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Abstract residual matrixR suggests a significant deviation from low-

Given an IP source-destination traffic network, how do wank structure in the graph).
spot mis-behavioral IP sources (e.g., port-scanner)? How From algorithmic aspect, a recent trend in matrix fac-
do we find strange users in a user-movie rating grapt|q45ization is to improve the interpretation of such graph-mi
Moreover, how can we present the results intuitively so tHA@ results. To name a few, non-negative matrix factoriza-
it is relatively easier for data analysts to interpret? tion methods [31] restrict the entriesandG to be non-
We proposeNrMF, a non-negative residual matrix fachegative; example-based methods [15] generate sparse de-
torization framework, to address such challenges. \&@MPposition by requiring the columns of the matkixo be
present an optimization formulation as well as an effectifi¢ actual columns of the original matrix; etc. By im-
algorithm to solve it. Our method can naturally capture aBOSing such non-negativity and/or sparseness constrains o
normal behaviors on graphs. In addition, the proposed a@a,efactorized matricesit is relatively easier to interpret the
rithm is linear wrt the size of the graph therefore it is sbiga COMMunity detection results. Actually, it is now widely re-
for large graphs. The experimental results on several daged that non-negativity is a highly desirable propedy f

sets validate its effectiveness as well as efficiency. interpretation since negative values are usually hqrd {0 in
terpret. However, most, if not all, of these constrains.(i.e

_ ) _ _non-negativity, sparseness, etc) are imposed orfatier-
Graphs appear in a wide range of settings, e.g., social igky matrices Consequently, these existing methods are tai-
works, computer networks, user-movie rating graphs in c@lred for the task of community detection. It is not clear
laborative filtering, the world Wi_de web, biological netwer _how to improve the interpretation for the task of anomaly
and many more. How can we find patterns, e.9. communitigection from the algorithmic aspect. Can we impose simi-
and anomalies, in a large sparse graph? _ lar constraints (e.g., non-negativity) on tiesidual matrixR
Naturally, low-rank approximations on the adjacengy jmprove the interpretation for graph anomaly detection?
matrices of the graph provide powerful tools to answer the  Fromapplicationside, it is often the case that anomalies
above questions. Formally, l&t be the adjacency matrix ofon graphs correspond to some actual behaviors/activities o
the graph, a rank-approximation of matrixA. is @ matrix certain nodes. For instance, we might flag an IP source as a
A whereA is of rankr and the residual matrixA — A) = syspicious port-scanner if #ends packages a lot of des-
has small norm. The low-rank approximation is usualphations in an IP traffic network [37]; an IP address might
presented in a factorized form e.,= A + R = FG + R pe under the DDoS (distributed denial-of-service) attadtk i
yvhereF, G are the'factorlzed mat_rlces of rgmkandR receives packageisom many different sources [37]; a per-
is the residual matrix. The factorized matricBsand G g is flagged as ‘extremely multi-desciplinary’ if sfeb-
can naturally reveal the community structure in the grapfihes papersn many remotely related fields in an author-
The residual matriR, on the other hand, is often a stronggnference network [2]; in certain collusion-type of frand
indicator for anomalies on graphs (e.g., a large norm of th&ancial transaction network, a group of users alwgiye
good ratingsto another group of users in order to artifi-
cially boost the reputation of the target group [9], etc. If
“Research was sponsored by the Army Research Laboratory asd we map such behaviors/activities (e.g., ‘sends/receigek-p
accomplished under Co_operative Agreement_ Number W91INE-0053. ages’, ‘publishes papers’, ‘gives good ratings’, etc) te th
The views and conclusmns_ contained in this document _areetkl_rb_the language of matrix factorization, it also suggests thattre
authors and should not be interpreted as representing ficeabpolicies, ) . ) o
either expressed or implied, of the Army Research Laboyatrthe responding entries in the residual matBxshould be non-
U.S. Government. The U.S. Government is authorized to teme and negative.

distribute reprints for Government purposes notwithstagmény copyright In response to such challenges, in this paper, we propose
notation here on.

1 Introduction
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a new matrix factorizationNrMF) for the task of graph thei*® row and;'" column of the matrixA, and A (:, j) is
anomaly detection. To the best of our knowledge, we are the jt" column ofA, etc.

first to address the interpretation issue of matrix factdian With the above notations, a general matrix factorization
for the purpose of graph anomaly detection. The majoroblem can be formally defined as follows:

contributions of the paper can be summarized as follows: PROBLEM 1. Matrix Factorization

1. Problem formulation, presenting a new formulation f@tj,en: A graphA.,.»;, and the rank size;
matrix factorization NirMF) tailored for graph anomaly Find: Its low-rank approximation structure. That s, find (1)

detec'uon_; ) two factorized matrice¥',, . and G, «;, and the resid-
2. An.ef.fect'we algorlthm{Q\ItQP—ln(:) to s_olve the above ual matrix R, such that (1)A,x; ~ FrxrGrxi,
optimization problem, linear wrt the size of the graph;  and (2)R,,.; = A,xi — FoxrGrxi.
3. Proofs and analysis, showing the effectiveness as well
as the efficiency of the proposed method,; Existing matrix factorization techniques can be viewed
4. Experimenta| evaluations, demonstrating both the @s different instantiations of Problem 1. They differ from

fectiveness and efficiency of the proposed method. €ach other, mainly from the following two aspects: (1) by
using the different metrics to measure the approximation

