
LLNL-CONF-513839

The Network Completion
Problem: Inferring Missing Nodes
and Edges in Networks

M. Kim, J. Leskovec

November 15, 2011

SIAM International Conference on Data Mining (SDM)
Mesa, AZ, United States
April 28, 2011 through April 30, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

The Network Completion Problem:

Inferring Missing Nodes and Edges in Networks

Myunghwan Kim∗ Jure Leskovec†

Abstract

While the social and information networks have become
ubiquitous, the challenge of collecting complete network
data still persists. Many times the collected network
data is incomplete with nodes and edges missing. Com-
monly, only a part of the network can be observed and
we would like to infer the unobserved part of the net-
work. We address this issue by studying the Network
Completion Problem: Given a network with missing
nodes and edges, can we complete the missing part?

We cast the problem in the Expectation Maximiza-
tion (EM) framework where we use the observed part
of the network to fit a model of network structure, and
then we estimate the missing part of the network us-
ing the model, re-estimate the parameters and so on.
We combine the EM with the Kronecker graphs model
and design a scalable Metropolized Gibbs sampling ap-
proach that allows for the estimation of the model pa-
rameters as well as the inference about missing nodes
and edges of the network.

Experiments on synthetic and several real-world
networks show that our approach can effectively recover
the network even when about half of the nodes in the
network are missing. Our algorithm outperforms not
only classical link-prediction approaches but also the
state of the art Stochastic block modeling approach.
Furthermore, our algorithm easily scales to networks
with tens of thousands of nodes.

1 Introduction

Network structures, such as social networks, web graphs
and networks from systems biology, play important
roles in many areas of science and our everyday lives.
In order to study the networks one needs to first
collect reliable large scale network data [23]. Even
though the challenge of collecting such network data
somewhat diminished with the emergence of Web, social
media and online social networking sites, there are still
many scenarios where collected network data is not
completely mapped. Many times the collected network

∗Stanford University, CA 94305. mykim@stanford.edu
†Stanford University, CA 94305. jure@cs.stanford.edu

data is incomplete with nodes and edges missing [15].
For example, networks arising from the popular social
networking services are not completely mapped due
to network boundary effects, i.e., there are people
who do not use the social network service and so we
cannot observe their connections. Similarly, when a
social scientist collects the data by surveying people,
he or she may not have access to certain parts of the
network or people may not respond to the survey. For
example, complete social networks of hidden or hard-
to-reach populations, like drug injection users or sex
workers and their clients, are practically impossible to
collect. Thus, network data is often incomplete, which
means that some nodes and edges are missing from
the dataset. Analyzing such incomplete network data
can significantly alter our estimates of network-level
statistics and inferences about structural properties of
the underlying network [15].

We systematically investigate the Network Comple-
tion Problem where we aim to infer the unobserved part
of the network. While the problem of missing link infer-
ence [6, 10] has been thoroughly studied before, we con-
sider a problem where both edges and nodes are missing.
Thus, the question that we address here is: given an in-
complete network with missing nodes and edges, can we
fill in the missing parts? For example, can we estimate
the structure of the full Facebook social network by only
observing/collecting a part of it? Figure 1(a) illustrates
the task. There is a complete network represented by
adjacency matrix H and some nodes and correspond-
ing edges are missing from it. We only observe network
(matrix) G, the non-missing part of H , and aim to infer
the missing nodes and edges, i.e., the missing part Z.

The problem that we aim to solve here is partic-
ularly challenging in a sense that we only assume the
partial knowledge of the network structure and based
on that we aim to predict the structure of the unob-
served part of the network. In particular, we work only
with the network structure itself, with no additional
data about the properties (attributes or features) of the
nodes and edges of the network. This means that we aim
to infer the missing part of the network solely based on
the connectivity patterns in the observed part.

Present work: A model-based approach. In or-
der to capture the connectivity patterns in the observed
part of the network and use this knowledge to complete
the unobserved part of the network, one inherently re-
quires a model of the structure of real-networks. While
many network models have been proposed [6, 1, 16, 20],
our requirements here are somewhat specific. First,
since we aim to work with large scale network data, the
model and the parameter estimation procedure needs
to be scalable. Second, it is desirable for the network
model to be statistical in nature so that we can effi-
ciently model the probability distribution over the miss-
ing part of the network.

The Kronecker graphs model [18] satisfies above re-
quirements. The model is provably able to simultane-
ously capture several properties of network structure,
like heavy-trailed degrees, small diameter and local clus-
tering of the edges [18, 22]. Moreover, Kronecker graphs
model parameters can be efficiently estimated. In prac-
tice, the model reliably captures the structure of many
large real-world networks [17].

Based on the Kronecker graphs model, we naturally
cast the problem of network completion into the Ex-
pectation Maximization (EM) framework where we aim
to estimate the Kronecker graphs model parameters as
well as the edges in the missing part of the network. In
this EM framework, we develop theKronEM algorithm
that alternates between the following two stages. First,
we use the observed part of the network to estimate the
parameters of the network model. The estimated model
then gives us a way to infer the missing part of the net-
work. Now, we act as if the complete network is visible
and we re-estimate the model. This in turn gives us a
better way to infer the missing part of the network. We
iterate between the model estimation step (the M-step)
and the inference of the hidden part of the network (the
E-step) until the model parameters converge.

However, in order to make this approach feasible
in practice, there are several challenges that we need
to overcome. In particular, the model parameter fit-
ting as well as the estimation of missing edges are both
computationally intractable. Moreover, the parame-
ter search space is super-exponential in the number of
nodes N in complete network H as three sets of pa-
rameters/variables need to be estimated: the Kronecker
graph parameters (usually just 4 parameters), the map-
ping of the nodes of the Kronecker graph to those of the
observed and missing part of the network (N ! possible
mappings), and the inference of the missing edges of the
network (O(2N) configurations). However, we develop a
set of scalable techniques that allow for fast and efficient
model parameter estimation as well as the inference of
missing nodes and edges of the network.

G

Z

G

(a) The Network Completion
Problem

Θ

Θ
2

(b) Kronecker Graphs
model

Figure 1: (a) The network completion problem: There is
a complete graph adjacency matrix H . We only observe
part G of H , and aim to infer the missing part Z. (b)
Kronecker Graphs model: Parameter matrix Θ and the
second Kronecker power Θ2. Notice the recursive structure
of matrix Θ2, where entries of Θ are recursively expanded
with miniature copies of Θ itself.

