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Abstract is piecewise stationary, periodic model recomputatioaroft

The problem of monitoring a multivariate linear regressighastes a lot of resources. o

model is relevant in studying the evolving relationship be- For example, for large networked distributed systems
tween a set of input variables (features) and one or more 8ch as the Cloud and the Internet, anytimeness is extremely
pendent target variables. This problem becomes challgndfPortant, and monitoring the health of tens of thousands
for large scale data in a distributed computing environmé¥tdata centers supporting numerous services requires ex-
when only a subset of instances is available at individdggmely fast and correct detection of every performance cri
nodes and the local data changes frequently. Data cemtralS- The target variable for the identification of such aise
tion and periodic model recomputation can add high ové@n be response latency or request throughput [3], and an
head to tasks like anomaly detection in such dynamic s@f-time and accurate alert suggesting a change in the input-
tings. Therefore, the goal is to develop techniques for mdAfget relationship can get the operators’immediate tten
itoring and updating the model over the union of all nodeg)wardsfaultdlagnos_ls and recovery. _Slmll_arly, we canmon
data in a communication-efficient fashion. Correctness-guiiCr the carbon footprint of a community (city/state/coynt
antees on such techniques are also often highly desirablei®the next generation Smart Grids by modeling the carbon
pecially in safety-critical application scenarios. Instpaper €Mission as a function of power consumption and natural en-
we develofDReMo— a distributed algorithm with very low €rgy production. Any change from the standard model can
resource overhead, for monitoring the quality of a regrdgdicate change in consumption pattern, fault in power gen-
sion model in terms of its coefficient of determinatigR?( €rators, etc. and an on-time detection can enable human in-
statistic). When the nodes collectively determine thahas tervention and guarantee uninterrupted service.

dropped below a fixed threshold, the linear regression model Most existing solutions for monitoring models in SUCh

is recomputed via a network-wide convergecast and the §gtups usually trade off model fidelity for lower communi-
dated model is broadcast back to all nodes. We show empfion cost. Some of the approaches for monitoring mod-
ically, using both synthetic and real data, that our progos@$ in distributed systems include the sampling-based-meta
method is highly communication-efficient and scalable, atRfrning strategy [11] and randomized techniques such as

also provide theoretical guarantees on correctness. gossip [9]. The first group of algorithms suffer from the
drawback that accuracy drops with increasing number of
1 Introduction nodes in the network whereas gossip-based algorithms rely

S . L . ideRn sufficient statistic computation on a random selection
Multi-variate linear regression is an important and Wldeg

. ; : . nodes and are extremely communication-intensive for

used technique for modeling the behavior of a target vagia : . : .
. . Changing data scenarios. In the ideal case, the monitoring
based on a set of input variables (features). In scenarips

. o gorithm should be able to raise an alert every time an event
where the data changes or evolves over time, monitoring

. o . occurs in the network and should do so with as little com-
model for identifying such changes may be essential. This™ . ™ . . L )
o o méjmcatlon overhead as possible. Monitoring algorithms
problem becomes more challenging if the data is dIStI’Ibutt 1 satisfy these properties have been proposed eaigr [1
at a number of different nodes, and the model needs to(:q? prop prop

recomputed periodically to avoid inaccuracy. If the datiere instead of periodically rebuilding a model, a thresh-
P P y Y- oa}ding criterion is developed to efficiently detect chanmes

_ _ ~ the global model by only monitoring changes in the local
@ MC '”C"T';']ASA Akmes' '(\j""ﬁe“ F'e'gscé 9‘:035} Kat”',flzfdgc‘;d; data. The provable correctness of this class of algorithms
T@é?%g\é_’ Nig\f rAr\;V:SS R?SZ;PCE Cem:r\’/ &%:r;?tc,:ield CA gapzENsures that _the distrib_uted algo_rithm can raise all thesale
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the data, it is possible that a wrong choice of the threshgldiarea of distributed computing of complex models. Gossip
criterion can render these algorithms useless. based computations have been proposed by Kexhpk[9]

In this paper we overcome this problem for multivarand Boydet al. [4] for computing simple primitives such as
ate linear regression by formulating the monitoring prableaverage, min, max etc. of a set of numbers distributed across
in terms of the coefficient of determinatid®?, a statisti- the network. In gossip protocols, a node exchanges statisti
cal metric for checking the quality of linear regression moavith a random node and this process continues until conver-
els. Since thekr? statistic lies between 0 and 1, it is a scalgence. Deterministic techniques such as the ones proposed
free measure for the quality of fit for any data set. The dy Scherber and Papadopoulos [13] and Meletaal. [12]
gorithm developed in this papeBReMq works for hori- solve a differential equation using messages exchanged be-
zontally partitioned data (defined later) and offers présakiween neighboring nodes such that the optimal solution to
correctness guarantees with minimal communication. Ittle equation gives the global average. However, both these
a reactive algorithm since communication for model recortlasses of techniques require hundreds of messages per node
putation does not happen periodically. Whenever the nodesthe computation of just one statistic and are not suitabl
jointly discover that the model no longer fits the data, dar dynamic data. A related line of research concerns the
alert is raised and a convergcast/broadcast scheme is tnenitoring of various kinds of data models over large num-

deployed for model recomputation. bers of data streams. Sharfnetral. [14] have developed an
algorithm for monitoring arbitrary threshold functionsesv
2 Related work distributed data streams using both a broadcast based and a