The r_est of the paper is o_rganized as follows: we introduggcuracy (some norms on the residual makjx and (2) by
rtaten and formaly gefine e provee) i Sec- IS ETUE 0T 0 e e 0 (00
NrMF.in Sec?[ion 3 and Sectio>r/1 4 res pectFi)veI We rovidtglandc' . For example, non-negative matrix factorization

. ) . » 1esp v P quuires the factorized matrices to be non-negative (see
experimental evaluations in Section 5. The related work ction 6 for a review)

reviewed in Section 6. Finally, we conclude in Section 7. In this paper, we present another instantiation of Prob-

2 Problem Definitions lem 1 by imposing the non-negativity constrains onresid-
Table 1: Symbols ual matrix R. Our problem, Non-Negative Residual Matrix
| Symbol | Definition and Description |  Factorization IrMF), is formally defined as follows:
A,B,... | matrices (bold upper case) PROBLEM 2. Non-Negative Residual Matrix Factorization
A(i,j) | the elementat th&” row and;*" column | (NrMF)
of matrix A . o
A, theith row of matrix A G.|ve.n. A graphA, «;, and.the r'ank size; o
A7) the j** column of matrixA Find: Its Iow-r'ank approximation structure. That is, .flnd
A/ transpose of matriA two factgrlzed matrlcan,X,, andG,.;, and the r§S|d-
a,b,... | column vectors (bold lower case) ual ma_t”XR"X” suchthat (_1)A"d“ NfF”XI’l"G’".Xl’. 2)
F,G factorized matrices oA Rrgl.—, A>nxl — FoxrGrxi; and (3) forall A(é, j) >
R residual matrix ofA 0,R(7,j) 2 0.
K number of type 1 Obj.eCtS !A Problem 2 is tailored for the task of graph anomaly de-
l number of type 2 objects iA . L . .
; tection, where we explicitly require the corresponding ele
m number of edges iAA N th idual . ;
, rank size .mentsR(z,'j) in the residual matrixR to be non-negative
if there exists an edge between nodand nodej in the

Table 2 lists the main symbols we use throughout tigiginal graph (i.e.,A(i,j) > 0). As explained earlier in
paper. In this paper, we consider the most general casesgttion 1, the residual matriR is often a good indicator
bipartite graphs. We represent a general bipartite graphfyanomalies on graphs. Moreover, many abnormal behav-
its adjacency matrix Following the standard notation, weors/activities (e.g., port-scanner, DDoS, etc) can bepedp
use capital bold letters for matrices (eAy), lower case bold to some non-negative entries in the residual maRix For
letters for vectors (e.ga). We denote the transpose with #stance, a large entry iR might indicate a strange interac-
prime (i.e., A’ is the transpose oA). We use subscriptstion between two objects; a heavy row/columnRfmight
to denote the size of matrices/vectors (e.8.,x; Means indicate a suspicious object (e.g., port-scanner, or ardiP a
a matrix of sizen x [). When the size of a matrix or adress that is under DDoS attack, etc). NnMF, we aim
vector is clear from the context, we ignore such subscriggscapture such abnormal behaviors/activities by explicit
for brevity. Also, we represent the elements in a matrixgsifimposing non-negativity constrains on the residual matrix
a convention similar to Matlab, e.g\(i, j) is the elementat R. Moreover,NrMF directly brings the non-negativity, an

interpretation-friendly property, to the task of graph enady
" Tin practice, we store these matrices using an adjacenaefisesenta- detection since negative values are usually hard to irgerpr
tion, since real graphs are often very sparse. For example, by existing matrix factorization methods, the

144 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



data analyst has to look at (somewhat abstract) residual maeneral, arbitrary weight matr®. We will present such
trix, which contains both positive and negative entries] aalgorithms in the appendix for completeness.

calculate the re-construction errors to spot anomalies. Rank-1 Approximation for e.q. (3.2). In e.q. (3.2), if we
contrast, thanks to the non-negativity constraint®liMF, restrict the rank of the factorized matricBsand G to be
we can present the residual matrix itself as a residual graphwe have the following rank-1 approximation of e.g. (3.2),
which might be more intuitive for the data analyst to intewheref is ann x 1 column vector ang is al x [ row vector.
pret.

3 The Proposed Solutions foNrMF argmirn Z (A(i,j) — £(D)g(5))?
8 ’

In this section, we formally represent our solutions for ij, A(i,5)>0

non-negative residual matrix factorizatioNrMF). We first st forallA(,j) > 0 :

formulate Problem 2 as an optimization problem; and th Ny .
: . . . <
we present effective algorithms to solve it. %3) £(i)g(s) < A0, J)

3.1 Optimization Formulations 3.2 The Proposed Optimization Algorithms

General Formulation of Problem 2. Formally, Problem 2 next, we present our algorithms to solve e.q. (3.2). We first
can be formulated as the following optimization problem: analyze the challenges of optimizing e.q. (3.2) directhd a
then present an incremental alternative optimizationesgsa

o 3.2.1 Challenges

ZZ(A(i’j) CF(i, )G §))EW( 5)? Unfortunately, the optimization problem formulated in
e.g. (3.2) isnot convexwrt F andG jointly due to the cou-

pling betweenF and G in both the objective function and

the inequality constraints. Therefore, it might be unieali

(3.1) F(i,:)G(:, ) < A(i,)) tic to seek for a global optimal solution. A natural way to

