51 0.18 3.22 8 1,208 3.6%

IP3 23,428 12.37 0.198 3.04 6 920 2.7%

IP4 22,454 12.25 0.216 3.07 7 841 2.4%

IP5 12,923 3.30 0.058 3.54 7 1,524 4.5%

AxK 5,366 3.19 0 1.00 1 54 0.1%

AxA 178 3.85 0.49 8.85 23 1,467 3.9%

WWW 10,721 4.60 0.28 11.38 58 21,780 6.7%

Table 3: Some characteristics of real-world graphs used in experiments. An articulation point is a node such that
its removal increases the number of connected components.

Algorithms Tested Acronym

Cross-Association XA

Fast Modularity FM

Latent Dirichlet Allocation on Graphs LDA-G

HCDF(XA, LDA-G, ATTRIBUTE) HCD-X

HCDF(FM, LDA-G, ATTRIBUTE) HCD-M

HCDF(XA, LDA-G, SEED) HCD-X -SEED

HCDF(XA, LDA-G, PRIOR) HCD-X -PRIOR

Table 4: List of methods used in experiments.

(4.10)
scoreHCD(< u, v >) =

∑
k∈K

p(ζ<u,v> = k|Z,E,R)

Recall that R is the attribute-set. p(ζ<u,v> =
k|Z,E,R) is the same as the update equation for LDA-
G on graphs with attributes (see Equation 3.8).

For XA and FM, we use density to predict links.
Specifically, we use the following equations to predict a
link between source-node u and target-node v:

(4.11)

scoreFM (u, v) =
| {∀ < i, j >∈ E : (ζi ≡ ζu)&(ζj ≡ ζv)} |

| ζu | · | ζv |

where ζi returns the FM-assigned community for node
i.

(4.12)

scoreXA(u, v) =
| {∀ < i, j >∈ E : (ζr

i ≡ ζr
u)&(ζc

j ≡ ζc
v)} |

| ζr
u | · | ζc

v |

where ζr
i is the row-group assigned to node i and ζc

i is
the column-group assigned to node i.

4.1.3 Experimental Methodology for Commu-
nity Robustness We adapt the experimental method-
ology described in [13] to measure community robust-
ness. Specifically, we perturb a data graph by randomly



reassigning a number of its links. The rewiring param-
eter c ∈ [0, 1] determines the fraction of links rewired.
Links are reassigned in a way that preserves the ex-
pected degree of each node in the graph. Then, a com-
munity detection algorithm is applied to the original
and perturbed graphs, and the Variation of Informa-
tion [13], ∆, is calculated between the two community
assignments C (with c = 0) and C ′ (with c ∈ [0, 1]):

(4.13) ∆(C,C ′) = H(C|C ′) +H(C ′|C)

H is the entropy function; thus, H(C ′|C) measures
the information needed to describe C ′ given C). ∆
treats each assignment as a message; it is a symmetric
entropy-based measure of the distance between these
messages.

∆ is bounded between 0 and log(N) for hard
clustering assignments, but in the case of mixed-
membership models the measure can grow without
bound. For consistency across data sets, we generate
hard clusters for all algorithms and normalize by re-
porting ∆/ log(N). For LDA-G, HCD-X, and HCD-M,
we assign each node to the group that contains a plu-
rality of its outgoing links in the Maximum Likelihood
(ML) configuration. Ties are broken by selecting the
largest group (i.e., the group that appears most often
in the ML configuration). For XA, we only consider the
row assignments and discard column assignments.

Since FM only operates on the largest connected
component (LCC) of a graph, we extract the LCC of
the original graph before perturbing the network for
FM experiments. Thus, only the LCC graph, G′, is
perturbed, and ∆ values are calculated over it. For
HCD-M, we remove G′ from the original graph and
replace it with the perturbed versions of G′. Except for
the Coauthorship graph, the remaining graphs used in
our experiments have LCCs that contain over 99.99% of
the nodes in the graph. The Coauthorship graph’s LCC
covers only 24% of the nodes in the graph.

We apply this method to each data set and each
community discovery algorithm, considering various
values of the rewiring probability c.

4.2 Results on Link Prediction Figure 2 shows
performance of the methods listed in Table 4 on the
IPxIP graphs. HCD-X (black line) and HCD-M (red
line) are the only two methods that consistently produce
high AUC results (> 0.93) on link prediction. HCD-
X performs better than HCD-M on these data sets
since XA produces better hints than FM here. We have
included error bars on the LDA-G link-prediction curve,
which shows that we would not reach HCD-X ’s high
results even if we ran LDA-G multiple times.
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Figure 2: Link prediction results on various IPxIP
graphs

Figure 3 presents performance of methods listed in
Table 4 on the PubMed graphs, the Web graph, and the
Internet AS graph. Again, HCD-X and HCD-M are the
only two robust methods across these diverse data sets.
They produce community structures that consistently
predict links with high AUC results (> 0.91). The same
cannot be said for the other methods.
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Figure 3: Link prediction results on various graphs from
PubMed, WWW, and Internet.

