
Non-Negative Residual Matrix Factorization with Application to
Graph Anomaly Detection∗

Hanghang Tong
IBM T.J. Watson Research Center

htong@us.ibm.com

Ching-Yung Lin
IBM T.J. Watson Research Center

chingyung@us.ibm.com

Abstract

Given an IP source-destination traffic network, how do we
spot mis-behavioral IP sources (e.g., port-scanner)? How
do we find strange users in a user-movie rating graph?
Moreover, how can we present the results intuitively so that
it is relatively easier for data analysts to interpret?

We proposeNrMF, a non-negative residual matrix fac-
torization framework, to address such challenges. We
present an optimization formulation as well as an effective
algorithm to solve it. Our method can naturally capture ab-
normal behaviors on graphs. In addition, the proposed algo-
rithm is linear wrt the size of the graph therefore it is suitable
for large graphs. The experimental results on several data
sets validate its effectiveness as well as efficiency.

1 Introduction

Graphs appear in a wide range of settings, e.g., social net-
works, computer networks, user-movie rating graphs in col-
laborative filtering, the world wide web, biological networks,
and many more. How can we find patterns, e.g. communities
and anomalies, in a large sparse graph?

Naturally, low-rank approximations on the adjacency
matrices of the graph provide powerful tools to answer the
above questions. Formally, letA be the adjacency matrix of
the graph, a rank-r approximation of matrixA is a matrix
Ã whereÃ is of rankr and the residual matrix (A − Ã)
has small norm. The low-rank approximation is usually
presented in a factorized form e.g.,A = Ã+R = FG+R

whereF, G are the factorized matrices of rank-r, andR
is the residual matrix. The factorized matricesF andG

can naturally reveal the community structure in the graph.
The residual matrixR, on the other hand, is often a strong
indicator for anomalies on graphs (e.g., a large norm of the

∗Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-2-0053.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation here on.

residual matrixR suggests a significant deviation from low-
rank structure in the graph).

From algorithmic aspect, a recent trend in matrix fac-
torization is to improve the interpretation of such graph min-
ing results. To name a few, non-negative matrix factoriza-
tion methods [31] restrict the entries inF andG to be non-
negative; example-based methods [15] generate sparse de-
composition by requiring the columns of the matrixF to be
the actual columns of the original matrixA; etc. By im-
posing such non-negativity and/or sparseness constrains on
the factorized matrices, it is relatively easier to interpret the
community detection results. Actually, it is now widely re-
alized that non-negativity is a highly desirable property for
interpretation since negative values are usually hard to in-
terpret. However, most, if not all, of these constrains (i.e.,
non-negativity, sparseness, etc) are imposed on thefactor-
ized matrices. Consequently, these existing methods are tai-
lored for the task of community detection. It is not clear
how to improve the interpretation for the task of anomaly
detection from the algorithmic aspect. Can we impose simi-
lar constraints (e.g., non-negativity) on theresidual matrixR
to improve the interpretation for graph anomaly detection?

Fromapplicationside, it is often the case that anomalies
on graphs correspond to some actual behaviors/activities of
certain nodes. For instance, we might flag an IP source as a
suspicious port-scanner if itsends packagesto a lot of des-
tinations in an IP traffic network [37]; an IP address might
be under the DDoS (distributed denial-of-service) attack if it
receives packagesfrom many different sources [37]; a per-
son is flagged as ‘extremely multi-desciplinary’ if s/hepub-
lishes papersin many remotely related fields in an author-
conference network [2]; in certain collusion-type of fraudin
financial transaction network, a group of users alwaysgive
good ratingsto another group of users in order to artifi-
cially boost the reputation of the target group [9], etc. If
we map such behaviors/activities (e.g., ‘sends/receives pack-
ages’, ‘publishes papers’, ‘gives good ratings’, etc) to the
language of matrix factorization, it also suggests that thecor-
responding entries in the residual matrixR should be non-
negative.

In response to such challenges, in this paper, we propose

143 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



a new matrix factorization (NrMF) for the task of graph
anomaly detection. To the best of our knowledge, we are the
first to address the interpretation issue of matrix factorization
for the purpose of graph anomaly detection. The major
contributions of the paper can be summarized as follows:

1. Problem formulation, presenting a new formulation for
matrix factorization (NrMF) tailored for graph anomaly
detection;

2. An effective algorithm (AltQP-Inc) to solve the above
optimization problem, linear wrt the size of the graph;

3. Proofs and analysis, showing the effectiveness as well
as the efficiency of the proposed method;

4. Experimental evaluations, demonstrating both the ef-
fectiveness and efficiency of the proposed method.

The rest of the paper is organized as follows: we introduce
notation and formally define the problem (NrMF) in Sec-
tion 2. We present and analyze the proposed solution for
NrMF in Section 3 and Section 4, respectively. We provide
experimental evaluations in Section 5. The related work is
reviewed in Section 6. Finally, we conclude in Section 7.

2 Problem Definitions

Table 1: Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) the element at theith row andjth column

of matrixA
A(i, :) theith row of matrixA
A(:, j) thejth column of matrixA
A′ transpose of matrixA
a,b, . . . column vectors (bold lower case)
F,G factorized matrices ofA
R residual matrix ofA
n number of type 1 objects inA
l number of type 2 objects inA
m number of edges inA
r rank size

Table 2 lists the main symbols we use throughout the
paper. In this paper, we consider the most general case of
bipartite graphs. We represent a general bipartite graph by
its adjacency matrix1. Following the standard notation, we
use capital bold letters for matrices (e.g.A), lower case bold
letters for vectors (e.g.a). We denote the transpose with a
prime (i.e.,A′ is the transpose ofA). We use subscripts
to denote the size of matrices/vectors (e.g.An×l means
a matrix of sizen × l). When the size of a matrix or a
vector is clear from the context, we ignore such subscripts
for brevity. Also, we represent the elements in a matrix using
a convention similar to Matlab, e.g.,A(i, j) is the element at

1In practice, we store these matrices using an adjacency listrepresenta-
tion, since real graphs are often very sparse.

the ith row andjth column of the matrixA, andA(:, j) is
thejth column ofA, etc.

With the above notations, a general matrix factorization
problem can be formally defined as follows:

PROBLEM 1. Matrix Factorization

Given: A graphAn×l, and the rank sizer;

Find: Its low-rank approximation structure. That is, find (1)
two factorized matricesFn×r andGr×l, and the resid-
ual matrix Rn×l; such that (1)An×l ≈ Fn×rGr×l,
and (2)Rn×l = An×l − Fn×rGr×l.