Experiments on synthetic and large real-world net-
works show that our approach reliably predicts the in-
dividual missing edges as well as effectively recovers the
global network structure, even when about half of the
nodes of the network are missing. In terms of per-
formance, our algorithm compares favorably to classi-
cal link-prediction approaches and the state of the art
Stochastic block modeling [10] approach.

KronEM has several advantages. In contrast to
the Stochastic block model, KronEM requires a small
number of parameters and thus does not overfit the
network. It infers not only the model parameters
but also the mapping between the nodes of the true
and the estimated networks. The approach can be
directly applied to cases when collected network data
is incomplete. Overall, KronEM provides an accurate
probabilistic prior over the missing network structure.
Furthermore, KronEM easily scales to large networks.

2 Background and Related Work

Next, we survey the related work and then introduce
the Kronecker graphs model. The network completion
has been studied in the context of survey sampling [11]
and the inference of missing links mainly in social and
biological networks [10, 6]. Related to our work is
also the problem of link prediction, which is usually
formulated in the following way: given a network up to
time t, predict what new edges will occur in the future.
Link prediction has been extensively studied in social
and information networks [21, 28] as well as biological
networks [8]. Similarly, the network reconstruction
problem that has been mainly studied in the context of
biological networks, aims to infer the missing parts of
networks [31, 3]. Another related setting is the network

inference problem where a virus diffuses through the
network and we only observe node infection times (but
not who infected whom). The goal then is to infer
hidden underlying network [26, 9]. In contrast, the
network inference and network reconstruction assume
that identities and properties (features) of missing nodes
(proteins) are known and one aims to infer their links.
Overall, these previous works assume that the nodes are
already present in the network, we consider a different
setting where both nodes and edges are missing.

Our work also relates to the matrix completion
problem [4, 12] where a data matrix with missing entries
is given and the aim is to fill the entries. However, it
also differs in a sense that real-world networks have very
different structure and properties (e.g., heavy-tailed
degree distributions) than the real-valued data matrices
usually considered in the matrix completion problem.

Kronecker graphs model. Next we briefly introduce
the Kronecker graphs model of real-world networks [18]
that we later adopt to develop a method for inferring
missing nodes and edges. To introduce the Kronecker
graphs model, we first define the Kronecker product
of two matrices. For A ∈ R

m×n and B ∈ R
m′×n′

Kronecker product A⊗B ∈ R
mm′×nn′

is defined as:

A⊗ B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB







And Kronecker product of two graphs is the Kronecker
product of their adjacency matrices.

The Kronecker graphs model is then defined by
a small Kronecker parameter matrix Θ ∈ [0, 1]N0×N0

where every entry of the matrix Θ can be interpreted
as a probability. We can Kronecker power Θ to obtain
larger and larger stochastic graph adjacency matrices.
The resulting matrices are naturally self-similar as the
pattern of subgraph resembles that of the entire graph
as illustrated by Figure 1(b). For example, after k

powerings of Θ we obtain Θk ∈ [0, 1]N
k
0
×Nk

0 . Now Θk

defines a probability distribution over graphs on Nk
0

nodes where each entry (Θk)ij of this large Θk can
be interpreted as a probability that edge (i, j) exists.
Thus, to obtain a realization K of a Kronecker graph
defined by parameter matrix Θ, we include edge (i, j)
in K according to its probability of occurrence (Θk)ij .

Kronecker graphs model is particularly appropriate
for our task here, since it has been shown that it can
reliably model the structure of many large real-world
networks [17, 19]. Our task now is to extend the
model to networks with missing data and to develop
a procedure that will at the same time infer model
parameters as well as the missing part of the network.

3 The Network Completion Problem

We begin by introducing the problem of inferring miss-
ing nodes and edges in networks. We then propose
KronEM, an EM algorithm based on Kronecker graphs
model to solve the network completion problem.

3.1 Problem Definition. We consider that there
is a large complete (directed or undirected) network
H(N,E) which we cannot completely observe as the
information about some nodes is missing, i.e., we do
not know the edges of these missing nodes. In contrast,
we are able to fully observe the induced subgraph
G(NG, EG) of H . G is the observed part of the network
H . Now the task is to infer the missing part Z of the
network H . We denote the missing nodes and edges in
Z as NZ and EZ , respectively. EZ are therefore edges
with at least one endpoint in NZ , i.e., edges between
pairs of nodes in NZ and those with one endpoint in
NZ and the other in NG. Moreover, we assume that the
amount of missing data (i.e., size of NZ) is known. If
not, then standard methods for estimating the size of
hidden or missing populations [24, 13] can be applied.

ConsideringH andG as the adjacency matrices, the
problem is equivalent to a variant of matrix completion
problem as illustrated in Figure 1(a). We have a binary
matrix H of which we only observe block G and the
task is to infer the missing part Z. Our goal is to
determine whether each entry in Z should be set to 0
or 1. In contrast to the classical matrix completion or
missing-link inference problem where the assumption is
that random entries of H are missing (and so low-rank
matrix approximation methods can be thus applied), in
our case complete rows and columns of H are missing,
which makes the problem much more challenging.

3.2 Proposed Approach: Kronecker EM. We
model the complete networkH with a Kronecker graphs
model. Then, the observed part G and the missing
part Z are linked probabilistically through the model
parameters Θ:

Z ∼ PH(Z|G,Θ)

The objective of the network completion problem is
to find the most likely configuration of the missing part
Z. However, we first need to estimate the parameters
Θ to establish a link between the observed G and
unobserved Z. This naturally suggests the Expectation-
Maximization (EM) approach, where we consider the
missing edges in Z as latent variables. Therefore,
we iteratively update Θ by maximizing the likelihood
P (G,Z|Θ) and then update Z via P (Z|G,Θ).

In addition to the missing part Z, one more set
of variables is essential for the EM approach to work.
We have to distinguish which nodes of the inferred

Kronecker graph belong to part G and which to part Z.
We think of this as a mapping σ between the nodes of
the inferred network Ĥ and the observed part G. Each
node in H and in Ĥ has unique id 1, ..., N . Then the
mapping σ is a permutation of the set {1, . . . , N} where
the first NG elements of σ map the nodes of Ĥ to the
nodes of G and the remaining NZ elements of σ map
the nodes of Z. Under the Kronecker graphs model, we
define the likelihood P (G,Z, σ|Θ):
(3.1)

P (G,Z, σ|Θ) =
∏

u∼v

[Θk]σ(u)σ(v)
∏

u6∼v

(

1− [Θk]σ(u)σ(v)
)

where Θk is the stochastic adjacent matrix generated by
the Kronecker parameter matrix Θ, σ maps the nodes,
and u ∼ v represents an edge in H = G ∪ Z.