Figure 4 depicts the effectiveness of different coa-
lescing strategies in HCD-X. As expected, direct incor-
poration of XA-provided hints as link-attributes pro-
vides the best link-prediction performance. The next
best coalescing strategy is PRIOR since it propagates
the hints from one configuration to the next. SEED
is the simplest and weakest coalescing strategy since it
forgets the hints after setting the initial configuration.
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Figure 4: Effectiveness of different coalescing strategies.
Results show average AUC on link prediction with
HCDF(XA, LDA-G, strategy), where strategy is one of
SEED, PRIOR, and ATTRIBUTE.

Figure 5 shows improvements in the average AUC
scores (w.r.t. link prediction) when comparing HCD-X
to LDA-G, HCD-X to XA, HCD-M to LDA-G, and
HCD-M to FM across our diverse collection of real
graphs. On average, the hybrid methods offer significant
improvements, an increase of up to 0.22 in average AUC.
There are rare cases in which HCD-X and HCD-M
do not perform as well as their constituents. These
cases arise when the constituent providing the hints
generate communities that are really bad at predicting
link structure (e.g., FM’s average AUC on PubMed AxA
is 0.63).
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Figure 5: Typical link prediction performance im-
provement for HCD-X and HCD-M over their con-
stituents. ∆(M1,M2) = AverageAUC(M1) −
AverageAUC(M2)).

Figure 6 depicts the worst-case average AUC across
the methods listed in Table 4. The hybrid methods
(HCD-X and HCD-M ) have worst-case average AUC-
scores above 0.9. The non-hybrid methods (FM, LDA-
G, and XA) do not show such consistent effectiveness.
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Figure 6: Worse-case performance across all graphs.

4.3 Results on Community Robustness Figure 7
depicts the Variation of Information, ∆, for the PubMed
Author×Knowledge graph as we vary the rewiring prob-
ability. A lower value for ∆ indicates a more robust
community structure. HCD-X has a lower ∆ than its
constituent parts: LDA-G and XA. HCD-M has a lower
∆ than LDA-G and a comparable one to FM.
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Figure 7: Robustness across various algorithms
and rewiring probabilities for the PubMed
Author×Knowledge graph.

A community discovery algorithm can artificially
produce a low ∆ by finding a trivial community struc-
ture (e.g., by placing all nodes in one community). To
guard against this, we also need to look at other prop-



erties of the community structure such as the number of
communities and the largest community fraction. In the
Author×Knowledge graph, all five methods find on av-
erage tens of communities and the average largest com-
munity fraction is less than 31%. So, the lower ∆ results
here are not artificial.

Figure 8 shows ∆ at rewiring probability c = 0.2
for the IP graphs and for the communities discovered on
them by LDA-G, FM, and HCD-M. Points to note here
are (1) HCD-M has much lower ∆ values than LDA-G;
(2) HCD-M has comparable ∆ values to FM, but it has
a higher AUC (on average +0.15) and more consistent
link prediction performance than FM (as previously
shown in Figure 2). As we describe in the next section,
XA produces artificially low ∆ values; therefore, we
exclude XA and HCD-X from Figure 8.
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Figure 8: Variation of information for the IP×IP graphs
at rewiring probability c = 0.2.

For brevity, we omit showing robustness results
for the other data graphs in our experiments. Their
results are generally similar to Figures 7 and 8. The
next section presents a summary discussion of our
experiments on other graphs.

4.4 Discussion We first present some general obser-
vations from the link prediction results. (1) HCD-X
and HCD-M are consistent w.r.t. the link prediction
performance of their discovered community structures
on a diverse set of real-world graph data. (2) HCD-X
and HCD-M always improve on one of their constituents
and usually improve on both. (3) Restarting LDA-G
multiple times (with different random seeds to discover
a good configuration) does not improve link-prediction
performance sufficiently (as shown in Figure 2). This
suggests that available computation time is better spent
by combining methods than by applying a single method
repeatedly. (4) On our sparsest IP graph, IP5 with
roughly 34K nodes and 112K links, all non-hybrid meth-
ods perform only fairly (∼ 0.8 average AUC). However,

HCD-X and HCD-M perform extremely well (∼ 0.96
average AUC).