Existing matrix factorization techniques can be viewed
as different instantiations of Problem 1. They differ from
each other, mainly from the following two aspects: (1) by
using the different metrics to measure the approximation
accuracy (some norms on the residual matrixR); and (2) by
imposing the different constraints on thefactorized matrices
F andG . For example, non-negative matrix factorization
requires the factorized matrices to be non-negative (see
Section 6 for a review).

In this paper, we present another instantiation of Prob-
lem 1 by imposing the non-negativity constrains on theresid-
ual matrixR. Our problem, Non-Negative Residual Matrix
Factorization (NrMF), is formally defined as follows:

PROBLEM 2. Non-Negative Residual Matrix Factorization
(NrMF)

Given: A graphAn×l, and the rank sizer;

Find: Its low-rank approximation structure. That is, find
two factorized matricesFn×r andGr×l, and the resid-
ual matrixRn×l; such that (1)An×l ≈ Fn×rGr×l; (2)
Rn×l = An×l − Fn×rGr×l; and (3) for allA(i, j) >
0,R(i, j) ≥ 0.

Problem 2 is tailored for the task of graph anomaly de-
tection, where we explicitly require the corresponding ele-
mentsR(i, j) in the residual matrixR to be non-negative
if there exists an edge between nodei and nodej in the
original graph (i.e.,A(i, j) > 0). As explained earlier in
Section 1, the residual matrixR is often a good indicator
for anomalies on graphs. Moreover, many abnormal behav-
iors/activities (e.g., port-scanner, DDoS, etc) can be mapped
to some non-negative entries in the residual matrixR. For
instance, a large entry inR might indicate a strange interac-
tion between two objects; a heavy row/column ofR might
indicate a suspicious object (e.g., port-scanner, or an IP ad-
dress that is under DDoS attack, etc). InNrMF, we aim
to capture such abnormal behaviors/activities by explicitly
imposing non-negativity constrains on the residual matrix
R. Moreover,NrMF directly brings the non-negativity, an
interpretation-friendly property, to the task of graph anomaly
detection since negative values are usually hard to interpret.
For example, by existing matrix factorization methods, the

144 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



data analyst has to look at (somewhat abstract) residual ma-
trix, which contains both positive and negative entries; and
calculate the re-construction errors to spot anomalies. In
contrast, thanks to the non-negativity constraints inNrMF,
we can present the residual matrix itself as a residual graph,
which might be more intuitive for the data analyst to inter-
pret.

3 The Proposed Solutions forNrMF

In this section, we formally represent our solutions for
non-negative residual matrix factorization (NrMF). We first
formulate Problem 2 as an optimization problem; and then
we present effective algorithms to solve it.

3.1 Optimization Formulations
General Formulation of Problem 2. Formally, Problem 2
can be formulated as the following optimization problem:

argminF,G = ‖Rn×l ⊗Wn×l‖
2
F

=

n∑

i=1

l∑

j=1

(A(i, j)− F(i, :)G(:, j))2W(i, j)2

s.t. for allA(i, j) > 0 :

F(i, :)G(:, j) ≤ A(i, j)(3.1)

In eq. (3.1), ‘⊗′ means element-wise multiplication.
In other words, here we use a weighted squared Frobenius
norm of the residual matrixR to measure the approx-
imation accuracy, through a weight matrixWn×l. For
every edge in the graph (i.e.,A(i, j) > 0), we require
that F(i, :)G(:, j) ≤ A(i, j), which means that the
corresponding residual entryR(i, j) should satisfy that
R(i, j) = A(i, j)− F(i, :)G(:, j) ≥ 0.

0/1 Weight Matrix for e.q. (3.1). In eq. (3.1), the
weight matrix W reflects the user’s preference among
all n × l reconstructed entries. In this paper, we focus
on a special case of weight matrixW: W(i, j) = 1 for
A(i, j) > 0; andW(i, j) = 0 otherwise. This means that
we only measure the element-wise loss on the observed
edges; and among all these edges, we treat the element-wise
loss equally (referred to as ‘0/1 Weight Matix’). This type
of weight matrix in widely used in the literature, especially
in the context of collaborative filtering [5, 35].

With such 0/1 weight matrix, e.q. (3.1) can be simplified
as:

argminF,G

∑

i,j, A(i,j)>0

(A(i, j)− F(i, :)G(:, j))2

s.t. for allA(i, j) > 0 :

F(i, :)G(:, j) ≤ A(i, j)(3.2)

In the rest of this paper, we will focus on eq. (3.2)
for clarity. However, we would like to point out that the
upcoming proposed techniques can be naturally applied to

a general, arbitrary weight matrixW. We will present such
algorithms in the appendix for completeness.
Rank-1 Approximation for e.q. (3.2). In e.q. (3.2), if we
restrict the rank of the factorized matricesF andG to be
1, we have the following rank-1 approximation of e.q. (3.2),
wheref is ann×1 column vector andg is a1× l row vector.

argminf ,g
∑

i,j, A(i,j)>0

(A(i, j)− f(i)g(j))2

s.t. for allA(i, j) > 0 :

f(i)g(j) ≤ A(i, j)(3.3)

3.2 The Proposed Optimization Algorithms
Next, we present our algorithms to solve e.q. (3.2). We first
analyze the challenges of optimizing e.q. (3.2) directly, and
then present an incremental alternative optimization strategy.

3.2.1 Challenges
Unfortunately, the optimization problem formulated in
e.q. (3.2) isnot convexwrt F andG jointly due to the cou-
pling betweenF andG in both the objective function and
the inequality constraints. Therefore, it might be unrealis-
tic to seek for a global optimal solution. A natural way to
handle this issue is to findF andG alternatively. Actu-
ally, we can show that if we fix eitherG or F in (3.2), the
resulting optimization problem is a convex quadratic pro-
gramming problem wrt the remaining matrix (F orG). This
suggests the following greedy optimization strategy (referred
to asAltQP-Batch, see the appendix for the formal descrip-
tion): after some initialization, we alternatively updateF and
G using convex quadratic programming until convergence.
With AltQP-Batch, we can find a local minimal solution for
e.q. (3.2), which is acceptable in terms of optimization qual-
ity for a non-convex problem. However, most, if not all, of
existing convex quadratic programming methods arepoly-
nomialwrt the number of variables. This makes the overall
complexity ofAltQP-Batchto be polynomial, which might
not scale very well for large graphs.