This means that in order to compute P (G|Θ) we
integrate P (G,Z, σ|Θ) over two sets of latent variables:
the edges in the missing part Z, and the mapping σ
between the nodes of G and the nodes of the inferred
network Ĥ . Using the EM framework, we develop
KronEM algorithm where in the E-step we consider
the joint posterior distribution of Z and σ by fixing Θ
and in the M-step we find optimal Θ given Z and σ:

E-step:

(Z(t), σ(t)) ∼ P (Z, σ|G,Θ(t))

M-step:

Θ(t+1) = arg max
Θ∈(0,1)2

E

[

P (G,Z(t), σ(t)|Θ)
]

Note that the E-step can be viewed as a procedure that
completes the missing part of the network.

Now the issue is the E-step is that there is no
closed form for the posterior distribution P (Z, σ|G,Θ).
The basic EM algorithm is also problematic because
we cannot compute the expectation in the M-step. To
solve this, we introduce the Monte-Carlo EM algorithm
(MCEM) that samples Z and σ from the posterior
distribution P (Z, σ|G,Θ) and averages P (G,Z, σ|Θ)
over these samples [30]. This MCEM algorithm has
an additional advantage: if we take the Z and σ
that maximize P (G,Z, σ|Θ), they are the most likely
instances of the missing part and the node mapping.
Thus, no additional algorithm for the completion of the
missing part is needed.

However, we still have several challenges to over-
come. For example, sampling from the posterior dis-
tribution P (Z, σ|G,Θ) in E-step is nontrivial, since no
closed form exists. Furthermore, since the sample space
over Z and σ is super-exponential in the network size
(O(2NNZ) for Z and N ! for σ), which is unfeasible for
the size of the networks that we aim to work with here.

Algorithm 1 E-step of KronEM

input: Observed network G, Kronecker parameter Θ,
of warm-up iterations W , # of samples S

output: Set of samples of Z and σ

Initialize Z(0), σ(0)

for i = 1 to (W + S) do
Z(i) ← P (Z|G, σi−1,Θ) // Gibbs sampling of Z
σ(i) ← P (σ|G ∪ Z(i),Θ) // Gibbs sampling of σ

end for

Z← (Z(W+1), · · · , Z(W+S))
Σ← (σ(W+1), · · · , σ(W+S))
return Z,Σ

Focusing on these computational challenges, we develop
E-step and M-step in the following sections.

3.3 E-step. As described, it is difficult to sample
directly from P (Z, σ|G,Θ), i.e., it is not clear how to
at the same time sample an instance of Z and σ from
P (Z, σ|G,Θ).

However, we make the following observation. When
either Z or σ is fixed, we can sample the other (σ or Z).
If the node mapping σ is fixed, then the distribution
of edges in Z is determined by Θ and σ. In detail,
we first generate a stochastic adjacency matrix Θk by
using Kronecker parameter matrix Θ. Then, since the
node mapping σ tells us which entries of Θk belong
to the missing part Z, the edges in Z are obtained
by a series of Bernoulli coin-tosses with probabilities
defined by the entries of Θk and the node mapping
σ. Conversely, when the missing part Z is fixed so
that the complete network H is given, sampling a node
mapping σ ∼ P (σ|Θ, G, Z) conditioned on Θ and H
(i.e., H = G ∪ Z) is tractable as we show later.

By these observations, we generate many samples
of P (Z, σ|G,Θ) by using Gibbs sampling, where we fix
σ and sample new Z, and then fix Z and sample new σ,
and so on. Algorithm 1 gives the E-step using the Gibbs
sampling approach that we now describe in detail.

Sampling Z from P(Z|G, σ,Θ). Given a node map-
ping σ and a Kronecker parameter matrix Θ, sampling
the missing part Z determines whether every edge Zuv

in Z is present or not. We model this with Bernoulli dis-
tribution with parameter [Θk]σ(u)σ(v) where σ(u) repre-
sents mapping of node u in G to a row/column of the
stochastic adjacent matrix Θk. Entry [Θk]uv of matrix
Θk can be thus interpreted as the probability of an edge
(u, v). However, the number of possible edges in Z is
quadratic O(N2), so it is infeasible to sample Z by flip-
ping O(N2) coins each with probability [Θk]uv. Thus,
we need a method that infers the missing part Z in more
efficiently than in quadratic time.

We notice that an individual edge (u, v) in a Kro-
necker graph can be sampled as follows. First we sam-
ple two N0-ary (i.e., binary) vectors u and v of length
k with entries ul and vl (l = 1, . . . , k). The probability
of (ul, vl) taking value (i, j) (where i, j ∈ {1, . . . , N0})
is proportional to the corresponding entry Θij of the
Kronecker parameter matrix. Thus, pairs (ul, vl) act as
selectors of entries of Θ. Given two such vectors, we
compute the endpoints u, v of edge (u, v) [17]:

(u, v) = (

k
∑

l=1

ulN
l−1
0 ,

k
∑

l=1

vlN
l−1
0)

where N0 is the size of Kronecker parameter matrix Θ
(usually N0 = 2) and k = logN0

N . From this procedure

we obtain an edge from a full Kronecker graph Ĥ. Since
we are interested only in the missing part Z of Ĥ, we
accept an edge (u, v) only if at least one of u and v
is a missing node. We iterate this process until we
obtain EZ edges. Graphically, if the sampled edge (u, v)
belongs to part Z in Figure 1(a), we accept it; otherwise,
we reject it and sample a new edge. As the rejection rate
is approximately EG/(EZ +EG), the expected running
time to obtain a single sample of the missing part Z is
O(EG) (down from the original O(N2)).

Even though we reduced the time to obtain a
single sample of Z, this is still prohibitively expensive
given that we aim to obtain millions of samples of Z.
More precisely, to generate S samples of Z, the above
procedure takes O(SEG) time. Generally, we need more
samples S as the size of missing part EZ increases.
Thus, the above procedure will be too slow.