handle this issue is to finf' and G alternatively Actu-

In eq. (3.1), ‘®" means element-wise multiplication. _ o :
In other words, here we use a weighted squared Froberig}u)a6 we can show that if we fix eithe or F in (3.2), the

norm of the residual matrix® to measure the approx_resultin_g optimization problem i_s_a convex quadratic_ pro-
imation accuracy, through a weight matr\W,, ;. For gramming problem.wrt the remaining m.ath‘ OrG). This
every edge in the graph (i.eA(i, /) > 0), we require suggeststhefollowmggreedyoptlmlzatlonstrategy@retde.
that F(i,)G(;,j) < A(i,j), which means that theto asAltQP-Batch see the appendix for the formal descrip-

corresponding residual entriR(i, j) should satisfy that tion):_aftersome initializa_tion,we alter_nativelyupditand
R(i, j) = Ai, §) — F(i,)G(:, j) > 0. G_usmg convex quadrauc_programmmg gntn convergence.
With AltQP-Batch we can find a local minimal solution for
0/1 Weight Matrix for e.q. (3.1). In eq. (3.1), the e.q. (3.2), which is acceptable in terms ofoptim_izationlqua
weight matrix W reflects the user’s preference amon 'fo_ra non-convex proplem. Howev_er, most, if not all, of
all n x [ reconstructed entries. In this paper, we foc |st_|ng convex quadratic programming methods aoky-
on a special case of weight matW: W (i, j) — 1 for nom|alw_rt the number of variables. Th|s_makes_ the qverall
A(i,§) > 0: andW (i, j) — 0 otherwise. This means thatcomplexny of AltQP-Batchto be polynomial, which might
\?&ﬁ scale very well for large graphs.

we only measure the element-wise loss on the obser To add th hall inthi
edges; and among all these edges, we treat the element—W{'_F,e 0 address hese challenges, in his paper, we propose an

loss equally (referred to as ‘0/1 Weight Matix’). This typ%f ective and efficient algorithmAltQP-Inc. The basic idea

of weight matrix in widely used in the literature, espegiall tAIt%F_’t—Inctl_s to f'ndtthf r]:_as(l;ltlng?sridG mcrgmet_ntally th
in the context of collaborative filtering [5, 35]. ateachiteration, we try to find a rank-2 approximation on the

With h 0/1 weiah ix ed. (3.1 implifi urrentr.esidualmatrixbysolvipg_e.q.(3.3). As we will 8ho
ith such 071 weight matrix, e.q. (3.1) can beSImpllegoon,thls strategy bears the similar greedy naturlteP-

argming ¢ = Rt ® Wostl7

i=1 j=1
s.t. forallA(i,j) > 0:

as. Batch Therefore it also leads to a local minimal solution
argmin, o Z (A(i,j) — F(i,:)G(:,))? for e.q. (3.2). Yetits time complexity inear wrt the size
ij, A(i,5)>0 of the graph, which makes the algorithm more suitable for
st foralAig) >0 InG.1 ot soning 6.6, (3.3), and then présent our algortm
(3.2) F(i,:)G(:j) < A(i,j) e

(AltQP-Ing) for solving e.qg. (3.2).

In the rest of this paper, we will focus on eq. (3.23.2.2 AltQP-Inc-1: Proposed Algorithm for e.q. (3.3)
for clarity. However, we would like to point out that theAgain, e.q. (3.3) is not convex wit and g jointly due to
upcoming proposed techniques can be naturally appliedhe coupling betweefi andg. Therefore, we seek for an
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alternative strategy: the algorithm alternatively itesaas Algorithm 1 Update-g(For Solving e.q. 3.4)

follows until convergence: (1) updatirfgwhile keepingg
fixed; and (2) updating while keepingf fixed.

Formally, let us consider how to updatevhile keeping
f fixed (updatingf is similar as updating). In this case, 2
e.g. (3.3) can be further simplified as:

3:

argmin, > (AG,4) — f(i)g(h))? ut

i3, A(i,5)>0 5:

s.t. forallA(i,j) > 0: 6:

(3.4) £(i)g(j) < Ali,j) ;
9:

It is easy to show that e.q. (3.4) is convex vgt
The proposed algorithmUpdate-g for solving e.q. (3.4) *©
is summarized in Alg. 1. At each outer loop of Alg. 1,11:
we update a single entrg(j)(5 = 1,...,1), which is in '
turn done by some closed formula (steps 19-25). THE
main difference betweeblpdate-gand AltQP-Batchis as 14
follows: in Update-g g is a row vector and we can have!™
computationally cheap closed formula to solve e.q. (34). o
contrast, we have to call some expensive convex quadr&t?é
programming packages iltQP-Batchto find the optimal 18:
solution. 19

Based on Alg. 1, we present Alg. 2R&nk-1-
Approximation to solve e.g. (3.3): after some initialization<*
(step 1), Alg. 2 alternates between the following two steﬁg'

20:

Input: The original matrixA., «;; and a column vectdi, « 1
Output: A row vectorg «;
1: forj=1:1do

Initialize the lower bound low= —inf, upper bound
up=inf, ¢ = 0andq = 0;
for eachi, s.t.,A(i,j) > 0do
Update:q < ¢ + f(i)A(4, j)
Update:t < t + f(i)?
if £(z) > 0then
Update: up= min(up, A(4,5)/£(i))
else iff(i) < 0 then
Update: low= max(low, A(i, j)/f (7))
else
Continue;
end if
end for
if t == 0 then
Set:g(j) = 0;
Continue;
end if
Setiq + ¢/t
if ¢ <= up andq >= low then
Output:g(j) = ¢;
else if¢ > upthen
Output:g(j) = up;

until convergence: (1) update while keepingf fixed by else o ]
calling Update-g(step 3); and (2) updatewhile keepingg ;‘51 engti‘ftpm‘g(]) = low;
fixed by callingUpdate-g(step 4). | 26 end for