To address these challenges, in this paper, we propose an
effective and efficient algorithmAltQP-Inc. The basic idea
of AltQP-Inc is to find the resultingF andG incrementally:
at each iteration, we try to find a rank-1 approximation on the
current residual matrix by solving e.q. (3.3). As we will show
soon, this strategy bears the similar greedy nature asAltQP-
Batch. Therefore it also leads to a local minimal solution
for e.q. (3.2). Yet its time complexity islinear wrt the size
of the graph, which makes the algorithm more suitable for
large graphs. Next, we first present our algorithm (AltQP-
Inc-1) for solving e.q. (3.3), and then present our algorithm
(AltQP-Inc) for solving e.q. (3.2).

3.2.2 AltQP-Inc-1: Proposed Algorithm for e.q. (3.3)
Again, e.q. (3.3) is not convex wrtf andg jointly due to
the coupling betweenf andg. Therefore, we seek for an

145 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



alternative strategy: the algorithm alternatively iterates as
follows until convergence: (1) updatingf while keepingg
fixed; and (2) updatingg while keepingf fixed.

Formally, let us consider how to updateg while keeping
f fixed (updatingf is similar as updatingg). In this case,
e.q. (3.3) can be further simplified as:

argming
∑

i,j, A(i,j)>0

(A(i, j)− f(i)g(j))2

s.t. for allA(i, j) > 0 :

f(i)g(j) ≤ A(i, j)(3.4)

It is easy to show that e.q. (3.4) is convex wrtg.
The proposed algorithm (Update-g) for solving e.q. (3.4)
is summarized in Alg. 1. At each outer loop of Alg. 1,
we update a single entryg(j)(j = 1, ..., l), which is in
turn done by some closed formula (steps 19-25). The
main difference betweenUpdate-gand AltQP-Batchis as
follows: in Update-g, g is a row vector and we can have
computationally cheap closed formula to solve e.q. (3.4). In
contrast, we have to call some expensive convex quadratic
programming packages inAltQP-Batchto find the optimal
solution.

Based on Alg. 1, we present Alg. 2 (Rank-1-
Approximation) to solve e.q. (3.3): after some initializations
(step 1), Alg. 2 alternates between the following two steps
until convergence: (1) updateg while keepingf fixed by
calling Update-g(step 3); and (2) updatef while keepingg
fixed by callingUpdate-g(step 4).

3.2.3 AltQP-Inc: Proposed Algorithm for e.q. (3.2)
Based on Alg. 2, our algorithm (AltQP-Inc) for solving
the original e.q. (3.2) is summarized in Alg. 3. It is an
incremental algorithm: at each iteration, it calls Alg. 2 to
find a rank-1 approximation for the current residual matrix
R (steps 3-4). Notice that since e.q. (3.2) is an instantiation
of e.q. (3.1) by using the 0/1 weight matrix, we only need to
update the residual entries where there exists an edge in the
original graph (i.e.,A(i, j) > 0) in steps 5-7.

4 Analysis of the Proposed Algorithms

In this section, we analyze the effectiveness as well as the
efficiency of the proposed algorithms. Our main results are
(1) the proposed algorithms find (at least) a local optimal
solution for the corresponding optimization problems; and
(2) the complexity of the proposed algorithms is linear in
both time and space.

4.1 Effectiveness of the Proposed Algorithms
The effectiveness of the proposed algorithms is summarized
in Lemma 4.1, which basically says that the proposedAltQP-
Inc finds a local minima of e.q. (3.2). Given that the
optimization problem in e.q. (3.2) is not convex wrtF and
G jointly, such a local minima is acceptable in terms of the
optimization quality.

Algorithm 1 Update-g(For Solving e.q. 3.4)
Input: The original matrixAn×l; and a column vectorfn×1

Output: A row vectorg1×l

1: for j = 1 : l do
2: Initialize the lower bound low= −inf, upper bound

up= inf, t = 0 andq = 0;
3: for eachi, s.t.,A(i, j) > 0 do
4: Update:q ← q + f(i)A(i, j)
5: Update:t← t+ f(i)2

6: if f(i) > 0 then
7: Update: up= min(up,A(i, j)/f(i))
8: else iff(i) < 0 then
9: Update: low= max(low,A(i, j)/f(i))

10: else
11: Continue;
12: end if
13: end for
14: if t == 0 then
15: Set:g(j) = 0;
16: Continue;
17: end if
18: Set:q ← q/t
19: if q <= up andq >= low then
20: Output:g(j) = q;
21: else ifq > up then
22: Output:g(j) = up;
23: else
24: Output:g(j) = low;
25: end if
26: end for

LEMMA 4.1. Effectiveness.(P1) Update-g in Alg. 1 gives
the global optimal solution for the optimization problem in
e.q.(3.4); (P2) Rank-1-Approximation in Alg. 2 finds a local
minima of the optimization problem in e.q.(3.3); and (P3)
AltQP-Inc in Alg. 3 finds a local minima for the optimization
problem in e.q.(3.2).

Sketch of Proof: For brevity, we only give the proof for
(P1); since (P2) and (P3) are relatively straight-forward
based on (P1).

Here, the key point is that e.q. (3.4) can be decomposed
into the followingl independent optimization problems, each
of which only involves a single variableg(j) (j = 1, ..., l):

For j = 1, ..., l :

argmingj

∑

i, A(i,j)>0

(A(i, j)− f(i)g(j))2

s.t. for allA(i, j) > 0 :

f(i)g(j) ≤ A(i, j)(4.5)

146 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Algorithm 2 Rank-1-Approximation(For Solving e.q. 3.3)
Input: The original matrixAn×l

Output: A column vectorfn×1; and a row vectorg1×l;
1: Initialize fn×1 andg1×l;
2: while Not convergentdo
3: Update:g← Update-g(A, f)
4: Set: f̃ ← Update-g(A′,g′)
5: Update:f = f̃ ′

6: end while

Algorithm 3 AltQP-Inc(For Solving e.q. 3.2)
Input: The original matrixAn×l, and rank sizer
Output: An n× 1 matrixF; ar× l matrixG; and ann× l

matrixR
1: InitializeF = 0n×r, G = 0r×l, andR = A

2: for k = 1 : r do
3: (f ,g)←Rank-1-Approximation(R)
4: SetF(:, k) = f , andG(k, :) = g

5: for every(i, j), s.t.,A(i, j) > 0 do
6: UpdateR(i, j)← R(i, j)− f(i)g(j)
7: end for
8: end for