Regression being a powerful modeling tool, extensive gentral coordinator based communication topology. Broad-
search has been done for both distributed and centraligdgt can be expensive for large networks while the coordi-
modeling and monitoring. In this paper we briefly revieflator topology assumes one root anq all the other nodes as
existing literature on distributed regression and its rrwni leaves. While, DReMoallows an arbitrary tree topology,
ing. Hershberger and Kargupta [7] have proposed one of ffgnparison obReMounder the “all leaf” tree topology ver-
earliest wavelet transformation-based distributed egjom SUS their central coordinator algorithm is left to futureriuo
algorithm for vertically partitioned data where each nodle o All of the above mentioned techniques can be adopted
serves all possible instances of a subset of features. f@®femonitoring evolving data streams in distributed com-
wavelet transform on the data optimizes the communicatiB#ting environments, but they suffer from several draw-
overhead by reducing the effect of the cross terms and thellgcks starting from very slow convergence resulting in ex-
cal regression models are centralized for building the glloi'eémely high communication overhead to lack of perfor-
model. Another popular distributed regression algorithrfid2nce guarantees in detecting events or significant changes
has been proposed by Guesteihal. [6] for learning ker- in the model. Recently, Bhaduet al. [1] have proposed an
nel linear regression models in sensor networks. Once #4@orithm for doing regression in large P2P networks which
model converges, instead of sending the raw data, the c@iecks the squared error between the predicted and the tar-
tral node can only collect the coefficients of the regressigft variables based on a generic monitoring algorithm pro-
model as a compact representation of the data, therebyR@sed by Wolffet al. in [16]. If the error exceeds a prede-
ducing communication. The algorithm requires two passiéaed thresholdd), the nodes raise an alert and the regression
through the entire network per data change to ensure g|0|1515)|del is rebuilt. This method is commun|c§t|on—§ﬁ|C|ent
convergence, in the worst case and, therefore, may req@ité provably correct, but suffers from the serious disadvan
huge number of messages and a long time to convergddge that the communication as well as model quallty is de-
dynamic data scenarios. It should be noted here that bBffident on a parametethat is input to the algorithm. This
these methods, as well as many other distributed regres§iBfice Ofe is dependent on the data and can vary from 0
techniques solve an approximate version of the centraliZ8g>e- If the user has no or limited knowledge about the
regression problem and therefore, cannot guarantee deov&gta distribution in the computing network (which is often
correctness when adapted for monitoring. the case for all practical purposes), then a wrong choiee of
Meta-learning is an interesting class of algorithnf@n render the algorithm useless. To overcome this problem,
which can be adopted for distributed model learning. Pr§€ Propose a new regression monitoring algorithReMo
posed by Stolf@t al. [15], the basic idea is to learn a modé_{vhmh_ monitors the coefficient of determlnguoﬁ?() which
at each site locally (no communication at all) and then, whisn@ tried-and-tested, well-accepted, and widely-usereseg
a new sample comes, predict the output by simply takipn diagnostic measurement with< R* <1 Closer the
the average output of the local model outputs. The underlue of R? is to 1, the better is the model quality and vice
ing assumption is that the data distribution is homogenedi@sa. However, since the? statistic is no longer the L2
across the nodese. they have all been generated from thBOrm of the data, none qf the theories developed for monitor-
same distribution. Significant research has been done in {figthe L2 norm of data in a large network [1] are applicable



here. In the next two sections we define this new monitorindnere M = >-" , m(i). This coefficient is between 0
problem and derive thé? statistic for distributed changeand 1, equalling 1 when the data perfectly fits The

detection of a linear regression model. ratio compares the variance ¢% predictions (captured by
the numerator) with the total variance of the data (captured

3 Problem setup by the denominator). Intuitively, this ratio captures the

3.1 Notation: Let V = {P,,...,P,} be a set of com- quality of f with respect to a baseline predictor which always

puting nodes connected to one another via an underlylifHms the average value over all the observed data (the
communication infrastructure, such that the sefPg§ im- denominator). Whetk= is close to onef provides a much
mediate neighborsy;, is known toP; (and P; is unaware better prediction of the observed values than the basdline.
of the existence of any other nodes). At any time instané Standard StatiStiC;’“ practise when computing a regressi
the local data of?; is a stream of tuples iiR? and is de- Model to computd?® as a measure of model quality.
i o — T The value ofR? is time-varying. The goal for the nodes
noted bys; = K%,yl) ; (I% ?/2) e (xm(i)’ym(i))} ' is to determine whether the accuracy fofs unacceptable.
wherez? = [z i ] € R andyi € R. Ever Specifically, for a fixed, user-defined threshe]dhe nodes

o il can Bt A, Y monitor whetherR? is belowe. If yes, then an alert is
local data tupie can be viewed as an input and output pai° 5 belowe. I yes,
Note thats; is time-varying, but for notational simplicity,'2Sed and computation is carried out to evaluate a fiew
we suppress an implicit subscript. LeiG = |J!, S; de- over the most up-to-date global data Therefore, the crux
note the global data over all the nodes. =t of the problem is for the nodes to carry out this quality

Nodes communicate with one another by sending Suﬁrp_onitoring in a communication-efficient manner. Singg

cient statistics of a set of input vectors. We denote_th>e Slﬁ_;’:l_nonliner?r functti)?n of thi |C|’Ica| data ge|19 by ad”andeTS’
. o solving such a problem is challenging. Before addressing
ficient statistics sent by nodB, to P; as|X; ;| and X ;, . . )

y nods; i as|Xij| “J*  this problem, a caveat is in order. The setup described so far

where|X; ;| is the size of a set of vectors and ; is the 5 the network fixed. However, adjusting the algorithm to
average vector of that set. Computation of these quantiligs.,mmodate nodes arriving and leaving or communication

is discussed in the next section. We assume that reliaglgs 4oing up and down is straightforward and omitted for
message passing is ensured by the underlying network acﬂ%criptive simplicity.