We started with O(N2) algorithm for sampling
Z and brought it down to linear time O(EG). We
further improve this by making sampling a single Z
effectively in a constant-time operation. We develop
a Metropolis-Hastings sampling procedure where we
introduce a Markov chain. We do this by making
samples dependent, i.e., given sampled Z(i), we generate
the next candidate sample Z(i+1). To obtain Z(i+1)

we consider a proposal mechanism which takes Z(i),
removes one edge randomly from it, and adds another
one to it. We then accept or reject this new Z(i+1)

based on the ratio of likelihoods. In this way, we reduce
the complexity of obtaining Z(i+1) to O(1), since all we
need to do is to take a previous sample Z(i), delete an
edge and add a new one. Therefore, it takes only O(S)
time to acquire S samples of Z. We give further details
of the Metropolis-Hastings sampling procedure with
the detailed balance correction factor in the extended
version of the paper [14].

Sampling σ from P(σ|G,Z,Θ). The second part
of the Gibbs sampling obtains the samples of node

Algorithm 2 M-step of KronEM

input: Observed network G

Gibbs samples Z and Σ obtained in E-step
of gradient ascent updates D

output: New Kronecker parameter matrix Θ
initialize Θ, set L← 1

D
length(Z)

for j = 1 to D do

for i = 1 to L do

(Z, σ)← (Zi+(j−1)L,Σi+(j−1)L)

∆
(j)
i ←

∂
∂Θ

P (G,Z, σ|Θ) // Compute gradient
end for

∆(j) ← 1
L

∑
∆

(j)
i // Average the gradient

Θ← Θ+ λ∆(j) // Apply gradient step
end for

return Θ

mapping σ. The complete network H (i.e., H = G∪Z)
and the Kronecker parameters Θ are given and we want
to sample the node mapping σ Here we also have an
issue because the sample space of all node mappings σ
(i.e., all permutations) is N !. We develop a Metropolis
sampling method that quickly converges to good node
mappings. The sampling proposal mechanism selects
two random elements of σ and swaps them. By using
such proposal mechanism, σ changes only locally and
thus the computations are very fast. However, the
probability of acceptance of the transition σ → σ′

(swapping random positions i and j) needs to be derived
as the detailed balance conditions are not simply met.
We provide the details in the extended version [14].

3.4 M-Step. Since the E-step is based on the Markov
Chain Monte Carlo sampling, we use the stochastic
gradient ascent method to update the parameter ma-
trix Θ to maximize the empirical average of the log-
likelihood. In each step, we average the gradient of the
log-likelihood (Eq. 3.1), with respect to Θ(t) and com-
pute the new Θ(t+1). In this sense, each gradient update
eventually repeats the E-step. Moreover, we use the
ECM algorithm [25] where only few steps of the gradi-
ent ascent are needed for the EM algorithm to converge.

Algorithm 2 gives the M-step where we iterate over
the samples of Z and σ obtained in E-step and in each
step we compute the gradient of P (G,Z, σ|Θ) as further
described in the extended version of the paper [14].

4 Experiments

Next we evaluate the KronEM algorithm on several
synthetic and real datasets. First, we use the syn-
thetic Kronecker graphs to examine the correctness of
the KronEM algorithm. We test whether KronEM is
able to recover the true Kronecker parameters regard-
less of the fraction of missing nodes. Second, we com-

pare KronEM to link-prediction and the state of the
art missing link inference methods on two real datasets,
where both nodes and edges are missing as well as where
only edges are missing. We show that KronEM com-
pares favorably in both settings. Furthermore, we also
examine several aspects of the robustness of KronEM.
We show convergence, sensitivity to parameter initial-
ization, and resilience to noise. We also show that Kro-

nEM performs well even when the network does not
strictly follow the Kronecker graphs model.

4.1 Correctness of KronEM. First we evaluate
KronEM on the synthetic Kronecker graphs to check
how well KronEM recovers the true Kronecker param-
eters in presence of missing nodes and edges. Since we
know the true parameters that generated the network,
we measure the error of Kronecker parameter recovery
as a function of the amount of missing data.

We use the Kronecker graphs model with parameter
matrix Θ∗, generate a synthetic network H∗ on 1,024
nodes, and delete a random set of nodes Z∗. We then
use the remaining G∗ and infer the true parameter Θ∗

as well as the edges in the missing part Z∗. We refer
to inferred Z as Ẑ and to estimated parameters as Θ̂.
In all experiments, we use a 2× 2 Kronecker parameter
matrix since it has been shown that this already reliably
models the structure of real-world networks [17].

Evaluation metrics. We define different distance
metrics between two Kronecker graphs by measuring
discrepancy between the true parameter matrix Θ∗ and
the recovered parameter matrix Θ̂. We use L1 (entry-
wise sum of absolute differences) and L2 (entry-wise
sum of squared differences) distances between Θ∗ and
Θ̂. We refer to these measures as DABS and DRMS

and compute them as follows: DABS = 1
N2

0

|Θ̂ − Θ∗|1

and DRMS =
√

1
N2

0

||Θ̂−Θ∗||2. We also consider

Kullback-Leibler (KL) divergence that operates directly
on the full stochastic adjacency matrices constructed
by Θ∗ and Θ̂. Naive computation of KL divergence
takes O(N2) time, however, we can approximate it by
exploiting the recursive structure of Kronecker graphs.
By using Taylor expansion log(1 − x) ≈ −x − 0.5 x2,

we obtain DKL ≈ k|Θ∗|k−1
(

∑

i,j Θ
∗
ij log

(

Θ∗
ij/Θ̂ij

))

−

|Θ∗|k + 1
2S(Θ

∗)k + |Θ̂|k + 1
2S(Θ

∗)k −
(

∑

i,j Θ
∗
ijΘ̂ij

)k

where |Θ| =
∑

i,j Θij and S(Θ) =
∑

i,j Θ
2
ij

Finally, we also directly measure the log-likelihood
as a generic score of the similarity between an instance
and a distribution. Since we can additionally calcu-
late the log-likelihood of the true Θ∗, we consider the
difference of log-likelihood between the true and the es-

Method DABS DRMS DKL DLL DLLZ

KronFit 0.173 0.048 354.4 -355 -155

KronEM 0.063 0.018 22.4 -12 -5

Table 1: Performance on a synthetic Kronecker graph.
Notice KronEM outperforms KronFit in all respects.

timated Kronecker parameters as a relative likelihood
measure. We further distinguish two ways of quantify-
ing these differences. One is the difference of the like-
lihood between the true complete network H∗ and the
estimated one Ĥ . The other is that between the missing
parts of networks Z∗ and Ẑ. We therefore define DLL =
LL(Θ̂)− LL(Θ∗) and DLLZ

= LLZ(Θ̂)− LLZ(Θ
∗).