For a givenj, e.q. (4.5) is equivalent to2 :

argming(j) g(j)2 − 2qg(j)

s.t. low≤ g(j) ≤ up

where: q = (
∑

i,A(i,j)>0

f(i)A(i, j))/(
∑

i,A(i,j)>0

f(i)2)

low = maxf(i)<0,A(i,j)>0{A(i, j)/f(i)}

up= minf(i)>0,A(i,j)>0{A(i, j)/f(i)}(4.6)

In e.q. (4.6), we have a quadratic objective function wrt
a single variableg(j), whereg(j) has a boundary constraint
(low ≤ g(j) ≤ up). It is easy to verify that each outer
loop of Alg. 1 gives the global optimal solution for (4.6).
Therefore, the whole Alg. 1 gives the global optimal solution
for e.q. (3.4), which completes the proof. �

4.2 Time Efficiency of the Proposed Algorithms
The time complexity of the proposed algorithms is summa-
rized in Lemma 4.2, which basically says that for all the three
algorithms we proposed, they are linear wrt the size of graph
m,n andl. Therefore, they are scalable for large graphs.

LEMMA 4.2. Time Complexity. (P1) Update-g in Alg. 1
requiresO(m+l) time; (P2) Rank-1-Approximation in Alg. 2
requiresO(mt+nt+ lt) time; and (P3) AltQP-Inc in Alg. 3
requiresO(nrt +mrt + lrt) time, wheret is the maximum
iteration number in Alg. 2.

2We have dropped a constant term from the objective function since it
does not affect the optimal solution.

Proof of P1: The time cost for step 2 of Alg 1 isO(1).
Let mj be the total number of non-zero elements in thejth

column of matrixA, we have
∑l

j=1 mj = m. The time cost
for step 3 and 13 isO(mj) since we needO(1) operations for
each non-zero element inA(:, j). The cost for steps 14-17
isO(1). We need anotherO(1) time for step 18. Finally, for
steps 19-25, we needO(1) time. Therefore, the total cost for
Alg. 1 is

∑l

j=1(O(1) +O(mj)) = O(l) +O(
∑l

j=1 mj) =
O(m+ l), which completes the proof. �

Proof of P2: Step 1 in Alg. 2 takesO(l + n) time. Based
on (P1), we needO(m + l) andO(m + n) for step 3 and 4,
respectively. We need anotherO(n) for step 5. Therefore,
the overall time complexity of Alg. 2 isO(l+ n) + (O(m+
l)+O(m+n)+O(n))t = O(mt+nt+lt), which completes
the proof. �

Proof of P3: Step 1 in Alg. 3 takesO(nr + lr + m) time.
Let m̃k be the number of non-zeros elements inR in the
kth iteration of Alg. 3, we have that̃m1 = m andm̃k ≤
m (k = 2, ..., r). Based on (P2), we needO(m̃kt+ nt+ lt)
for step 3. For step 4, we needO(n + l) time. We need
additionalO(m) time for updatingR (steps 5-7). Putting
these together, the overall time complexity of Alg. 3 is
O(nr+ lr+m) +

∑r

k=1 O(m̃kt+ nt+ lt+m+ n+ l) =
O(mrt + nrt+ lrt), which completes the proof. �

4.3 Space Efficiency of the Proposed Algorithms
The space complexity of the proposed algorithms is summa-
rized in Lemma 4.3, which basically says that for all the three
algorithms we proposed, the space complexity is linear wrt
the size of graphm,n andl. Therefore, they are scalable for
large graphs.

LEMMA 4.3. Space Complexity. (P1) Update-g in Alg. 1
requiresO(m + n + l) space; (P2) Rank-1-Approximation
in Alg. 2 requiresO(m + n+ l) space; and (P3) AltQP-Inc
in Alg. 3 requiresO(m+ nr + lr) space.

Proof of P1: In Alg. 1, we needO(m), O(n), andO(l)
space to keep the original matrixA, the column vectorf , and
the row vectorg, respectively. For all the remaining steps
in Alg. 1, they requiresO(1) space respectively. Among
the different iterations of Alg. 1, we can re-use the space
from the previous iteration. Therefore, the overall space
complexity of Alg. 1 isO(m + n+ l), which completes the
proof. �

Proof of P2: In Alg. 2, we needO(m) space for the original
matrix A. The initialization in step 1 needsO(n + l)
space. By (P1), we needO(m + n + l) space for steps 3-
4, respectively. Step 5 tasks anotherO(n) space. Among
the different iterations of Alg. 1, we can re-use the space
from the previous iteration. Therefore, the overall space
complexity of Alg. 2 isO(m) + O(n + l) + O(2m + 2n+
2l) +O(n) = O(m+ n+ l), which completes the proof.�

147 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Table 2: Data sets used in evaluations
Name n× l m

MIT-DP 103×97 5,449
NIPS-PW 2,037× 13,649 1,624,335
CIKM-PA 1,895×952 2,664
MovieLens 6,040×3,952 575,281

Proof of P3: In Alg. 3, we needO(m) space for the original
matrixA. The initialization in step 1 needsO(nr+ lr+m)
space. Let̃mk be the number of non-zeros elements inR in
thekth iteration, we have that̃m1 = m andm̃k ≤ m (k =
2, ..., r). Based on (P2), we needO(mk + n + l) for step
3. For steps 4-7, they do not require extra space. Finally,
among different iterations, we can reuse the space from the
first iteration sincẽmk < m̃1 = m(k = 1, ..., r). Therefore,
the overall space complexity of Alg. 3 isO(m) + O(nr +
lr+m) +O(max(m1) +n+ l) = O(m+ nr+ lr), which
completes the proof. �

5 Experimental Results

In this section, we present experimental evaluations, after we
introduce the data sets. All the experiments are designed to
answer the following two questions:

• Effectiveness:What kinds of anomalies can the pro-
posedAltQP-Incdetect?
• Efficiency:How fast is the proposedAltQP-Inc? How

does it scale?
5.1 Data Sets
We use four different data sets in our experiments, summa-
rized in Table 2.

The first data set (MIT-DP ) is from MIT Reality Mining
project3. Rows represent the blue tooth devices and columns
represent the persons. The un-weighted edges represent the
scanning activities between the devices and persons. In
total, there are 103 devices, 97 persons and 5,449 scanning
activities.

NIPS-PW is from the NIPS proceedings4. Rows repre-
sent papers and columns represent words. Weighted edges
represent the count of the words that appear in the corre-
sponding papers. In total, there are 2,037 authors, 13,649
words, and 1,624,335 edges.