therefore, ifP; sends a message&, thenP; will receive it. . ) — )

Thus, both nodes knoW; ; and.X; ;. We also assume that Next we will define data vectors® & R (pas_ed
an overlay tree topology is maintained and it forms the n(?trJ S? and f), 20ne for each n_OdGP“ and a monitoring
work seen by the algorithne, g.the neighborsV; of nodep, runctiong : R — R. QWe will show that the problem
are the node’s children and parent in the overlay. Note th%ft,mom?onpg whetherR. is belowe can be reformulated
as shown in [2], such an overlay tree can be efficiently cofie monitoring whethey is below zero when applied to a
structed and maintained using variations of Bellman-Férd §onvex combination ob*’s. This result forms the basis of
gorithms [5][8]. Intuitively, the assumption of a tree olegr the DReMoalgorithm proposed in this paper.

topology is needed to avoid ‘double-counting’ when com-

municating aggregate statistics. This will be discussest [a3.3 Monitoring R?: Leté =1 —¢, w; = 623.":(? (yh)? —

when describing the specifics of tB&ReMoalgorithm. N, I
Z}n:(? (5 —yi)?, andy® = ;7;7(1)7’1 We haveR? > ¢
3.2 Problem definition: At any given time, each node - 1 S SV - 90)2 -
holds f, a linear regression model (the same for each node). n e [ SpErD g 2
When the algorithm is initialized, a convergecast and broad Vi X \ Y- T
cast mechanism is used to compute thever G and dis- n m() S sl 2 ,
tribute it to each node. After this, the goal is for the nodes,« &%~ >~ (y; - %) -3 3 (yj- - y;i) >0
through ongoing distributed computation, to monitor the i=1j=1 i=1j=1
quality of f (in terms of how well it fits the global data) and, n o m) n_ m() n§m(i)

. i . - in2 _ i Doie1 et Yj
when the quality becomes sufficiently low, raise an alert and < EX W22 >y —
initiate another convergecast and broadcast to recompute =1 =t =1 =1
and distribute it to each node. Quality is measured using the noosm@ i\ o omG)

. N o~ — + M i1 2= > (y’% _y’i,>2 >0
coefficient of determination?®. Letting y% and f(z}) de- M SN

note the true and estimated values of the target variable,
Z?:l Z;n:(;) (y; - @;)2

R?=1- Sy
n m(i) /g i— i=1 Yj
S ij(l) (yj _ %)2
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Z (v - y] fied at all nodes independently, then we can guarantee some
o globally correct condition. This allows any node to cease
M ( i=1 , 1 }) >0 communication and output the correct result. In the remain-

-

1=

r ( mz‘ij m() ) based on the data at each node. If these conditions are satis-
=

der of this section we first develop one such local stopping
criterion and then describe how it can be effectively used fo
. i 1Zm<) j developing a distributed regression monitoring algorithm

&> (w) —em | ZELZEL T ping g galg
1=1 —

n n m(3) 4.1 Thresholding criterion: Recall thatv’ -s are the local
w; i 1ZJ 1 y . —
= <M> vectors of any nodé’;. Now, we know that, if allv®-s lie
in a convex region, then their convex combination is also in
- ~ (m(i)) ( ) ( S (m(z ) > >0 the same convex region. In order to check in a distributed
M m(i)
1 i=1

M fashion whether this condition is satisfied, each node needs
to maintain the information about its neighborg-s. The

i=1

i=

Let ot — { y} andg : @ ER? > ay — éa2. Thus, followmg sufficient staus‘uc; defined gxcluswely on lbca
(i)’ . _ _ inputs allow a node to do this computation:
we have thaR? being belowk is equwalent tgy being below
zero when applied to a convex Combinaﬂor;éfs; 1. knowledgeIC is defined as the convex combination of
" N the local monitoring mpuhﬂ and all the |nformat|on
(31 R’>eey (Z (%) vi> > 0. thatP; has received from all its neighbde. X ;
i=1
2. agreementAiyj is the information that bott¥; and P;
g is a parabola and@ € R? : ¢g(@) = 0} splitsR? into share

two regions: the area inside the parabola (which is convex),
and the area outside (which is not convex). We denot8. withheld #; ;, is the information tha?; has and has

% .
WG =3 (@ ) v as the global statistic computed over ~Notyetshared witt?;

all the localv’ -s. Sinceu? is a convex combination in: We also define the sizes of these statistics as the number

then if each node; determines thatﬂ is in the area inside o_f elements over which the statistic is computed. Thus, the

=2 sizes of these stat|st|cs are defined as,
the parabola, them™ must be too. This forms the basig IKi| = Z X4
for a very nice distributed algorithm. However, the same Pren: ’
reasoning does not hold for the area outside the parabola.4, .| = |X; ;| + | X ,|
To get around this problem, the area outside the parabolg i il = 1Kl = | Az

approximated as a union of overlapping half-planes (defm@ |ng these the vectors themselves are defined as:
by tangent lines of)). If each node de;@e:mmes that is 1.IC _ “Cz) H Z |ij|—>

in the same half-space for all nodes, thénmust be in the PiEN,
half-plane as well (therefore, outside the parabola). is tl't A—> X % -
case no communication is necessary since all nodes are in_%{ |1¢;‘| ) A }‘J‘_>
%;reement On the other hand, if different nodes have th&ifti; = p7. 7K — 172 A

v+ -s in different convex regions (either inside the parabolao AIS0; We can define the exchange/d?lnf;()rm)glon (mes-
one of the half-spaces), or in none of these convex regiosages) betweeR; andP; to beXZ = % and

then communication is required to come to a consensus. TRg ;| = |K;|—|X;.|. First note that, when the algor|thm|n|-
goal now boils down to momtorlng(?) using the quantity tiates, no messages have been sent, and soI(I;c:stthZ j
g(v*). The next section develops this idea into a concredqualsv’. As the algorithm proceeds, the messages sent by

algorithm. any node consists of knowledge at that node minus the infor-
mation received by that node, to avoid duplicate counting.
4 DReMo: algorithm description Now, in order to check if the convex combination of