Results on synthetic data. We compare KronEM

to fitting Kronecker parameters directly to the observed
part G∗ by inserting isolated nodes in the unobserved
part Z (we refer to the method as KronFit [19]). Note
that this method ignores the missing part and estimates
the model parameters purely from the observed G∗.

Table 1 shows the performance of theKronEM and
KronFit where we randomly removed 25% of the nodes
so that the network has 768 nodes and 1,649 edges (out
of 1,024 nodes and 2,779 edges). Notice that KronEM

greatly outperforms KronFit in all respects. Both the
L1 (DABS) and L2 (DRMS) distances of the estimated
parameters are more than twice smaller for KronEM.
In terms of the KL divergence and the difference in
the log-likelihood we see about factor 20 improvement.
These experiments demonstrate that the Expectation
Maximization algorithm greatly outperforms Kronecker
parameter fitting directly to the observed data with
ignoring the missing part.

We additionally examine the inference performance
as a function of the amount of missing data. KronEM

maintains performance as the number of unobserved
data (i.e., the size of Z) increases. For this purpose, we
vary the fraction of missing nodes and measure the error
metrics, DABS , DRMS , DKL and DLL. Figure 2 gives
the results of these experiments. Notice that the error
of KronEM is nearly flat and is increasing even slower
than the error of KronFit. When we remove up to 45%
of the nodes, KronEM is still able to reliably estimate
the model parameters and recover the missing part of
the network. On the other hand, KronFit becomes
infeasible to recover the parameter already when only
about 10% of the data is missing.

To sum up, KronEM near-perfectly recovers the
true Kronecker parameters with less than 0.02 DRMS

error, regardless of the amount of missing data.

4.2 Experiments on Real Networks. From the
experiments so far, we see that when a network follows
the Kronecker graphs model KronEM can accurately

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25 30 35 40 45

D
A

B
S

Node Removal(%)

KronFit
KronEM

(a) DABS

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

 5 10 15 20 25 30 35 40 45

D
R

M
S

Node Removal(%)

KronFit
KronEM

(b) DRMS

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 5 10 15 20 25 30 35 40 45

D
K

L

Node Removal(%)

KronFit
KronEM

(c) DKL

-2000
-1800
-1600
-1400
-1200
-1000

-800
-600
-400
-200

 0

 5 10 15 20 25 30 35 40 45

D
LL

Node Removal(%)

KronFit
KronEM

(d) DLL

Figure 2: Error of the recovered missing part of the network
as a function of the fraction of missing nodes in the network.
KronEM is able to reliably estimate the missing part even
with 45% of the nodes missing.

solve the network completion problem, even though a
large part of the network is missing. Now we turn our
attention to real datasets and evaluate our approach
KronEM on these real networks. In the evaluation of
KronEM, focusing on the inference of missing edges
as well as the recovery of global network properties, we
compare KronEM to other methods.

For these experiments, we use two real-world net-
works: a part of the Autonomous System (AS) net-
work of the Internet connectivity (4,096 nodes, 29,979
edges) [20] and a part of the Flickr social network (4,096
nodes, 22,178 edges) [16]. Then, we randomly removed
25% of the nodes and the corresponding edges.

Baseline methods. To assess the quality of KronEM

for network completion problem, we introduce different
classes of methods and compare them with KronEM.

First, we consider a set of classical link prediction
methods [21]. We choose two link prediction methods
that have been found to perform well in practice [21]:
Degree-Product (DP), and Adamic-Adar score (AA).
We select the Degree-Product because it models the
preferential attachment mechanism [2], and the Adamic-
Adar score since it performs the best in practice [21].
Adamic-Adar score can be regarded as an extension of
the Jaccard score that considers the number of common
neighbors but gives each neighbor different weight.

We also consider another model-based approach to
network completion. We adopt the Stochastic block
model (BM) that is currently regarded as the state
of the art as the method already demonstrated good

performance for missing link inference [10]. The block
model assumes that each node belongs to a latent group
and the relationship between the groups governs the
connections. Specifically, a group membership B(u)
for every node u and the group relationship probability
PBM (B(u), B(v)) for every pair of groups are defined in
the model, and a pair of nodes u and v is connected with
this group relationship probability PBM (B(u), B(v)).
For the inference task with the Stochastic block model,
we implemented the algorithm described in [10].

For every edge (every pair of nodes), we compute
the score of the edge under a particular link prediction
method and then consider the probability of the edge
being proportional to the score. For each method, the
score of an edge (x, y) is:

• Degree Product (DP) : Deg(x) ·Deg(y)

• Adamic-Adar (AA) :
∑

z∈Nb(x)∩Nb(y)
1

logDeg(z)

• Block Model (BM) : PBM (B(x), B(y))

where Deg(x), Nb(x), and B(x) denote the degree of x,
a set of neighbors of x, and the corresponding group of
x in the block model, respectively. In this way, each
method generates a probability distribution over the
edges in the unobserved part of the network Z.

Evaluation. We evaluate each algorithm on its abil-
ity to infer the missing part of the network. Since each
method (DP, AA, BM, and KronEM) is able to com-
pute the probability of each edge candidate, we quantify
the performance of inference by the area under ROC
curve (AUC) and the log-likelihood (LL). Moreover,
we are particularly interested in evaluating the perfor-
mance over the part where both endpoints of an edge
are in the missing part of the network. We denote those
values as AUCNZ

and LLNZ
respectively.

Table 2 shows the results for this inference task.
Our proposed approach of KronEM gives a significant
boost in performance compared to DP and AA – it
increases the AUC score for about 20%. Comparison
with BM shows better performance in AUC. Moreover,
KronEM performs particularly well when estimating
the edges between the missing nodes (AUCNZ

). In
this AUCNZ

measure, KronEM outperforms BM by
10 ∼ 15%. Furthermore, we verify the quality of
each ROC curve associated with AUC and AUCNZ

in
Figure 3 which shows that KronEM produces better
ROC curves than the other methods for both datasets.