CIKM-PA is an author-paper graph constructed from
CIKM proceedings5. Rows represent the authors and
columns represent the papers. We connect a given paper with
all of its co-authors by edges. In total, we have 1,895 authors,
952 papers and 2,664 edges.

MovieLens is a user-movie rating graph6. Rows repre-
sent users and columns represent movies. If a user has given

3http://reality.media.mit.edu/
4http://www.cs.toronto.edu/˜roweis/data.html
5http://www.informatik.uni-trier.de/

˜ley/db/conf/cikm/
6http://www.grouplens.org/

a positive rating (4 or 5) to a particular movie, we connect
them with an edge. Here, the edge weight is the actual rating
(4 or 5). In total, we have 6,040 users, 3,952 movies, and
575,281 edges.

5.2 Effectiveness Results
In this paper, we focus on the following four types of
anomalies on bipartite graphs:

1. Strange connection(referred to as ‘strange connec-
tion’). It is a connection between two nodes which be-
long to two remotely connected communities, respec-
tively. For example, in author-conference graph, this
could be the case that an author publishes a paper in a
conference which is remotely related to his/her major
research interest (e.g., a system guy publishes a paper
in a theory conference, etc) [36].

2. Port-scanning like behavior(referred to as ‘port-scan’).
It is a type-1 node that is connected to many different
type-2 nodes in the bipartite graph. For example,
in an IP traffic network, this could be an IP source
which sends packages to many different IP destinations
(therefore it might be a suspicious port scanner) [37].

3. DDoS like behavior(referred to as ‘ddos’). It is a type-
2 node that is connected to many different type-1 nodes
in the bipartite graph. For example, in an IP traffic
network, this could be an IP destination which receives
packages from many different IP sources (therefore it
might be under DDoS, distributed denial-of-service,
attack) [37].

4. Collusion type of fraud (referred to as ‘bipartite core’).
It is a group of type-1 nodes and a group of type-2
nodes which are tightly connected with each other. For
example, in financial transaction network, this could
be a group of users who always give good ratings to
another group of users in order to artificially boost the
reputation of the target group [9].

Since we do not have the ground-truth for the anoma-
lies, we use the following methodology for evaluation: we
randomly inject one of the above anomalies into the original
(normal) graph, and see if the proposed algorithm can spot it
from the top-k edges of the residual matrixR.

Qualitative Results.Since the residual elements inR
by the proposedAltQP-Incare non-negative, we can plot the
residualR itself as a residual graph as follows. The residual
graph has the same node sets as the original graphA. For
each edge(i, j) in A (i.e., A(i, j) > 0), we put an edge
between nodei and nodej in the residual graph ifR(i, j) >
0 with the weightR(i, j). Compared with the traditional
matrix factorization methods (where one has to calculate
and look at the abstract re-construction error for anomalies),
the residual graph might provide a more intuitive way to
spot anomalies on graphs. Figure 1 presents an illustrative
example on synthetic graphs. For each sub-figure, we inject

148 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



0 20 40 60 80

0

20

40

60

80

100

Original Adjacency Matrix
0 20 40 60 80

0

20

40

60

80

100

nrmf
0 20 40 60 80

0

20

40

60

80

100

SVD
0 20 40 60 80

0

20

40

60

80

100

Original Adjacency Matrix
0 20 40 60 80

0

20

40

60

80

100

nrmf
0 20 40 60 80

0

20

40

60

80

100

SVD

(a) strange connection (b) port scanning

0 20 40 60 80

0

20

40

60

80

100

Original Adjacency Matrix
0 20 40 60 80

0

20

40

60

80

100

nrmf
0 20 40 60 80

0

20

40

60

80

100

SVD
0 20 40 60 80

0

20

40

60

80

100

Original Adjacency Matrix
0 20 40 60 80

0

20

40

60

80

100

nrmf
0 20 40 60 80

0

20

40

60

80

100

SVD

(c) ddos (d) bipartite core

Figure 1: Anomaly detection on synthetic graphs. Each blue dot in the figures represents an edge (or non-zero elements) in
the graph or in the residual matrices. The anomalies detected by the proposedAltQP-Incare marked by red circles. (best
viewed in color)

one of the four anomalies into the normal graphs, and plot the
original matrix (left), the top-k edges in the residual matrix
by AltQP-Inc (middle) and the residual matrix by singular
value decomposition (SVD) (right). It can be seen that in
all cases, the corresponding anomalies clearly stand out in
the corresponding residual matrix by the proposedAltQP-
Inc (middle figures). On the other hand, (1) SVD does
not always capture the corresponding anomalies (e.g., (a)),
and/or (2) there might be some noise in the residual matrix
by SVD (e.g., (b-d)). In addition, since the residual entries
in SVD can be both positive and negative, we cannot plot the
residual matrix by SVD as an intuitive residual graph.

Quantitative Results.We also present the quantitative
results on the four real data sets. For each data set, we inject
one of the four anomalies into the data set randomly. We
then run the proposedAltQP-Inc to find the residual matrix
and output its top-k edges as anomalies. We repeat each of
such experiments 20 times and report the mean accuracy and
variance in figure 2. It can be seen thatAltQP-Incachieves
high detection accuracy for all the four types of anomalies,
across all the four data sets.

5.3 Efficiency Results
Here, we evaluate the efficiency of the proposedAltQP-Inc.
For the results we reported in this subsection, they are tested
on the same machine with four 3.0GHz Intel (R) Xeon (R)
CPUs and 16GB memory, running Linux (2.6 kernel). We
repeat the experiments 10 times and report the mean wall-
clock time.

First, we compare the wall-clock time between the
proposedAltQP-IncandAltQP-Batch(see the appendix for
the description ofAltQP-Batch). The result is presented

strange connection port scan ddos bipartie core
0

0.2

0.4

0.6

0.8

1

1.2

A
cc

ur
ac

y

 

 
MOVIELENS MIT−DP NIPS−PW CIKM−PA

Figure 2: Anomaly detection on real graphs by the proposed
AltQP-Inc. The proposedAltQP-Incachieves high accuracy
to detect all the four types of anomalies.

in figure 3. In figure 3, the number inside the parenthesis
beside the name of the data sets is the ratio between the re-
construction error byAltQP-Incand that byAltQP-Batch. It
can be seen that the proposedAltQP-Inc is much faster than
AltQP-Batch. For example,AltQP-Inc is 51x faster (3.6sec.
vs. 186sec.) thanAltQP-BatchonMovieLensdata set. Note
that the ratio between the re-construction error byAltQP-
Inc and that byAltQP-Batchis always less than or equal to
1, indicating that the optimization solution byAltQP-Inc is
better than (MIT-DP andMovieLens) or similar to (NIPS-
PW andCIKM-PA ) that byAltQP-Batch.