Based on the formulation d¢? monitoring, we can developla-’s (and hencev'’s) are all in the same convex region,
a distributed algorithm which requires far less communicae need to split the domain of monitoring functigrinto

tion than centralizing all the information from all the nedenon-overlapping convex regions. Figure 1 shows the re-
to one location. The intuition is to develop a set of condisio gions. First of all, note that inside of the parabola is con-



Each node can apply this stopping condition to its local
vectors and if the condition is satisfied, then it need not
Half-space : communicate any messages even if its local data changes or
it receives any message from its neighbors. Unfortunately,
whenla lies in the tie region, the stopping condition cannot
be applied. In this case, the only way a node can guarantee
correctness is by sending all of the local informatigrto all
its neighbors. The goal is therefore, to place the tangees|i
such that the area of this region is minimized. The following
ﬁrgma shows us how to achieve this.

Tie region

Figure 1: The parabola and the tangent lines that define
half spaces as shown in different colors. The tangents gigima 4.1. Given a parabola defined by = éx2, let

drawn at the points shown in the figure. T = {(x1,ex2), (xa,ex2), ..., (z;,éx2)} be points on the
parabola at which the tangent lines are drawn. Minimizing
the area of the tie region leads to the following values of the

vex by definition. The outside of the parabola is not cor=coordinates of points iff: z, = 5, W/ = 1 : ¢,

vex; however it can be covered by hyper-planes definebierez,, . is the maximum value of thecoordinate.

by tangents to the parabola, thereby splitting it into con-

vex regions. Therefore, the convex regions for this moriroof. Proofin provided in Appendix A.

toring are: (1)C;,, = {€ € R? : ¢(¢) > 0}, and (2)

Cy = {;* cR2:u)- ¢ > 0}, whereu; is the/-th unit nor- 4.2 Distributed regression monitoring algorithm

mal of the tangent to the parabola. These convex regions &&eMo): DReMo utilizes the condition of Theorem 4.1

collectively defined a§’ = {C;,,, C1, . .., C;}. Also shown to decide when to _stop send_ing messages to its neighbors.

in the figure are thtie regions — those regions which lie outThe pseudo code is shown in Alg. 4.1, 4.2 and 4.3. The

side the parabola, and also not inside any half-space. Gigg@prithm is entirely event driven. Events can be any one

the convex regions, we state the following theorem whi@t the following: (1) change in local dat#;, (2) a message

gives us a condition by which any nod can decide if the received, or (3) change itv;. If any one of these events
occur, P; first checks the received message buffer and

Mpdates its local vectors. It then checks the conditions for

. o L —
sending messages. First it finds the region in which
THEOREM4.1. [Thresholding Rule][16] Given any region lies and sets a variable,. accordingly: (1)ki,. = 1 if
R e_>C, if no messages traverse thﬂetwork, and for eagfiC;) > 0 (inside parabola), or (2%, = 2 if there exists
P, K; € R and for everyP; € N;, A;; € R and either onew; such thatz; - K; > 0 (inside any half space), or (3)
7? cROrH; =0 thenvﬁ cR. ki, = 3 otherwise (tie region). Now based on the outcome

7 7 of this test, a node needs to send a message to its neighbor
Proof (SKETCH): We omit the formal proof here due top; if any of the following occurs:
shortage of space. The intuition behind the proof is to take N
one node, say”;, and combine its data with any of its 1. (ki.c == 3) A (lC #Ai,j) N (K| # | Ai )
neighbor’s data. LeP; be a neighbor of’; who sends all of
s - L . —> =,
its Hy.; to P;. P; on receiving this will set its new; to be 2. (kioe == 1V kioe == 2) \ [Hi | ==0A (ICi # .Ai,j)
o —> — .
the convex combination of the old; and?#;, ;. Since both 3 = 1V ok = o) A [l £ 0
are in the same convex region by assumption, their convex” \ ¢~V Meel T A
combination will also be in the same convex region. Itis also /\NotInside (A”" k“’c) ANotInside (H”’ kl“)
easy to verify that the agreements and withheld knowledges - ) _
of P; with any other neighboP; will also lie in the same Case 1 occurs whef; lies in the tie region and a
convex region after this step. Thus, we can eliminate nodede needs to send its local information unless it has ajfread
P, since its information has already been incorporated ir¥§nt everything in a previous communication. Cases 2 and
that of P,. Continuing this process of elimination we will3 &ré for directly checking the conditions of Theorem 4.1.
Note that we need to take special care wiin;| = 0, in
binati ¢ — . . h fwh|ch caseH; ; is undefined. This means that a node has

convex c_:or_n |r_1at|on of alki-s isv™). NQW_S'hce N €ach of communicated everything to its neighbor and does not need
these elimination step&;; always remain inside the conveXg send a message again, unless another event occurs. Case
region, so willv®. | 2 can occur, for example, when the node has already sent

global vectorv® is inside any convex region based on onl
= — —
’Ci, Aiyj, andHZ—J—.

have the knowledge of a single node equaﬂ;‘?)o(since the



everything and then the local data changes, thereby making|x; ;| « (1 —s) * (|Ki| — | X;.4]);
=T ’ ’
KC; # A; ;. Case 3 directly checks the condition of Theorem Update all vectors;