3.2.3 AIltQP-Inc: Proposed Algorithm for e.q. (3.2)

Based on Alg. 2, our algorithmAftQP-Ing for solving

the original e.q. (3.2) is summarized in Alg. 3. It is an

incremental algorithm: at each iteration, it calls Alg. 2 tEMMA 4.1. Effectiveness.(P1) Update-g in Alg. 1 gives
find a rank-1 approximation for the current residual matrtRe global optimal solution for the optimization problem in
R (steps 3-4). Notice that since e.q. (3.2) is an instantiati6-d-(3.4) (P2) Rank-1-Approximation in Alg. 2 finds a local
of e.q. (3.1) by using the 0/1 weight matrix, we only need fginima of the optimization problem in e.(8.3) and (P3)
update the residual entries where there exists an edge inAREP-Incin Alg. 3 finds a local minima for the optimization

original graph (i.e.A (¢, j) > 0) in steps 5-7.
4 Analysis of the Proposed Algorithms

problemin e.q(3.2)

In this section, we analyze the effectiveness as well as Bietch of Proof: For brevity, we only give the proof for
efficiency of the proposed algorithms. Our main results gfel); since (P2) and (P3) are relatively straight-forward
(1) the proposed algorithms find (at least) a local optimahsed on (P1).

solution for the corresponding optimization problems; and Here, the key pointis that e.q. (3.4) can be decomposed
(2) the complexity of the proposed algorithms is linear into the followingl independent optimization problems, each

both time and space.

4.1 Effectiveness of the Proposed Algorithms
The effectiveness of the proposed algorithms is summarized
in Lemma 4.1, which basically says that the proposkQP-

Inc finds a local minima of e.q. (3.2). Given that the
optimization problem in e.q. (3.2) is not convex vitand

G jointly, such a local minima is acceptable in terms of the
optimization quality.

146

(4.5)

of which only involves a single variablg(j) (j = 1, ...,1):

For
argmirki

g=1,..,1:
> (AL 4) — f(i)g(h)”
i, A(i,5)>0
s.t. forallA(i,j) > 0:
£(i)g(j) < A(i,j)

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Algorithm 2 Rank-1-Approximatio(For Solving e.q. 3.3) Proof of P1: The time cost for step 2 of Alg 1 i©(1).

Input: The original matrixA,, «; Letm; be the total number of non-zero elements in fHe
Output: A column vectorf,, . ;; and a row vectog, »;; column of matrixA, we have)"’_, m; = m. The time cost
1: Initialize f,, 1 andgi x;; for step 3and 13 i€ (m;) since we need(1) operations for
2: while Not convergentlo each non-zero element iA(:, j). The cost for steps 14-17
3. Update:g < Update-dgA, f) is O(1). We need anoth&p(1) time for step 18. Finally, for
4:  Set:f + Update-gA’, g’) steps 19-25, we nedd(1) time. Therefore, the total cost for
5. Update:f = f’ Alg. 1is 37, (O(1) + O(my)) = O(1) + O(_y my) =
6: end while O(m + 1), which completes the proof. 0
Proof of P2: Step 1 in Alg. 2 take®)(! + n) time. Based
Algorithm 3 AltQP-Inc(For Solving e.q. 3.2) on (P1), we need(m + 1) andO(m + n) for step 3 and 4,
Input: The original matrixA., «;, and rank size respectively. We need anoth@(n) for step 5. Therefore,
Output: Ann x 1 matrixF; ar x I matrixG; and am x [ the overall time complexity of Alg. 2 i©(l +n) + (O(m +
matrixR 1)+O0(m+n)+0(n))t = O(mt+nt+It), which completes
1: Initialize F = 0,,«,, G = 0,.«;, andR = A the proof. O
2: fork=1:rdo Proof of P3: Step 1 in Alg. 3 take®(nr + Ir 4+ m) time.
3 (f,g) «+Rank-1-ApproximatiofR) Let my, be the number of non-zeros elementsRnin the
4.  SetF(;,k)=f,andG(k,:) =g k™ iteration of Alg. 3, we have that,; = m andmy, <
5. for every(i, ), s.t.,A(i,j) > 0 do m (k= 2,...,r). Based on (P2), we ne&d(mt + nt + It)
6: UpdateR (i, j) + R(4,5) — £(i)g(j) for step 3. For step 4, we ne€d(n + [) time. We need
7:  end for additionalO(m) time for updatingR (steps 5-7). Putting
8: end for these together, the overall time complexity of Alg. 3 is
O(nr+1lr+m)+>,_, Oyt +nt+lt+m—+n+1) =
O(mrt + nrt + lrt), which completes the proof. O

For a givenyj, e.q. (4.5) is equivalent fa
i 9 ) 4.3 Space Efficiency of the Proposed Algorithms
argming ;) g(7)” - 2¢8(j) The space complexity of the proposed algorithms is summa-
s.t. low< g(j) <up rized in Lemma 4.3, which basically says that for all the ¢hre
where: _ £()A(, £(;)2) @lgorithms we proposed, the space complexity is linear wrt
= Z DAL/ Z ( the size of graphn, n andi. Therefore, they are scalable for