In the other scores, LL and LLNZ
, KronEM also

performs better than DP and AA. On the other hand,
BM produces better LL scores than KronEM. How-
ever, when we take account of the number of parameters
in the model (2,916 for BM and only 4 for KronEM),

AS network

Method AUC AUCNZ
LL LLNZ

DP 0.661 0.5 -86,735 -14,010

AA 0.634 0.701 -106,710 -31,831

BM 0.834 0.737 -73,103 -11,881

KronEM 0.838 0.800 -76,571 -12,265

Flickr network

Method AUC AUCNZ
LL LLNZ

DP 0.782 0.5 -75,921 -11,324

AA 0.706 0.900 -81,089 -18,676

BM 0.875 0.806 -50,124 -7,972

KronEM 0.930 0.925 -54,889 -7,841

Table 2: The performance of inference by each method on
AS and Flickr networks: KronEM performs best in AUC

and AUCNZ
. BM seems better in LL and LLNZ

, however
a large number of parameters in BM lead to overfitting.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

DP
AA
BM

KronEM
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

DP
AA
BM

KronEM

Figure 3: ROC curves for Flickr network: KronEM

produces better ROC curves in the entire missing part Z

(left) as well as in the missing part between only missing
nodes (right).

this phenomenon seems natural because larger degree
of freedom is likely to overestimate the likelihood. In
case that we limit the number of parameters in BM to
900 not to overestimate the likelihood, we observe that
AUC and LL for the Flickr network decrease to 0.772
and -66,653 respectively.

In these experiments, we see that the model-
based approaches (KronEM and Stochastic block
model) outperform the classical link-prediction meth-
ods (Adamic-Adar and Degree-Product). Between the
two model-based approaches, KronEM is superior to
BM. Focusing on the part between missing nodes and
considering the number of parameters, KronEM shows
better performance than the Stochastic block model.

Recovery of global network properties. In the
previous experiments, we examined the performance of
the inference task on individual edges and showed that
KronEM is the most successful in terms of the AUC.
Along with these microscopic edge inference tests, we
are also interested in the recovery of global network
properties such as degree distribution or local edge clus-
tering. In other words, we view the results of inference
in a macroscopic way rather than a microscopic manner.

Instead of comparing the complete networks Ĥ
and H∗, i.e., the observed and the unobserved parts
together, we focus only on the hidden parts Z∗ and Ẑ.
That is, we look at the overall shape of the networks
only over the missing part. We then examine the
following properties:

• In/Out-Degree distribution (InD/OutD) is a his-
togram of the number of in-coming and out-going
links. Networks have been found to have power-law
degree distributions [27].

• Singular values (SVal) indicate the singular values
of the adjacent matrix versus their ranks. This plot
also tends to be heavy-tailed [7].

• Singular vector (SVec) represents the distribution
of components in the eigen vector associated with
the largest eigen value. It has been also known to
be heavy tailed [5].

• Triad Participation (TP) indicates the number of
triangles that a node participates in. It measures
the transitivity in networks [29].

To quantify the similarity between the recovered
and the true statistical network property, we apply
a variant of Kolmogorov-Smirnov (KS) statistic to
quantify a distance between two distributions in a
non-parametric way. Since the original KS statis-
tic may be dominated by few extreme values (which
are common to occur when working with heavy-
tailed distributions), we adopt a modified KS static
PowerKS(F̂1, F̂2) for two empirical cumulative dis-
tributions, where PowerKS(F̂1, F̂2) = supx | log(1 −
F1(x)) − log(1 − F2(x))|. With this statistic, we cap-
ture the difference of distributions in the log-log scale.
Moreover, by using the complementary cumulative dis-
tribution, we maintain the linear shape of the power-
law distribution in the log-log plot, but still remove the
noisy effect in the distribution as the cumulative distri-
bution does.

Table 3 shows the PowerKS statistic values of
various network properties for KronEM as well as the
other methods. On the average, KronEM gives 40%
reduction in the PowerKS statistic over the Degree-
Product (DP) and 70% reduction over the Adamic-
Adar (AA) method on both datasets. Furthermore,
KronEM represents better PowerKS statistics than
the Stochastic block model (BM) in 3 out of 5 faces
on both datasets. From the results, we can see that
KronEM also performs well in the recovery of global
properties.

Recovery as a function of the amount of missing

data. Next we check the performance change of each
algorithm as a function of the amount of missing data.

AS network

Method InD OutD SVal SVec TP

DP 1.99 2.00 0.19 0.04 4.24

AA 1.89 1.89 3.45 0.05 4.08

BM 2.05 2.04 0.42 0.21 2.20

KronEM 2.14 2.20 0.17 0.08 1.81

Flickr network

Method InD OutD SVal SVec TP

DP 1.77 1.80 0.75 0.21 5.77

AA 2.40 2.23 8.46 0.18 1.00

BM 1.89 2.03 1.02 0.15 1.74

KronEM 1.71 1.62 0.38 0.21 3.49

Table 3: PowerKS statistics for AS network and Flickr
network: Overall, KronEM recovers the global network
properties most accurately.

This indirectly tells us how dependent on the observed
information each algorithm is.

For these experiments, we used the Flickr network
and removed 5%, 25%, 45% of nodes randomly. We
note that each of the node-removal fraction results in
approximately 10%, 43%, 70% edges removed, i.e., by
removing 45% of the nodes, we lose 70% of the edges.

In spite of this high fraction of missing edges,
KronEM shows sustainable performance. First of all,
in Figure 4, there exists almost no drop in AUC results
of KronEM, while AUC’s of the other methods are
continuously decreasing as the amount of missing data
increases. The performance of the Adamic-Adar (AA)
is the most hurt by the missing data. Interestingly,
the Block Model (BM) suffers more than the Degree
Product (DP) (Figure 4(right)). On the other hand, the
performance of KronEM practically does not decrease
even with the amount of missing data as high as 40%.

Furthermore, when taking a careful look at how
KronEM recovers global network properties, there
exists little difference between the true and the inferred
networks as shown in Figure 5. When the number of
missing nodes is lower, we get a better fit, but the gap
does not increase a lot as the missing fraction increases.

4.3 Inference of Missing Edges. We so far per-
formed the experiments in the environment where some
fraction of nodes and their corresponding edges are miss-
ing. However, we also consider a slightly different prob-
lem that all nodes are observed but a fraction of random
edges are missing. We can view this modified setting
as a class of missing link inference problem. Since the
baseline methods (Degree-Product, Adamic-Adar, and
Stochastic block model) have usually been applied to
this type of setting, we also want to inspect the perfor-

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

A
U

C

Missing fraction of nodes

DP
AA

BM
KronEM -14

-12

-10

-8

-6

-4

-2

 0

 0 0.1 0.2 0.3 0.4 0.5

R
el

at
iv

e
A

U
C

 (
%

)

Missing fraction of nodes

DP
AA

BM
KronEM

Figure 4: AUC change of inference on the Flickr network
for various missing fractions of nodes: Both absolute value
(left) and relative value (right) illustrate that KronEM

maintains its high performance, while the accuracies of the
other methods drop.