4.1 with an added exception built-in to prevent this chegkin

in case of H; ;| = 0.

s=|s/2];
end WhiIe_)
Send @5, X j, | X ;) to Pj;

If any one of these conditions occur, a node can set

, — —
X, o KilKi—| X1 X
v il —1X,:l

and|X; ;| « |Ki|—|X,.:landsend 4.3 Re-computing model using convergecast/broadcast:

it to P;. However, as it turns out, if we s&k; ;| = 0, and Whenever the model at any node does_r)mt fit the data, it
the data changes again, a node might need to communié&té the output obReMoto 1 based om(K;) < 0. Once

becauseC; # A;; may be violated. To avoid this, we sethe nodes jointly discover that the current model is out-of-
X;.; to be equal to the smallest value for which either boflfte, an alertis raised at each node and model recomputation

= —— . .
Ki andA; ; goes inside the convex region|@t; ;| = 0. The

pseudo code for this step is shown in Alg. 4.3.

ALGORITHM 4.1. DReMo

Input: ¢, C, S;, N; and L.

Output: 0 if g(la) > 0, 1 otherwise
Initialization : Initialize v*, Ia,m, 7?;

On an event
if MessageRecvd (Pj, ?, |X\> then

X0« X and|X; | « |X];
end if _ NN
Updatev®, KC;, A; 5, Hs,j
for all NeighborsP; do

Call CheckMsg(K,, A; 1, Hit P;);
end for

ALGORITHM 4.2. ProcedureCheckMsg
Input: IC;, A; 5, Hi 5,

Y

Kioe = CheckKiLocation(la);
for all NeighborsP; do
it (kioe == 3) A (K # Ai; ) A (1Kl # | As ;1) then
SendMsg=true {/*Tie Region*/}
end if SN
it (kioe == 1012 A\ [Hi 3] == 0 A (K # A ;) then
SendMsg=true{/*Theorem Condition*}
end if .
if (kjoe == 10r 2) \ [ ;| # 0 A\ NotInside (Ai,j, kloc)

A NotInside (?—L—; , kloc> then
SendMsg=true{/*Theorem Condition*}
end if
if (SendMsg==tru@ then
Call SendMessage ()T;, Ia, m, 7?7;, Pj>
end if
end for

ALGORITHM 4.3. ProcedursSendMessage
Input: X5 ;,KCs, As 5, Hi g, Pj

X KRl X
b [KCal—]X 4] '
s=1/2;

1Xi,5] (1= 8) * (IKi| = [X5,40);
Update all vectors;

While (NotInside (Ai,j, kloc> or NotInside (Hi,j, kloc>) and

|Hi il #0

becomes necessary.

We leverage the fact that a linear regression model can
be easily computed by solving a linear set of equations. The
coefficients of this equation can be written as a running sum
over all the data points. Let the input-output be related
linearly as follows:y! = f(z%) = wo + w12} | + wax’ 5 +
e W1 gy For simplicity, we separate the input
data matrix at nodé>;, asS; = [X; ], by partitioning
the input and output into separate matrices. We can do this
for G = [X ] in a similar fashion. We then augment
the input matrixX; with a column of 1-s at the beginning,
but for notational simplicity refer to it byX; itself. Using
least square technique for model fitting, we need to compute
two matrices over the global dataX” X and X7y. As
shown below, both these matrices are decomposable over
local inputs:

Tisa m() L z;;;()i) 54
- m(i) i n m(i i \2
i=1 Zj:l Tj1 i=1 Zj:l (%‘.1)
XTX =
i=122j=1 Tj.(d—1) i=122j=1 \Tj (d—1)
mi) z;?(”i)? @), .
n m(i i m (i i 2 n
Zj:1 I;_l Zj:l (131)
= => X'X;
i=1 : : : i=1

E;‘n:(;)mé.(d—l) E;ﬁ:(;)(z;'.(d—l))z
Similarly, it is easy to verify thak 7y = """ | XTy;. Once
these two matrices are known globally, the set of weights
W = wo, ..., wq_1 can be computed as

n -1 n

we(Sarx) - (Sr)
i=1 i=1

The goal is then to coordinate this computation across

the nodes over the topology tree that is already maintained
for the monitoring phase. A simple strategy is to use an al-
ternating convergecast-broadcast scheme. For convetgeca
whenever a nod®; detects that the output of the monitoring
algorithm is 1, it sets an alert flag and starts a tinaert

wait period to 7 time units. When the timer expires and if
the flag is still set,P; checks to see if it is a leaf. If it is, it
sends bothX! X; and X'y, to its neighbor from which it

has not yet received any data and sets its state as converge-
cast. If, on the other hand, the monitoring algorithm diesat



Epoch Epoch

that the model fits the data, the flag is reset. When any inter-

mediate node getX| X; and Xy; from one of its neigh- : 5 5

bors P}, it first adds the received data to its received buffer : : P ; R IO

B. It then checks if its alert flag is set, the timer has ex- | epoch | epocn{ | Epocn] epoch -

pired and if it has received data from all but one neighbor. N H— i R

If all these conditions are valid, it adds its own data to the

Lecewed bUﬁ.elB and sends it to its n_e|ghbor from whom W:i%lflre 2: Eachepochis of 500,000 ticks and consists of
as not received any data and sets its state to convergecast. ;

When a node gets data from all neighbors, it becomes ﬁ%/eral 20,000 ticksubepochs

root. It then solves the regression equation to find a méw

and broadcasts thig to all its neighbors. Any node on re-

ceiving this new model, changes it state to ‘broadcast’ aRging access to all of the data.

resets its alert flag and timer. It then forwards the new model

to all its children. We use the alert wait period to minimizg gxperimental results

the_ number of false a!arms by making a node waitfime In order to analyze the performance@iReMq we have per-
units before the alert is acted upon.