Next, we test the scalability ofAltQP-Inc using the
subsets of theMovieLens data set with the different rank
sizer. The result is presented in figure 4. It can be seen that
the proposedAltQP-Incscales linearly wrt the graph size (n,

149 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



0 2000 4000 6000
0

20

40

60

80

w
al

l−
cl

oc
k 

tim
e 

(s
ec

.)
 

 

0 1000 2000 3000 4000
0

20

40

60

80

w
al

l−
cl

oc
k 

tim
e 

(s
ec

.)

 

 

0 2x10^5 4x10^5 6x10^5
0

20

40

60

80

w
al

l−
cl

oc
k 

tim
e 

(s
ec

.)

 

 
r=1
r=2
r=5
r=10
r=20

r=1
r=2
r=5
r=10
r=20

r=1
r=2
r=5
r=10
r=20

(a) wall-clock time vs.n (b) wall-clock time vs.l (c) wall-clock time vs.m

Figure 4: Scalability of the proposedAltQP-Inc with different rank sizer. AltQP-Inc scales linearly wrt the size of the
graph.

MIT−DP (0.50) CIKM−PA (0.97) MOVIELENS (0.31) NIPS−PW (1.00)
0.1

1

10

100

1,000

Lo
g 

W
al

l−
C

lo
ck

 T
im

e 
(S

ec
.)

 

 

AltQP−Bat

AltQP−Inc

Figure 3: Comparison of wall-clock time. The wall-clock
time is in logarithmic scale. The number inside the parenthe-
sis beside the name of the data sets is the ratio between the
re-construction error byAltQP-Incand that byAltQP-Batch.
The proposedAltQP-Inc is much faster thanAltQP-Batch,
with better or similar re-construction error.

l andm).

6 Related Work

In this section, we review the related work, which can be
categorized into three parts: matrix factorization, anomaly
detection and general graph mining.

Matrix Factorization. Matrix factorization [21, 15, 1]
plays a very important role in graph mining. The most pop-
ular choices include SVD/PCA [21, 26] and random projec-
tion [25]. However, these methods often ignore the sparse-
ness and nonnegativity of many real graphs and lead to dense
and negative results, which make the results hard to inter-
pret. A recent trend in matrix factorization has been devoted
to improving the interpretation of the mining results. For
example, to address the sparseness issue, the example-based
factorization methods have been proposed [15, 37, 38]. By
requiring the columns of the factorized matrixF be to ac-
tual columns from the original matrixA, the factorization
is naturally sparse and therefore good for interpretation.To

address the non-negativity issue, non-negative matrix factor-
ization has been studied in the past few years. Pioneering
work in this thread can be traced back to [31] and there are
a lot of follow-up work in this direction [13, 29, 28, 12].
There are also efforts to address both the sparseness and non-
negativity issues [23, 24]. It is worth pointing out that most,
if not all, of these modifications (i.e., sparseness and non-
negativity constrains) are imposed on the factorized matri-
ces. As a result, they mainly improve the interpretation for
the task of community detection. It is unclear how these
efforts can also help to improve the interpretation for the
task of anomaly detection. This is exactly one major mo-
tivation of this work. By imposing the non-negativity con-
strains on theresidual matrix, instead of the factorized matri-
ces, we bring this interpretation-friendly property (i.e., non-
negativity) to graph anomaly detection.

Anomaly Detection.Noble et al was among the first to
detect abnormal sub-graphs using MDL (minimum descrip-
tion length) criteria [34]. Follow-up work along this criteria
includes [7, 16]. In [2], the authors proposed using ego-net
to detect abnormal nodes on weighted graphs. In [36], the
authors proposed using proximity to detect abnormal nodes
and edges. The work in [37, 38] is most related to our work.
In [37, 38], the authors use matrix factorization to detect port
scanning like behavior by looking at the reconstruction er-
ror (certain norms of the residual matrix). One limitation
of [37, 38] is that its residual matrix can be arbitrary num-
bers (either positive or negative). Therefore, the result might
be too abstract and not intuitive for data analysts to interpret.
We restrict the residual matrix to be non-negative so that we
can plot it as an intuitive residual graph. From the applica-
tion side, many graph anomalies correspond to some actual
behaviors/activities of certain nodes (e.g., for port-scanner in
an IP traffic network, it has connections to many different IP
destinations). Such abnormal behaviors can be naturally cap-
tured by the corresponding non-negative entries in the resid-
ual matrixR. For anomaly detection for other types of data,
please refer to a recent comprehensive survey [8].

General Graph Mining. There is a lot of research work

150 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



on static graph mining, including pattern and law mining [3,
14, 17, 6, 33], frequent substructure discovery [41], influ-
ence propagation [27], social networks compression [11] and
community mining [18][19][20], etc. More recently, there is
an increasing interest in mining time-evolving graphs, such
as densification laws and shrinking diameters [32], commu-
nity evolution [4], proximity tracking [39], conversationdy-
namics [30] and dynamic communities [10], etc.

7 Conclusion

In this paper, we present a novel matrix factorization
(NrMF) paradigm, which aims to detect abnormal behav-
iors/activities on graphs in a more interpretable way. Our
main contributions are:

1. Problem formulation, presenting a new formulation for
matrix factorization tailored for graph anomaly detec-
tion;

2. An effective algorithm (AltQP-Inc) to solve the above
optimization problem, linear wrt the size of the graph;

3. Proofs and analysis, showing the effectiveness as
well as the efficiency of the proposed method (e.g.,
Lemma 4.1, Lemma 4.2, etc);

4. Experimental evaluations, demonstrating both the ef-
fectiveness and efficiency of the proposed method.

Future research directions include (1) extendingAltQP-
Inc to time-evolving graphs, and (2) parallelizingAltQP-Inc
using Hadoop7.

References

[1] D. Achlioptas and F. McSherry. Fast computation of low-rank
matrix approximations.J. ACM, 54(2), 2007.

[2] L. Akoglu, M. McGlohon, and C. Faloutsos. oddball: Spot-
ting anomalies in weighted graphs. InPAKDD (2), pages 410–
421, 2010.