1,A(3,5)>0 1,A(3,5)>0 Iarge graphs
low = maXe(;y<o0,a(i,j)>01A(4,7)/£(7)} '
(4.6) up = MiNg(;)>0,a(,5)>01A (4, 7) /(i) }

LEMMA 4.3. Space Complexity. (P1) Update-g in Alg. 1
In e.q. (4.6), we have a quadratic objective function wrequiresO(m + n + 1) space; (P2) Rank-1-Approximation

a single variablg(;), whereg(j) has a boundary constrainin Alg. 2 requiresO(m + n + 1) space; and (P3) AltQP-Inc

(low < g(j) < up). Itis easy to verify that each outein Alg. 3 requiresO(m + nr + Ir) space.

loop of Alg. 1 gives the global optimal solution for (4.6).

Therefore, the whole Alg. 1 gives the global optimal 50|ﬂti0proof of P1: In Alg. 1, we needO(m), O(n), andO(l)

for €.q. (3.4), which completes the proof. space to keep the original matek, the column vectof, and

) - . the row vectorg, respectively. For all the remaining steps
4.2 _Tlme Eff|C|en_cy of the Proposed Algor_lthms_ in Alg. 1, they requireD(1) space respectively. Among
The time complexity of the proposed algorithms is SUmmgyy igterent jterations of Alg. 1, we can re-use the space
rized in Lemma 4.2, which basically says that for all the ¢hrg, o, the previous iteration. Tk{erefore, the overall space

algorithms we proposed, they are linear wrt the size of grap plexity of Alg. 1isO(m + n + 1), which completes the
m,n andl. Therefore, they are scalable for large graphs. proof 0

LEMMA 4.2. Time Complexity. (P1) Update-g in Alg. 1 Proof of P2:In Alg. 2, we need)(m) space for the original
requiresO(m+1) time; (P2) Rank-1-Approximationin Alg. 2matrix A. The initialization in step 1 need®(n + [)
requiresO(mt + nt + It) time; and (P3) AltQP-Inc in Alg. 3 space. By (P1), we need(m + n + ) space for steps 3-
requiresO(nrt + mrt + Irt) time, wheret is the maximum 4, respectively. Step 5 tasks anotligfn) space. Among
iteration number in Alg. 2. the different iterations of Alg. 1, we can re-use the space
from the previous iteration. Therefore, the overall space

Z\We have dropped a constant term from the objective funciiocest COmplexity of Alg. 2 isO(m) + O(n + 1) + O(2m + 2n +
does not affect the optimal solution. 21) + O(n) = O(m + n + 1), which completes the proaf.
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Table 2: Data sets used in evaluations

Name n xl m
MIT-DP 103x97 5,449
NIPS-PW 2,037« 13,649 1,624,334
CIKM-PA 1,895< 952 2,664
MovieLens  6,040x 3,952 575,281

Proof of P3: In Alg. 3, we need)(m) space for the original
matrix A. The initialization in step 1 need3(nr + Ir +m)
space. Letn; be the number of non-zeros element&inn
the k™" iteration, we have thai; = m andm, < m (k =
2,...,r). Based on (P2), we ne€d(my + n + [) for step

3. For steps 4-7, they do not require extra space. Finally,

among different iterations, we can reuse the space from
first iteration sincen;, < m; = m(k = 1,...,r). Therefore,
the overall space complexity of Alg. 3 8(m) + O(nr +
Ir+m) 4+ O(maz(mi1) + n+1) = O(m + nr +1r), which
completes the proof. O

5 Experimental Results

In this section, we present experimental evaluationsr, afte

introduce the data sets. All the experiments are designed to

answer the following two questions:

o Effectiveness:What kinds of anomalies can the pro-

posedAltQP-Incdetect?

e Efficiency: How fast is the proposedItQP-Inc? How
does it scale?
5.1 Data Sets

a positive rating (4 or 5) to a particular movie, we connect
them with an edge. Here, the edge weight is the actual rating
(4 or 5). In total, we have 6,040 users, 3,952 movies, and
575,281 edges.

5.2 Effectiveness Results
In this paper, we focus on the following four types of
anomalies on bipartite graphs:

1. Strange connectiorfreferred to as ‘strange connec-
tion’). It is a connection between two nodes which be-
long to two remotely connected communities, respec-
tively. For example, in author-conference graph, this
could be the case that an author publishes a paper in a
conference which is remotely related to his/her major
research interest (e.g., a system guy publishes a paper
in a theory conference, etc) [36].

2. Port-scanning like behavidreferred to as ‘port-scan’).

It is a type-1 node that is connected to many different
type-2 nodes in the bipartite graph. For example,
in an IP traffic network, this could be an IP source
which sends packages to many different IP destinations
(therefore it might be a suspicious port scanner) [37].
DDosS like behaviofreferred to as ‘ddos’). It is a type-

2 node that is connected to many different type-1 nodes
in the bipartite graph. For example, in an IP traffic
network, this could be an IP destination which receives
packages from many different IP sources (therefore it
might be under DDoS, distributed denial-of-service,

the

3.