Note that the use of linear regression allows us to COformed a variety of experiments under different conditions

. . ; 'We first describe the simulation environment and the dataset
pute the weights in an exact fashion compared to centralizas :

: . : . . ollowed by the performance of the algorithm.

tion. Moreover, the dimensionality of the matric&§ X;

T, _ 2 i B
and){i Yi ared.d + d'.l . O(d”). This shows that the com 511 Experimental setup: We have used a simulated envi-
munication complexity is only dependent on the degree O

. . . ronment for running the experiments. The simulations have
the polynomial or the number of attributes and independen ; ;
4 een run on a dual processor machine of 3.3 GHz each with
of the size of the dataset.

It must be noted that a new conver ecast/brodac4GtB of physical memory running Windows XP. The dis-
. 9 g ffibuted network has been simulated on this machine using
round is invoked whenevdt~ goes belowe at all the nodes.

R? < e implies that the data has changed and the moé\%jopology generated by BRITE(t p: // - ¢s. bu.

i : . u/ britel/). We have experimented with the Barabasi
does not fit the data. To improve model quality, the coef; .
e . . Ibert (BA) model. We convert the edge delays to simu-
ficients of functionf are recomputed using the converge- : . ; . .
. ator ticks for time measurement since wall time is mean-
caset/broadcast procedure. However, another scenari@whe . . .
. Ingless when simulating thousands of nodes on a single PC.

R? becomes less tharis when the assumption of linearity i . S .
: . . . . S%ach simulator tick in our experiment correspondsto 1 msec
no longer valid. In this case it may still be possible to avol

multiple convergecast rounds by using a sufficiently lowt (yIn BRITE topology. On top of each network generated by

S i e . RITE, we overlay a communication tree. We make the as-
significant) value ot in application scenarios where an ap-

X o . -sumption that the time required for local processing idgativ
proximate fit is good enough such as in anomaly detection.
. ) . . compared to the overall network latency and therefore, con-
Another way of addressing this problem is to directly com- : : )
- vergence time fobReMois reported in terms of the average
pare the coefficients of the old and the new model and then
edege delay.

to stop the recomputation phase if the two models are clos .
: 9 : . . In our experiments we have used a leaky bucket mech-
while the R= is still low. More details of monitoring nonlin- _ . . .
ear models is beyond the scope of this work anism which prevents a node frqm sending two messages
' within the same leaky bucket period. Whenever a néde
gets a message, it sets a timettgimulator time units and

4.4 Correctness ofDReMo: Correctness oDReMo is . . .
- down counts. If another event occurs while the timer is still
based on Theorem 4.1. Based on the conditions, any ng .

i . . . active, P; does not send another message. Only if an event
will keep sending messages until one of the following co

n- N . .
N occurs after the expiration of the timé®, is allowed to send
ditions occur: (1) for every nodé; = v™ or, (2) for ev- another message. Note that this technique does not affect
ery P; and every neighboP;, K;, A; j,andH;; € R. In the correctness of the algorithm, since we do not destroy any
the former case, obviouslg(la = g(v%). In the latter €vents. Inthe worst case, it may only delay convergence. In
case, Theorem 4.1 dictates tmé € R. Therefore, in either our ex_penments we have set the valuelouch that any
' — ' ! node is able to send between 10 to 20 messages fir each
of the caseg)(K;) = g(v"), thereby guaranteeing globakh-epoch. This rate is enough to allBReMoto converge
correctness. Also since we are computing linear regressjghije offering a very low communication overhead.
models, thg decomposability of thS convergecast matrices | order to demonsirate the effects of the different
XTX =370, X[ X; andX Ty = 370, X[y, also ensure parameters oDReMoin a controlled manner, we have
that the model built is the same as a centralized algorithjBeq synthetically generated data following a linear model
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Figure 4: Variation of accuracy (top row) and messages ¢botbw) for different.S;| = 10, 50 and100 from left to right.

(Experiments with real data is given in the next sectiorbjoadcast procedure after the monitoring algorithm raises
Given an input vecto:?} = zj1...2j—1), the outputis an alert. For the former mode of operation, accuracy is
generated according tg; = w0+zz;} wyz., + 0, where measured as the number of nodes which correctly identify
9 ~ N(0,0%). For any experiment, we have random|y)/hetherR2 2 ¢, while for the other mode, it is measured as
chosen the values af;'s ands in the range -5 to +5. Fig. the averagek? value over all the nodesConvergence rate
2 shows the timing diagram for all experiments. At sonia defined as the number of simulator ticks from the begin-
predefined clock ticks, we have changed the data distribut@ng of an epoch to the time the algorithm reaches 99% accu-
by randomly changing the weighis-s of the data generator/acy. Communication costonsists of two types of messages:
We refer to this time interval as a@poch A epoch consists monitoring messages measured as the number of messages
of severalsub-epochs— those time points when we replac§ent byDReMofor monitoring and computation messages
20% of the data at each node, generated from the curi@tebuilding the model.
distribution. Thus each sub-epoch refers to a unit of data For all the experiments, unless otherwise stated, we
Change_ We choose |ength of each epoch as 500,000 tmge used the fO”OWing default values of the parameters:
and sub-epoch as 20,000 ticks. Note that the number of tirkks|Sil = 75, (2) d = 10, (3) L = 2000, (4) ¢ = 0.5,
data is replaced in every epoch is 500,000/20,000=25 and @)l number of tangent lines = 6, and (6) number of nodes
our experiments are run for many epochsl (TL) = 1000. In the eXperimentS we have not placed the
We report three quantities for the experimenéscu- tangents optimally according to Lemma 4.1; rather we have
racy, convergence rateand communication cost These Placed the tangents at equidistant points onatkexis. We
quantities are measured differently for the two modes &1 several experiments and found that this simple tecleniqu
DReMo— (1) when only the monitoring algorithm operategYorks quite as well.
and (2) when the nodes jointly execute the convergecast-