[3] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the
world wide web.Nature, (401):130–131, 1999.

[4] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and
X. Lan. Group formation in large social networks: member-
ship, growth, and evolution. InKDD, pages 44–54, 2006.

[5] R. M. Bell, Y. Koren, and C. Volinsky. Modeling relationships
at multiple scales to improve accuracy of large recommender
systems. InKDD, pages 95–104, 2007.

[6] A. Broder, R. Kumar, F. Maghoul1, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph struc-
ture in the web: experiments and models. InWWW Conf.,
2000.

[7] D. Chakrabarti. Autopart: Parameter-free graph partitioning
and outlier detection. InPKDD, pages 112–124, 2004.

[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey.ACM Comput. Surv., 41(3), 2009.

7http://hadoop.apache.org/

[9] D. H. Chau, S. Pandit, and C. Faloutsos. Detecting fraudulent
personalities in networks of online auctioneers. InPKDD,
pages 103–114, 2006.

[10] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng.
Evolutionary spectral clustering by incorporating temporal
smoothness. InKDD, pages 153–162, 2007.

[11] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,
A. Panconesi, and P. Raghavan. On compressing social
networks. InKDD, pages 219–228, 2009.

[12] C. H. Q. Ding, T. Li, and M. I. Jordan. Convex and semi-
nonnegative matrix factorizations.IEEE Trans. Pattern Anal.
Mach. Intell., 32(1):45–55, 2010.

[13] D. L. Donoho and V. Stodden. When does non-negative
matrix factorization give a correct decomposition into parts?
In NIPS, 2003.

[14] S. Dorogovtsev and J. Mendes. Evolution of networks.
Advances in Physics, 51:1079–1187, 2002.

[15] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo
algorithms for matrices iii: Computing a compressed approx-
imate matrix decomposition.SIAM Journal of Computing,
2005.

[16] W. Eberle and L. B. Holder. Mining for structural anomalies
in graph-based data. InDMIN, pages 376–389, 2007.

[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology.SIGCOMM, pages 251–
262, Aug-Sept. 1999.

[18] G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-
organization and identification of web communities.IEEE
Computer, 35(3), Mar. 2002.

[19] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. In9th ACM Conf. on
Hypertext and Hypermedia, pages 225–234, New York, 1998.

[20] M. Girvan and M. E. J. Newman. Community structure is
social and biological networks.

[21] G. H. Golub and C. F. Van-Loan.Matrix Computations. The
Johns Hopkins University Press, Baltimore, 2nd edition, 1989.

[22] S.-P. Hong and S. Verma. A note on the strong polynomiality
of convex quadratic programming.Mathematical Program-
ming, 68:131–139, 1995.

[23] P. O. Hoyer. Non-negative matrix factorization with sparse-
ness constraints. Journal of Machine Learning Research,
5:1457–1469, 2004.

[24] S. Hyvönen, P. Miettinen, and E. Terzi. Interpretablenonneg-
ative matrix decompositions. InKDD, pages 345–353, 2008.

[25] P. Indyk. Stable distributions, pseudorandom generators,
embeddings and data stream computation. InFOCS, pages
189–197, 2000.

[26] K. V. R. Kanth, D. Agrawal, and A. K. Singh. Dimensionality
reduction for similarity searching in dynamic databases. In
SIGMOD Conference, pages 166–176, 1998.

[27] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network.KDD, 2003.

[28] J. Kim and H. Park. Toward faster nonnegative matrix
factorization: A new algorithm and comparisons. InICDM,
pages 353–362, 2008.

[29] R. Kompass. A generalized divergence measure for nonneg-
ative matrix factorization.Neural Computation, 19(3):780–
791, 2007.

151 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



[30] R. Kumar, M. Mahdian, and M. McGlohon. Dynamics of
conversations. InKDD, pages 553–562, 2010.

[31] D. D. Lee and H. S. Seung. Algorithms for non-negative
matrix factorization. InNIPS, pages 556–562, 2000.

[32] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. InKDD, pages 177–187, 2005.

[33] M. E. J. Newman. The structure and function of complex
networks.SIAM Review, 45:167–256, 2003.

[34] C. C. Noble and D. J. Cook. Graph-based anomaly detection.
In KDD, pages 631–636, 2003.

[35] A. P. Singh and G. J. Gordon. Relational learning via
collective matrix factorization. InKDD, pages 650–658,
2008.

[36] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbor-
hood formation and anomaly detection in bipartite graphs. In
ICDM, pages 418–425, 2005.

[37] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more:
Compact matrix decomposition for large sparse graphs. In
SDM, 2007.

[38] H. Tong, S. Papadimitriou, J. Sun, P. S. Yu, and C. Faloutsos.
Colibri: fast mining of large static and dynamic graphs. In
KDD, pages 686–694, 2008.

[39] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Prox-
imity tracking on time-evolving bipartite graphs. InSDM,
pages 704–715, 2008.

[40] P. Tseng. Simple polynomial-time algorithm for convex
quadratic programming.Laboratory for Information and De-
cision Systems, Massachusetts Institute of Technology, 1988.

[41] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed
frequent-pattern sets. InVLDB, pages 709–720, 2005.

A Appendix

Throughout this paper, we have focused on the optimization
problem in e.q. (3.2) by restricting ourselves to the 0/1
weight matrix. In this section, we give our algorithms for
solving the optimization problem in e.q. (3.1) with a general
weight matrixW for the purpose of completeness. We
first generalize the proposedAltQP-Incto handle the general
weight matrixW (AltQP-Inc-General), and then give the
alternative optimization algorithm (AltQP-Batch) for solving
e.q. (3.1), using convex quadratic programming.