100

101

102

103

104

100 101 102

D
is

tr
ib

ut
io

n

In-Degree

True
5%	Missing

25% Missing
45% Missing

(a) In-Degree Distribution

100

101

102

103

104

100 101 102

D
is

tr
ib

ut
io

n

Out-Degree

True
5%	Missing

25% Missing
45% Missing

(b) Out-Degree Distribution

100

101

100 101 102

S
in

gu
la

r
V

al
ue

Rank

True
5%	Missing

25% Missing
45% Missing

(c) Singular Value

100

101

102

103

100 101 102

N
um

be
r

of
 N

od
es

Number of Triads

True
5%	Missing

25% Missing
45% Missing

(d) Triad Participation

Figure 5: Recovery of the global properties on the Flickr
network for various fractions of missing nodes: Inferred
networks according to the fraction of missing part do not
show a large difference each other, even though the fraction
of missing edges is up to 70%.

mance of KronEM in this situation.
Using the same real datasets (AS and Flickr), we

selected 25% of edges at random and removed them. We
then examine the inference accuracy of each algorithm
under the AUC metric as before.

Table 4 shows the AUC results of all methods for
both real networks. Note that the AUC scores of
methods except for KronEM increase compared to the
scores in the inference of missing nodes and edges. Be-
cause Degree-Product (DP) and Adamic-Adar (AA) de-
pend on the local information of each node, their perfor-
mances show large improvement between the two differ-
ent inference tasks. On the other hand, since Stochastic
block model (BM) and KronEM are model-based ap-
proaches, these methods reduce the performance loss
caused by the lack of the node information in the previ-
ous task where we infer both missing nodes and edges.
Even though the classical link-prediction methods rel-

Network DP AA BM KronEM

AS 0.750 0.760 0.821 0.833

Flickr 0.815 0.848 0.895 0.900

Table 4: AUC results for missing edge inference on AS and
Flickr networks. Even though the other methods become
more competitive in this setting than in the inference of both
missing nodes and edges, KronEM still performs best.

atively increase their inference performance, KronEM

produces the best inferences in both networks, and even
slightly outperforms the Stochastic Block Model.

4.4 Robustness of KronEM. So far we have fo-
cused on the two aspects of the performance of Kro-

nEM: the recovery power of Kronecker parameters and
the ability in both individual edge inference and recov-
ery of the global properties with real datasets.

Now we move our focus to the robustness of Kro-

nEM. We define the robustness mainly in two ways.
First, we consider the robustness of the algorithm it-
self in terms of convergence, sensitivity to the initial-
izations, and resilience to the noise. Second, we also
evaluate the robustness against the underlying network
structure in a sense of how good performance KronEM

yields even when the network does not strictly follow the
Kronecker graphs model. Although the experiments on
real datasets already demonstrate this in some sense, we
verify this robustness by using synthetic networks gen-
erated by various kinds of social network models and
show that the Kronecker graphs structure is not the
necessary condition for KronEM to work well.

Robustness of algorithm. We categorize the factors
that affect on the final solution into three groups.

First, to check the variance of the randomized algo-
rithm, we run KronEM several times by setting differ-
ent random starting points over the synthetic network.
Figure 6(a) shows the convergence of parameter Θ01 as
a function of the number of EM iterations for each run.
Notice that when the current parameter estimate is far
from the optimal one, the algorithm quickly converges
to good parameter values. On the other hand, as the
parameter estimate moves close to the optimal value,
the random effect in the algorithm emerges. However,
all the points move toward the same final solution with
keeping their variance small.

Second, to see the effect of the parameter initializa-
tion conditions, we took several experiments with differ-
ent starting points. We run KronEM from a random
starting parameter matrix Θ over the networks with pa-
rameters Θ∗ = [0.9 0.6; 0.4 0.2] and 25% of the nodes
missing. Since KronEM solves a non-convex problem,
the algorithm may converge to local optimal solutions
for the missing part Z, the node mapping σ, and the

Kronecker parameter Θ. In practice, we notice that
this might not be a problem in the following sense. Fig-
ure 6(b) illustrates the convergence of the parameter
Θ01 over the number of iteration from initial random
starting points. The curves begin with a wide range
of initial values, but eventually converge into only two
values. Moreover, in this Figure 6(b), while large ini-
tial points (larger than 0.3) converge to the larger final
value (0.6), small initial points (smaller than 0.3) con-
verge to the smaller final value (0.4). Notice that these
are exactly the two off-diagonal values of the parame-
ter matrix that we used to generate the graph. Since
Kronecker parameter matrix is invariant to permuta-
tions of entries, this means that KronEM is able to
exactly recover the parameters regardless of the initial-
ization conditions. Overall, we observe that KronEM

algorithm is not sensitive to the random initialization
settings. Therefore, when finding the optimal Θ, we
run KronEM several times with different parameter
initializations and select the solution with maximum
likelihood.

Third, in order to check how robust KronEM

is against the edge noise, we added various rates of
random noise into the edges in the observed part of
the graph. We randomly picked a number of edges and
the same number of non-edges, and flipped their values
(i.e., edges become non-edges, and non-edges become
edges). This means that we are imposing the Erdős-
Rényi random graph over the existing network. As
real-networks do not follow Erdős-Rényi random graph
model, this process heavily distorts the network.

Figure 6(c) shows the estimate of Kronecker param-
eter Θ01 for different edge noise rates. Notice that Kro-

nEM results in almost the same solution against up to
15% edge noise rate. Even at 20% and 25% noise, the
estimates are acceptable since their differences from the
original are less than 0.02. As the amount of noise in-
creases beyond 25%, we start to observe a significant
error in the parameter estimation.

Additionally, we investigate the number of samples
of Z and σ needed before the empirical estimates of the
log-likelihood and the gradient converge. Figure 6(d)
shows the convergence of average likelihood in one E-
step for the network 1,024 nodes. Notice that only about
1,000 samples are needed for the estimate to converge.

Based on these experiments, we conclude thatKro-

nEM exhibits low variance, low sensitivity to the initial-
ization conditions, and high resilience against the edge
noise.