5.2 Performance analysis oDReMo monitoring phase: accuracy and corresponding increase in messages for the las
In this mode the nodes are not allowed to deploy tlelumn (both top and bottom) figures. In this case, checking
convergecast-broadcast to rebuild the model and only rafs&2,,,, < 0.7 becomes simple.
alerts when the model is out-of-date. This allows us to
demonstrate the convergence properties and message ¢l Convergence rate:Fig. 6(a) demonstrates the con-
plexity of DReMa vergence rate dReMofor different network sizes. We have

Fig. 3 shows a typical dataset and the performancepdbtted the performance from the beginning of one epoch till
the nodes. For this mode of operation@ReMq we have the time the nodes converge to 99% accuracy. At time O,
chosen the data such that for the odd eposfjs, = 0.7429 the accuracy is 0%. When the data changes at 20,000 ticks,
while for the even epochB?, ., = 0.2451 as shown in Fig. accuracy increases and then again drops because the nodes
3(a). This means that, for the odd epochs, the regressi@ed more information to agree on the outcome. At 40,000
coefficients at each node matches with the weights of the diét&s, when the data changes again, the accuracy increases
generator, while for the even epochs they do not. The redlanad it keeps increasing till it reaches close to 100%. Even
is the error threshold. In all the experiments reported inwith data changing at subsequent sub-epochs, we do not see
this mode of operation dReMq the goal at each node is taany drop in accuracy. For these network sizes, convergence
check if the model fits the date. if R2,, > € for the odd occurs at the following simulator ticks: 50441 (500 nodes),
epochs and??,,,, < ¢ for the even ones. As we see in Figd9282 (1000 nodes), 47120 (2000 nodes), and 47989 (4000
3(b), accuracy is very high (close to 100%) for each epocindes).
once the algorithm converges after the initial data change.
Fig. 3(c) shows the monitoring messages per node ploted.2 Scalability: Fig. 6(b) shows the accuracy and Fig.
against time. For the default leaky bucket size of 2000, théc) shows the messages (separately for the odd and even
maximal rate of messages per sub-epagh @ata change) epochs) as the number of nodes is varied from 500 to 4000.
is bounded by x 20, 000/2000 = 20 for DReMq assuming Each point in the accuracy plot is the average accuracy of
2 neighbors per node on average. Also, an algorithm whibfRReMoover the last 80% of time for each epoch. Similarly,
broadcasts the data for each change will have this maxiraath point in the messages plot shows the messages per node
rate to be 2 per sub-epoch. HOReMaq this rate of messagesper sub-epoch during the later 80% of the epoch. For both
per node per sub-epoch has been calculated to be only 0.@&2é&se plots, the circles represent the odd epochs, while the
well below these maximal rates. squares represent the even epochs and bars represent the

For DReMgq size of the local dataset plays a vital rolstandard deviation over 5 runs of the experiment. Since both
in the accuracy and message complexity. Increasing #eeuracy and messages do not vary for different network
number of data points per node improves the quality sizes we can conclude thaReMois highly scalable.
the local sufficient statistics and hence lowers the message We have also run several experiments by varying the
required byDReMo to agree with its neighbors. Thisother parameters — dimension of the data, size of the
hypothesis is verified by Fig. 4, which shows an increasel&aky bucket and number of tangent lines. For all of these
accuracy (top row) and decrease in messages (bottom rpafameters, the accuracy and messages do not vary much.
plotted against time for differenf;| = 10, 50 and 100 (left We do not present detailed graphs here due to lack of space.
toright). The rate of messages are 0.67, 0.045, and 0.013 per
node per sub-epoch for the three cases respectively. 5.3 Performance analysis oDReMo with convergecast-

The actual value ot does not affect the performancédroadcast: We now shift our focus to the other mode of
of DReMq rather the distance betwedt? and ¢ plays a operation ofDReMo— when the algorithm monitors the
major role. Closere is to R? for any epoch, the moremodel and rebuilds it, if outdated. Fig. 7 shows a typical
difficult the problem becomes for that epoch. By varyingrun of the experiment. Fig. 7(a) shows tR& value of alll
between 0 and 1, we demonstrate the performanb&eMo nodes at each time instance. The redline is the default value
with different levels of problem difficulty as shown in Figof e = 0.9. The plot shows thaDReMorebuilds the model
5. Thee values demonstrated here are 0.2, 0.5, and @i7every new epoch. Once the model is rebuilt, the value
from (left to right, all columns). Recall that the value obf R? drops below and only the efficient local monitoring
R?%,, = 0.7427 for odd epochs and??,., = 0.2451 for algorithm operates for the rest of the epoch. The algorithm
even epochs. Foe = 0.2, R?,,, is very close to the has a high true positive rate (alerts raised when necessary)
threshold and hence, the accuracy is close to 60% with hayid a very low false positive rate (unnecessary alerts). Fig
message complexity (leftmost column, both top and bottdftb) shows the monitoring messages per node per sub-epoch
figures). For the same, checking fork?,, > 0.2 is a and Fig. 7(c) shows the cumulative messages exchanged for
much simpler problem. On the other hand, fo= 0.7, recomputing the model. As is evident from Fig. 7(b) and
R?,, is very close toe. This is reflected in the decrease if7(c), the algorithm offers a very low overhead of monitoring
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Figure 5: Variation of accuracy (top row) and messages gbotow) for differente = 0.2, 0.5 and0.7 from left to right.