We use four different data sets in our experiments, summa-
rized in Table 2.
The first data setMIT-DP ) is from MIT Reality Mining

4.

attack) [37].
Collusion type of fraud (referred to as ‘bipartite core’)
It is a group of type-1 nodes and a group of type-2

project. Rows represent the blue tooth devices and columns nodes which are tightly connected with each other. For
represent the persons. The un-weighted edges represent theexample, in financial transaction network, this could
scanning activities between the devices and persons. In be a group of users who always give good ratings to
total, there are 103 devices, 97 persons and 5,449 scanning another group of users in order to artificially boost the
activities. reputation of the target group [9].

NIPS-PW is from the NIPS proceedinfjsRows repre-

sent papers and columns represent words. Weighted e(j W the following methodol for evaluation: w
represent the count of the words that appear in the co >, We use the loflowing methodology Tor evaluatio €

In total, there are 2,037 authors, 13 éﬁ@domly inject one of the above anomalies into the original
normal) graph, and see if the proposed algorithm can spot it

;r['om the top-k edges of the residual matkx

Qualitative Results.Since the residual elements R

he proposedltQP-Incare non-negative, we can plot the
Ie5|dua[R itself as a residual graph as follows. The residual
graph has the same node sets as the original gAapkor
each edgdi,j) in A (i.e., A(i,j) > 0), we put an edge
R/% een nodéand nodg in the residual graph iR (4, j) >
0 with the weightR (4, 7). Compared with the traditional
matrix factorization methods (where one has to calculate
and look at the abstract re-construction error for anoraglie
the residual graph might provide a more intuitive way to
spot anomalies on graphs. Figure 1 presents an illustrative
example on synthetic graphs. For each sub-figure, we inject

esSlnce we do not have the ground-truth for the anoma-

sponding papers.
words, and 1,624,335 edges.

CIKM-PA is an author-paper graph constructed fro
CIKM proceedingd Rows represent the authors an
columns representthe papers. We connect a given paper
all of its co-authors by edges. In total, we have 1,895 astho
952 papers and 2,664 edges.

MovielLensis a user-movie rating graphRows repre-
sent users and columns represent movies. If a user has g

Shttp://reality. media. nit.edu/
“http://ww. cs.t oronto. edu/ ~r owei s/ dat a. ht
Shttp://ww. informatik.uni-trier.de/
~l ey/ db/ conf/ci kml
Sht t p: / / www. gr oupl ens. or g/
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Figure 1: Anomaly detection on synthetic graphs. Each bbaiérdthe figures represents an edge (or non-zero elements) in
the graph or in the residual matrices. The anomalies detdxstehe proposedItQP-Incare marked by red circles. (best
viewed in color)

one of the four anomalies into the normal graphs, and plot th

original matrix (left), the top-k edges in the residual matr . [T JvovieLens C_Jwi-op __Jnes-pw[_Jciku-ral
by AltQP-Inc (middle) and the residual matrix by singular Al

value decomposition (SVD) (right). It can be seen that ir -I- I -I-‘I' {‘ I +

all cases, the corresponding anomalies clearly stand out 08 ‘I‘ -I- -I- 5 ey
the corresponding residual matrix by the proposdi®P- '}

Inc (middle figures). On the other hand, (1) SVD does
not always capture the corresponding anomalies (e.qg,, (a
and/or (2) there might be some noise in the residual matri
by SVD (e.g., (b-d)). In addition, since the residual erstrie
in SVD can be both positive and negative, we cannot plot th
residual matrix by SVD as an intuitive residual graph. ‘ ‘ ‘
Quantitative ResultsWe also present the quantitative " strange connection port scan ddos bipartie core
results on the four real data sets. For each data set, wé inje.
one of the four anomalies into the data set randomly. Wegure 2: Anomaly detection on real graphs by the proposed
then run the proposedlitQP-Incto find the residual matrix AltQP-Inc The proposedItQP-Incachieves high accuracy
and output its top-k edges as anomalies. We repeat eactoafetect all the four types of anomalies.
such experiments 20 times and report the mean accuracy and ) o ]
variance in figure 2. It can be seen t#atQP-Incachieves in flgure 3. In figure 3, the numb_er |nS|de_ the parenthesis
high detection accuracy for all the four types of anomalié%‘?s'de the name of the data sets is the ratio between the re-

Accuracy
o
)

o
S
T

0.2r

across all the four data sets. construction error byAltQP-Incand that byAltQP-Batch It
can be seen that the propogetQP-Incis much faster than
5.3 Efficiency Results AltQP-Batch For exampleAltQP-Incis 51x faster (3.6sec.

Here, we evaluate the efficiency of the propoAd®P-Inc VS. 1865ec._) thaAltQP-Batchon MovieLeps data set. Note
For the results we reported in this subsection, they arededfat the ratio between the re-construction errorAiQP-
on the same machine with four 3.0GHz Intel (R) Xeon (RJC and that byAltQP-Batchis always less than or equal to
CPUs and 16GB memory, running Linux (2.6 kernel). wh indicating that the optimization solution BMQP-Incis

repeat the experiments 10 times and report the mean waftter thanMIT-DP andMovieLens) or similar to (NIPS-
clock time. PW andCIKM-PA ) that byAltQP-Batch