A.1 GeneralizedAltQP-Inc for e.q. (3.1)
In order to generalize the proposedAltQP-Inc to solve
e.q. (3.1) with a general weight matrixW, we first give
the algorithm (Update-General-g) to solve the sub-problem
expressed in e.q. (1.7).Update-General-gis for an arbitrary
weight matrixW and is a natural generalization ofUpdate-
g. In Update-General-g, diag(W(:, j)) is a diagonal matrix
with diagonal elements beingW(i, j)(i = 1, ..., n). Similar
asUpdate-g, in Update-General-g, we updateg(j) one by
one in each outer loop. For eachg(j), it can be solved in
a closed formula (steps 20-26). This is due to the fact that
the optimization problem in (1.7) can be decomposed into

l independent optimization problems, each of which only
involves a single variableg(j)(j = 1, ..., l).

argming
∑

i,j

((A(i, j)− f(i)g(j)) ·W(i, j))2

s.t. for allA(i, j) > 0 :

f(i)g(j) ≤ A(i, j)(1.7)

Algorithm 4 Update-General-g(For Solving e.q. 1.7)
Input: The original matrixAn×l, the weight matrixWn×l,

and a column vectorfn×1

Output: A row vectorg1×l

1: for j = 1 : l do
2: Initialize the lower bound low= −inf and upper

bound up= inf;
3: Compute:a = diag(W(:, j)) ·A(:, j)
4: Compute:b = diag(W(:, j)) · f
5: Compute:t = b′b

6: if t == 0 then
7: Set:g(j) = 0;
8: Continue;
9: end if

10: Compute:q = a′b/t
11: for eachi s.t.A(i, j) > 0 do
12: if f(i) > 0 then
13: Update: up= min(up,A(i, j)/f(i))
14: else iff(i) < 0 then
15: Update: low= max(low,A(i, j)/f(i))
16: else
17: Continue;
18: end if
19: end for
20: if q <= up andq >= low then
21: Output:g(j) = q;
22: else ifq > up then
23: Output:g(j) = up;
24: else
25: Output:g(j) = low;
26: end if
27: end for

Based on Alg. 4, we have Alg. 5 (AltQP-Inc-General) to
solve e.q. (3.1).AltQP-Inc-Generalis a natural generaliza-
tion of AltQP-Inc. Similar asAltQP-Inc, AltQP-Inc-General
tries to find the factorized matricesF andG in an incre-
mental way. At each outer loop of Alg. 5, it finds a Rank-
1 approximation on the current residual matrixR (steps 2-
11). At the inner loop of Alg. 5 (steps 4-8), it callsUpdate-
General-gto alternatively updatef andg, respectively. This
alternative process will be iterated until convergence. After it
finds a rank-1 approximation, we update the current residual
matrix in step 10.

152 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Algorithm 5 AltQP-Inc-General(For Solving e.q. 3.1)
Input: The original matrixAn×l, the weight matrixW, and

rank sizer
Output: An n× r matrixF; ar× l matrixG; and ann× l

matrixR;
1: InitializeF = 0n×r, G = 0r×l, andR = A

2: for k = 1 : r do
3: Initialize f andg
4: while Not convergentdo
5: Update:g← Update-General-g(R,W, f)
6: Set: f̃ ← Update-General-g(R′,W′,g′)
7: Update:f = f̃ ′

8: end while
9: SetF(:, k) = f , andG(k, :) = g

10: UpdateR← R− f · g
11: end for

A.2 AltQP-Batch for e.q. (3.1)
We can also solve the optimization problem in e.q. (3.1) by
convex quadratic programming. To this end, let us assume
that we have a package (x = QpProg(T,S,u,v)) to solve
the following quadratic programming problem in e.q. (1.8).

argminxd×1
= x′Td×dx+ u′

d×1x

s.t. Ss×dx ≤ vs×1(1.8)

In e.q. (1.8),x is ad×1 vector that we want to solve and
the inequality holds element-wisely. IfT is semi-positive
definite, QpProg() requiresat leastO(dk) time8, wherek >
1 and it depends on the actual methods to solve quadratic
programming (e.g.,k = 3.5 for the method in [40],k = 3
for the method in [22], etc).

To solve e.q. (3.1) by convex quadratic programming,
we first give the algorithm (Batch-Update-G) to solve the
following optimization problem in e.q. (1.9), which is a sub-
problem of the optimization problem in e.q. (3.1).

argminG =

n∑

i=1

l∑

j=1

(A(i, j)− F(i, :)G(:, j))2W(i, j)2

s.t. for allA(i, j) > 0 :

F(i, :)G(:, j) ≤ A(i, j)(1.9)

Batch-Update-Gis similar asUpdate-gexcept that: in
each outer loop ofBatch-Update-G, we find a singler × 1
column vectorG(:, j)(j = 1, ..., l). Whereas in each
outer loop ofUpdate-g, we find a single variableg(j)(j =
1, ..., l). This subtle point leads to a big difference in terms
of the time complexity. InBatch-Update-G, we have to use

8Besides the polynomial term, there is usually an additionalterm in
the time complexity which relates to the encoding length of the quadratic
programming problem.

expensive convex quadratic programming to findG(:, j);
whereas inUpdate-g, we can use computationally cheap
closed formula to findg(j). It can be shown that the
quadratic programming problem in step 14 is semi-positive
definite which takes at leastO(rk) time, and the overall
Batch-Update-Grequires at leastO(m + nlr2 + lrk) time.

Algorithm 6 Batch-Update-G(For Solving e.q. 1.9)
Input: The original matrixAn×l, the weight matrixWn×l,

and left matrixFn×r

Output: The right matrixGr×l

1: for j = 1 : l do
2: Compute:an×1 = diag(W(:, j)) ·A(:, j)
3: Compute:Bn×r = diag(W(:, j)) ·F
4: for i = 1 : n do
5: if A(i, j) > 0 then
6: Set:v(i) = A(i, j)
7: else
8: Set:v(i) = inf
9: end if

10: end for
11: Compute:X = B′B

12: Compute:u = −2B′a

13: Set:S = F

14: SolveG(:, j)← QpProg(T,S,u,v)
15: end for

Algorithm 7 AltQP-Batch(For Solving e.q. 3.1)
Input: The original matrixAn×l, the weight matrixW, and

rank sizer
Output: An n× r matrixF; ar× l matrixG; and ann× l

matrixR;
1: InitializeFn×r andGr×l

2: while Not convergentdo
3: Update:G← Batch-Update-G(A,W,F)
4: Set:F̃← Batch-Update-G(A′,W′,G′)
5: Update:F = F̃′

6: end while
7: Output:R = A− FG

Based onBatch-Update-G, we have Alg. 7 (AltQP-
Batch) to solve the problem in e.q. (3.1). InAltQP-Batch,
after some initialization (step 1), we alternatively callBatch-
Update-Gto updateF andG by fixing one of them. This
alternative process will be iterated until convergence. Itcan
be shown that the time complexity ofAltQP-Batchis at least
O(mt + nlr2t + lrkt + nrkt), wheret is the maximum
iteration number inAltQP-Batchandk > 1 relates to the
actual methods to solve the convex quadratic programming.
Compared with the complexity of the proposedAltQP-Inc
(O(mrt + nrt + lrt)), AltQP-Batch is much more time
consuming.

153 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.