Recall thatR? = 0.2451 for the even epochs, and henrce 0.2 makes it very close to the threshold (left column). Simjlarl
for the odd epochs?? = 0.7429 and soe = 0.7 makes this too close to the threshold. In both these casesithéecrease
in accuracy and increase in messages.
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The next two figures demonstrate accuracy and messageswislize of the network.
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Figure 7: Accuracy and messages for enbiReMoalgorithm while both monitoring and re-building the model.

Each data message consists of the following two matricaert wait period- on the accuracy and message®&eMa
XTX; (d x dy and XTy; (d x 1). The number of bytes Fig. 8 shows the variation of averag# over all nodes and
transmitted in each data messageldg2 + d, d being the messages for different values of The (red) squares show
number of features. the averageR? value over the entire experiment duration,
We study the effect of two parameterg. ¢ and the ignoring the epoch transitional periods. The (blue) cicle



. } , GRID25 — an efficient power generation and transmission
P f12 . . :
w088 AT e i 2 infrastructure which seamlessly connects both fossil fuel
g . " [*  generation plants and renewable energy sources. All of the
oo ’—‘SDReMo 1 e major generating plants feed into this grid for power to be
°%g5 o7 o8 0908 o5 o7 s oy os transmitted. EIRGRID publishes system performance data
every 15 mins. The data consists of the following: eledfyici
Figure 8: Accuracy and messagesidteMovs. e. demand (in Mega Watts), wind generation (in Mega Waits)
and CQ emissions (in Tonnes per hour). This dataset has
also been used in [10] for forecasting electricity demand us
ing kernel regression.
%‘ Our goal in this work is to demonstrate the ability

of DReMoin assessing the state of the ESG distribution
system. We have used wind generation and electricity
demand as inputs in order to model £®mission, with

the underlying assumption that higher than usua} G®el
indicates higher fossil fuel burning and hence lesser green
energy generation. Detection of such events may ultimately
help the grid companies to dynamically switch on or off more
renewable energy sources. We have downloaded these three

show the respective values. This plot shows that (1) thdeatures for a period of 9 months Jan 01, 2010 to Sep 30,
average computeft? is always higher than thevalue, and 2010 (273 days). Since the data is collected every 15 mins,
(2) the R? value increases with increasingto maintain there are a total of 26,208 samples in our full dataset. In
the required accuracy since higherimplies more rigid OUr setup, we take each month's data as an epoch and at
model fitting requirement. The second figure shows bdMerY 500,000 simulator ticks replace all of the data of all
the monitoring messages and convergecast broadcast rof§es with the next month’s data. We have divided each
per node per epoch. The monitoring messages vary betwBnth’s data (approximately 2900 points) into 50 nodes such
0.028 and 1.0154 — far less than the maximal rate of 20 4Rt €ach node has approximately 55 data points per epoch.
2 messages as discussed earlier. Also the average numb¥feave taken a small sample of the data from the first epoch
computation rounds vary between 1.1 and 3.12 which meaRsl have built a regression model and used it as the reference
that new models are built between 1 and 3 times per epo@lpdel throughout the remaining epochs of the distributed
As can be seen from the graph, this value is small for low@fPeriment. Itis worthwhile to mention here that we have
values ofe since model fitting requirements are relaxed. UsedDReMoto only detect the changes (no convergecast
We have also varied the alert wait periedto take broadcast). In the absence of real faults in the data, we have
values 10, 50, 100, 500 and 1000. Fig. 9 shows tpltered the CQvalues of the month of June ly20% of the
variation of accuracy and messages for the Va|ue3'ofactugl values. Fig. 10 shows the experimental rgsults. The
AverageR? value varies very little, and always stays greaté®P figure shows the percentage of nodes agreeing that the
thane. As expected, the convergecast broadcast roumgdelﬁts the data at each time instance. For the entiregberio
per node per epoch decrease and the monitoring messéfjdfe end of May we see a good agreement between the
increase since the convergenceRReMois delayed with model of Jan 2010 and the data, with some intermediate false
increasing values of. The optimal value of- is that for alarms. The interesting phenomenon occurs during June
which both monitoring messages and computation rourdfsl0 and the algorithm correctly detects the event. After
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Figure 9: Accuracy and messageddteMovs. 7.

are minimized. June, when the data changes again, the algorithm recovers
and shows high accuracy. In order to validate this, we have
6 Application to Electrical Smart Grid monitoring built regression models for each epoch separately, andifoun

. . : . that they are very similar, except the data for June 2010. The
Electrical smart grids (ESG) provide an exciting venue for
; : . . - : o ottom plot shows the messages exchange®RgMofor
deploying this algorithm in a realistic setting. In this e this monitorin
we demonstrate how we can monitor the£&nission from 9.
energy usage in electric grids. Since data in the electiit 9 .
Conclusion

is inherently distributed, this calls for a distributed riton i o
ing algorithm. Unfortunately, a lot of the electric grid far N this paper we have presented a new method for monitoring

purposes. As a result we have used the data available fif@Posed algorithm useR? statistic to assess the quality
EIRGRID (ht t p: / / www. ei rgri d. cont ). It maintains Of & linear regression model in a distributed fashion and



Figure 10: Accuracy and messagesReMo for smart 12]
grid data monitoring. The circled region (June) is when tfge
algorithm correctly detects the fault in the system.

raises an alert whenever the value of the statistic dr(wi]
below a predefined threshotd The algorithm is provably
correct and has very low communication overhead — both
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