First, we compare the wall-clock time between the Next, we test the scalability oAltQP-Inc using the

proposedAltQP-Incand AltQP-Batch(see the appendix forsubsets of theMovieLens data set with the different rank

the description ofAltQP-Batch. The result is presentedSiZe’ The result is presented in figure 4. It can be seen that
the proposedItQP-Incscales linearly wrt the graph size, (
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Figure 4: Scalability of the proposedtQP-Incwith different rank size-. AltQP-Inc scales linearly wrt the size of the
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address the non-negativity issue, non-negative matrbofac
@A\KQP-B;! ‘ ‘ ‘ ‘ - ization has been studied in the past few years. Pioneering
T | - ArP-inc ] work in this thread can be traced back to [31] and there are
a lot of follow-up work in this direction [13, 29, 28, 12].
There are also efforts to address both the sparseness and non
negativity issues [23, 24]. It is worth pointing out that mos
if not all, of these modifications (i.e., sparseness and non-
| negativity constrains) are imposed on the factorized matri

ﬂ . ces. As a result, they mainly improve the interpretation for

1 || the task of community detection. It is unclear how these

1,000

=

o

=
T

Log Wall-Clock Time (Sec.)
.
o

[

efforts can also help to improve the interpretation for the
‘ ‘ ‘ ‘ ‘ ‘ ‘ task of anomaly detection. This is exactly one major mo-
MIT-DP (050)  CIKM-PA (0.97)  MOVIELENS (0.31)  NIPS-PW (1.00) tivation of this work. By imposing the non-negativity con-
strains on theesidual matrix instead of the factorized matri-
Figure 3: Comparison of wall-clock time. The wall-clockces, we bring this interpretation-friendly property (imon-
time is in logarithmic scale. The number inside the parentheegativity) to graph anomaly detection.
sis beside the name of the data sets is the ratio between theAnomaly Detection. Noble et al was among the first to
re-construction error bltQP-Incand that byAltQP-Batch detect abnormal sub-graphs using MDL (minimum descrip-
The proposed\ItQP-Incis much faster thalltQP-Batch tion length) criteria [34]. Follow-up work along this cnita

with better or similar re-construction error. includes [7, 16]. In [2], the authors proposed using ego-net
to detect abnormal nodes on weighted graphs. In [36], the
L andm). authors proposed using proximity to detect abnormal nodes
and edges. The work in [37, 38] is most related to our work.
6 Related Work In[37, 38], the authors use matrix factorization to det@at p

In this section, we review the related work, which can kszanning like behavior by looking at the reconstruction er-
categorized into three parts: matrix factorization, anlymaor (certain norms of the residual matrix). One limitation
detection and general graph mining. of [37, 38] is that its residual matrix can be arbitrary num-
Matrix Factorization. Matrix factorization [21, 15, 1] bers (either positive or negative). Therefore, the resighin
plays a very important role in graph mining. The most pope too abstract and not intuitive for data analysts to imtrp
ular choices include SVD/PCA [21, 26] and random proje@Ve restrict the residual matrix to be non-negative so that we
tion [25]. However, these methods often ignore the sparsan plot it as an intuitive residual graph. From the applica-
ness and nonnegativity of many real graphs and lead to detime side, many graph anomalies correspond to some actual
and negative results, which make the results hard to inteehaviors/activities of certain nodes (e.g., for portasea in
pret. A recent trend in matrix factorization has been deoten IP traffic network, it has connections to many different IP
to improving the interpretation of the mining results. Fatestinations). Such abnormal behaviors can be naturglly ca
example, to address the sparseness issue, the exampte-hased by the corresponding non-negative entries in thelresi
factorization methods have been proposed [15, 37, 38]. B3l matrixR. For anomaly detection for other types of data,
requiring the columns of the factorized matiixbe to ac- please refer to a recent comprehensive survey [8].
tual columns from the original matriA, the factorization General Graph Mining. There is a lot of research work
is naturally sparse and therefore good for interpretatian.
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A Appendix 16:

Throughout this paper, we have focused on the optimizatié?i
problem in e.q. (3.2) by restricting ourselves to the o/
weight matrix. In this section, we give our algorithms for¥
solving the optimization problem in e.q. (3.1) with a gemeréof
weight matrix W for the purpose of completeness. W

first generalize the proposédtQP-Incto handle the general 22:
weight matrix W (AltQP-Inc-Generg), and then give the Zif

1. fo

Relational learning Vighpyt: The original matrixA.,;, the weight matrixW,, .,
and a column vectdi, 1

Output: A row vectorg x;

rj=1:1do

Initialize the lower bound low= —inf and upper
bound up= inf;
Compute:a = diagW(:, 7)) - A(:,7)
Computeb = diagW(:,5)) - f
Computei = b’b
if t == 0then
Set:g(j) = 0;
Continue;
end if
Computeg = a’b/t
for eachi s.t. A(4,5) > 0 do
if £(¢) > 0 then
Update: up= min(up, A(i,5)/£(7))
else iff(i) < 0 then
Update: low= max(low, A (i, j)/£(3))
else
Continue;
end if
end for
if ¢ <= up andq >= low then
Output:g(j) = ¢;
else ifg > upthen
Output:g(j) = up;

alternative optimization algorithnA{tQP-Batcl) for solving _ elsg Ut (1) — low:
e.g. (3.1), using convex quadratic programming. 25 utpu ‘g(j) = low;
26: endif
27: end for

A.1 GeneralizedAltQP-Inc for e.q. (3.1)

In order to generalize the propos&dtQP-Inc to solve
e.q. (3.1) with a general weight matr®v, we first give

Based on Alg. 4, we have Alg. B{tQP-Inc-Generg)to

the algorithm Update-General-pto solve the sub-problem50|Ve e.g. (3.1) AltQP-Inc-Generais a natural generaliza-
expressed in e.q. (1.7)/pdate-General-gs for an arbitrary tion of AltQP-Inc Similar asAltQP-Ing AltQP-Inc-General
weight matrixW and is a natural generalization dpdate- tries to find the factorized matricds and G. in. an incre-