There are at least two explanations for the superior
performance of hybrid methods over non-hybrid meth-
ods. First, we explain the improvement over LDA-G.
Note that XA and FM are optimizing for different func-
tions than LDA-G. Thus, we expect them to compensate
for each others’ shortcomings when applied together as
in HCD-X. The hints offered by XA, for example, can
be used by HCD-X to make decisions about community
structures that LDA-G is ambiguous about. Second, we
explain the improved performance of the hybrid meth-
ods over the non-Bayesian methods. Neither XA nor
FM can generate mixed-membership models for com-
munities (i.e., soft clustering). In these models, each
node belongs to a single community and this community
must explain all of the node’s links. Because LDA-G is
a mixed-membership model, it can loosen this restric-
tion and learn models that explain all of a node’s links,
rather than trying to explain most of them.

Of the non-Bayesian methods studied (XA and
FM), XA typically produces more predictive commu-
nity structures. This is not unexpected. As shown
by Stone [19], Akaike’s criterion (MDL) and cross-
validation (MLE, short for Maximum Likelihood Es-
timate) essentially pick the same model. Also note
that, a MDL-based approach can be represented in a
Bayesian framework with Universal (Solomonoff) prior
probability function and a uniform likelihood function
[21]. We empirically observed the relationship between
compression and good prediction in our experiments,
where methods with higher average AUC produced
community-sorted adjacency matrices that have more
whitespace and less “snow.” Figure 9 shows this phe-
nomenon for the IP5 graph, where the original IP5 ad-
jacency matrix and its corresponding community-sorted
matrices produced by LDA-G, FM, XA, HCD-M , and
HCD-X are depicted. The matrices with more whites-
pace (i.e., less “snow”) have higher average AUC on
link prediction. The community-sorted matrices were
produced as follows. For FM, the rows and columns of
the adjacency matrix are sorted by their FM-assigned
communities, so that rows/columns that belong to the
same community are next to each other. For XA, rows
are sorted by their XA-assigned row-groups; and simi-
larly, columns are sorted by their XA-assigned column-
groups. For LDA-G, HCD-M , and HCD-X, rows are
sorted first by their primary community. A primary
community for a row i is the community with the high-
est percentage of row i’s entries. Then, within each
primary community, the rows are sorted by their de-
grees of membership in that community (from highest
to lowest). Columns are sorted in the same way.



XA 
(Average AUC: 0.821)

LDA-G 
(Average AUC: 0.795)
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Figure 9: Plots showing the adjacency matrix for the IP5 graph and its corresponding community-sorted matrices
produced by existing approaches (FM, XA, and LDA-G) and proposed methods (HCD-X and HCD-M ) on that
graph. The matrices associated with the proposed methods have more whitespace (i.e., less “snow”), achieve
better clustering, and have higher average AUC on link prediction.

W.r.t. robustness to small perturbations in network
structure, ∆ generally increases with rewiring probabil-
ity c, and is maximized for a given graph and algorithm
when c = 1. This corresponds to a perturbed graph
where all of the links are randomly reassigned (i.e., the
only remaining information from the original graph is
the expected degree of each node). For each IP graph,
XA produces almost identical clusters at all values of c.
We conclude that in these cases, XA is determining the
groups almost entirely based on degree (which remains
the same as links get rewired).

LDA-G has high ∆ values even at c = 0.2, but
the clusters do not deteriorate significantly beyond that
point. This suggests that it suffers significantly from
small changes in network topology. The hybrid methods
have much less variation than LDA-G, are comparable
to FM, and have slightly higher variation than XA.
However, as discussed above in most cases XA’s ∆

is artificially low with one community containing a
substantial fraction (> 67%) of the nodes. Lastly,
we observed that algorithms with higher AUC on link
prediction tend to have lower ∆ values (assuming the ∆
values are not artificially low).

Lastly, HCD-X can also be applied to time-evolving
graphs by using the appropriate constituents. For
example, LDA-G can be applied to time-evolving graph
by simply using the ML configuration from time t−1 as
the prior for time t. GraphScope [20] details extensions
of XA to time-evolving graphs. through the use of
appropriate constituents. For instance, Newman, et al.
[17] describe distributed inference for LDA.

5 Conclusions

We present a novel Bayesian framework, HCDF , for
community discovery in large graphs. HCDF produces
algorithms that are (1) effective, in terms of link predic-



tion performance and community structure robustness;
(2) consistent, in terms of effectiveness across various
application domains; (3) scalable to very large graphs;
and (4) nonparametric. A key aspect of HCDF is its
effectiveness in incorporating hints from a number of
other community detection algorithms. HCDF pro-
duces results that outperform each of the constituents.
On link prediction across a collection of diverse real-
world graphs, HCDF methods achieve (1) improve-
ments of up to 0.22 in average AUC and (2) an average
AUC of 0.96. HCDF methods also find communities
that are robust to small perturbations of the network
structure as defined by Variation of Information.
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