0. In Update-General-gdiag W (:, j)) is a diagonal matrix mental way. At each outer loop of .Alg. 5, it finds a Rank-
with diagonal elements beif/ (i, j)(i = 1, ...,n). Similar 1 approxm_atlon on the current residual ma_\tRx(steps 2-
asUpdate-g in Update-General-gwe updatez(;j) one by 11). At the inner Ioo_p of Alg. 5 (steps 4-8), it cgll.tpdate_—
one in each outer loop. For eagffj), it can be solved in Genera!—gto aIternanyer u_pdaté andg_, respectively. Tr_us
a closed formula (steps 20-26). This is due to the fact tidiernative process will be iterated until convergenceaeAf

the optimization problem in (1.7) can be decomposed irfigds a rank-1 approximation, we update the current residual
matrix in step 10.
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Algorithm 5 AltQP-Inc-Genera(For Solving e.q. 3.1)

Input: The original matrixA., «;, the weight matriW, and

rank sizer
Output: An n x r matrixF; ar x [ matrix G; and ann x [
matrixR;;
1. Initialize F = 0,,«,, G = 0,.«;, andR = A
2. fork=1:rdo
3. Initialize f andg

4. while Not convergentlo

5: Update:g < Update-General-R, W, f)
6: Set:f <— Update-General-(R', W', g’)
7 Update:f =/

8 end while

9:

SetF(:;, k) =f,andG(k,:) =g
10 UpdateR«+ R —f-g
11: end for

A.2  AltQP-Batch for e.qg. (3.1)

expensive convex quadratic programming to fi&d:, j);
whereas inUpdate-g we can use computationally cheap
closed formula to findg(j). It can be shown that the
quadratic programming problem in step 14 is semi-positive
definite which takes at leagd(r*) time, and the overall
Batch-Update-Gequires at leasD(m + nlr? + Ir*) time.

Algorithm 6 Batch-Update-GFor Solving e.q. 1.9)

Input: The original matrixA.,, «;, the weight matrixW , »;,
and left matrixF,, » -
Output: The right matrixG,.;
1. forj=1:1do
2. Computea,x; = diagW(:,5)) - A(:,5)
ComputeB,,, = diag W(:,j)) - F
fori=1:ndo
if A(,7) > 0then
Set:v(i) = A(4,5)
else
8: Set:v(i) = inf
end if

N g~

We can also solve the optimization problem in e.g. (3.1) by:
convex quadratic programming. To this end, let us assume
that we have a package = QpProdT, S, u,v)) to solve 11:
the following quadratic programming problem in e.q. (1.8).12:

end for
ComputeX = B'B
Computeu = —2B’a

) . . 13: Set:S=F
argmin, = X TaxaX + g% 14:  SolveG(:, ;) « QpProdT, S, u,v)
(1.8) s.t. Sexax < Vexi 15: end for

Ine.q. (1.8)xis ad x 1 vector that we want to solve and

the inequality holds element-wisely. T is semi-positive Algorithm 7 AltQP-Batch(For Solving e.q. 3.1)

definite, QpPro¢) requiresat leastO(d*) time?, wherek >

Input: The original matrixA., «;, the weight matriXW, and

1 and it depends on the actual methods to solve quadratic rgnk sizer
programming (e.g.k = 3.5 for the method in [40]k = 3 Qutput: Ann x r matrixF; ar x [ matrixG; and ann x [

for the method in [22], etc).

matrixR;

To solve e.g. (3.1) by convex quadratic programmings. |nitialize F,, ., andG,«;
we first give the algorithmRatch-Update-Gto solve the 5. \while Not convergentio

following optimization problemin e.q. (1.9), which is a sub 3.

Update:G < Batch-Update-GA, W, F)
Set:F < Batch-Update-GA’, W', G)
Update:F = F’

end while
7: Output:R = A — FG

problem of the optimization problemin e.q. (3.1). 4
n 1 5:
. .o . . .. 6:
argming = > > (A(i,5) — F(i,))G(:,5))* Wi, j)?
i=1 j=1
s.t. forallA(,j) > 0:

(1.9 F(i,))G(:,j) < A(i,])

Batch-Update-Qs similar asUpdate-gexcept that: in
each outer loop oBatch-Update-Gwe find a singler x 1
column vectorG(:,5)(j = 1,...,1). Whereas in each
outer loop ofUpdate-g we find a single variablg(j)(j =
1,...,1). This subtle point leads to a big difference in ter
of the time complexity. IrBatch-Update-Gwe have to use

8Besides the polynomial term, there is usually an additidesh in
the time complexity which relates to the encoding lengthhef uadratic
programming problem.
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Based onBatch-Update-Gwe have Alg. 7 AltQP-
Batch to solve the problem in e.q. (3.1). WItQP-Batch
after some initialization (step 1), we alternatively daditch-
Update-Gto updateF and G by fixing one of them. This
alternative process will be iterated until convergenceah
— be shown that the time complexity 8ftQP-Batchis at least
T Q(mt + nlr?t + Irkt + nrkt), wheret is the maximum
iteration number iNAItQP-Batchand & > 1 relates to the
actual methods to solve the convex quadratic programming.
Compared with the complexity of the proposatiQP-Inc
(O(mrt + nrt + Irt)), AltQP-Batchis much more time
consuming.
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