Robustness against the underlying network

model. Last we also investigate the performance of
KronEM even when the underlying network does not
follow the Kronecker graph model. We generated syn-

 0.48
 0.5

 0.52
 0.54
 0.56
 0.58

 0.6
 0.62
 0.64
 0.66

 10 20 30 40 50

K
ro

ne
ck

er
 p

ar
am

et
er

(Θ
01

)

EM Steps

(a) Variance of algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50

K
ro

ne
ck

er
 p

ar
am

et
er

(Θ
01

)

EM Steps

(b) Random initialization

 0.48
 0.5

 0.52
 0.54
 0.56
 0.58

 0.6
 0.62
 0.64
 0.66

 10 20 30 40 50

K
ro

ne
ck

er
 P

ar
am

et
er

(Θ
01

)

EM Steps

0%
5%

10%
15%

20%
25%

30%

(c) Edge Noise

-16000

-15500

-15000

-14500

-14000

-13500

-13000

-12500

-12000

 500 1000 1500 2000

Lo
g-

Li
ke

lih
oo

d

Sample size

(d) Number of Samples

Figure 6: Convergence and robustness of algorithm: Kro-

nEM has low variance, low sensitivity to the parameter ini-
tialization, and high resilience to the noise.

thetic networks using several models: Preferential At-
tachment [27], Forest Fire [20], Kronecker Graphs [18]
and Stochastic Block Model. We then performed the
same experiments for real datasets. We randomly re-
moved 25% of nodes in the synthetic networks, com-
puted the probability of each edge candidate using dif-
ferent methods (AA, DP, BM and KronEM), and mea-
sured the results in terms of the area under ROC curve
(AUC, AUCNZ

) and the log-likelihood (LL, LLNZ
).

These experiments are particularly interesting because
the synthetic networks generated by different models do
not follow the Kronecker graphs model but resemble the
real-world networks in some properties.

Table 5 shows the AUC score for different synthetic
networks. (We omit the other scores for brevity.) No-
tice that on all networks KronEM gives the best re-
sults. KronEM as well as the other methods perform
the best on Forest Fire and Kronecker graphs, while
the network completion in Preferential Attachment and
Stochastic Block Model graphs seems to be a harder
problem. Overall, KronEM outperforms the classical
link-prediction methods (DP and AA), and shows better
performance than the Stochastic block model (BM) re-
gardless of underlying network structure. In summary,
even though these networks do not follow the Kronecker
graphs model, KronEM still makes the most accurate
inferences.

4.5 Scalability of KronEM. Next we briefly
present the empirical analysis of KronEM running
time and examine how it scales as we increase the size
of the network H . We generated a sequence of Kro-

Network DP AA BM KronEM

Kron 0.749 0.833 0.862 0.916

PA 0.600 0.660 0.751 0.779

FF 0.865 0.769 0.743 0.946

SBM 0.663 0.641 0.772 0.796

Table 5: Inference performance (AUC) on synthetic net-
works generated using different network generative mod-
els (Kronecker graph (Kron), Preferential Attachment (PA),
Forest Fire (FF) and Stochastic Block Model (SBM)). Per-
formance of KronEM is stable regardless of the model used
to generate the underlying synthetic network.

 0

 50

 100

 150

 200

 250

50K 100K 150K 200K 250K 300K

R
un

ni
ng

 T
im

e
(m

in
)

Number of Edges

KronEM
BM

(a) Running time

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 4⋅104 5⋅104 6⋅104 7⋅104

N
um

be
r

of
 E

dg
es

Number of Nodes

(b) Edges vs. nodes

Figure 7: (a) Running time as a function of network size:
the running time of KronEM fits to y = ax log x, while that
of BM increases quadratically. (b) The number of observed
edges as a function of the missing nodes follows quadratic
relation represented by the solid line, y = ax2.

necker graphs with N0 = 2 and k = 10, 11, . . . , 16, i.e,
each network has 2k nodes. As before, we removed
25% of random nodes for each network. Figure 7(a)
shows the dependency between the network size and
running time. We compare the KronEM running time
with the Stochastic Block Model approach (BM) [10]
for network completion. KronEM scales much bet-
ter than BM. Empirically KronEM runtime scales as
O(E logE) with number of edges E in the network.

4.6 Estimating the Number of Missing Edges.

So far we operated under the assumption that we know
the number of missing nodes as well as missing edges.
However, in practice we may only know the number of
missing node, but not the number of missing edges.

In order to estimate the number of missing edges
EZ , we use the following approach. In the case of
random node removal, we observe that the number of
observed edges is roughly proportional to the square
of the number of observed nodes. This holds because
the degrees of the removed nodes follow the same
distribution as those of the full network. In addition,
the relationship between the number of observed nodes
and edges with varying the missing fraction is further
verified in Figure 7(b). Thus, we can compute the

number of missing edges EZ as E(EZ) ≈
1−(1−e)2

(1−e)2 EG

where e is the fraction of missing nodes, e = NZ/N .

5 Conclusion

We investigated the network completion problem where
the network data is incomplete with nodes and edges
missing or being unobserved. The task is then to in-
fer the unobserved part of the network. We developed
KronEM, an EM approach combined with the Kro-
necker graphs model, to estimate the missing part of
the network. As the original inference problem is in-
tractable, we use sampling techniques to make the esti-
mation of the missing part of the network tractable and
scalable to large networks. The extensive experiments
suggest that KronEM performs well on synthetic as
well as on real-world datasets.

Directions for future work include extending the
present approach to the cases where rich additional
information about node and edge attributes is available.

Acknowledgments. Research was supported in part
by NSF grants CNS-1010921, IIS-1016909, LLNL grant
DE-AC52-07NA27344, Albert Yu & Mary Bechmann
Foundation, IBM, Lightspeed, Microsoft and Yahoo.

References

[1] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P.
Xing. Mixed membership stochastic blockmodels.
JMLR, 9:1981–2014, 2008.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[3] K. Bleakley, G. Biau, and J. Vert. Supervised re-
construction of biological networks with local models.
Bioinformatics, 23(13):i57–i65, 2007.

[4] E. J. Candes and B. Recht. Exact matrix comple-
tion via convex optimization. Found. Comput. Math.,
9(6):717–772, 2009.

[5] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A
recursive model for graph mining. In SDM, 2004.

[6] A. Clauset, C. Moore, and M. E. J. Newman. Hierar-
chical structure and the prediction of missing links in
networks. Nature, 453(7191):98–101, May 2008.

[7] I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek.
Spectra of ”real-world” graphs: Beyond the semicircle
law. Phys. Rev. E, 64(2):026704, Jul 2001.

[8] D. Goldberg and F. Roth. Assessing experimentally
derived interactions in a small world. Proceedings of
the National Academy of Sciences, 100(8):4372, 2003.

[9] M. Gomez-Rodriguez, J. Leskovec, and A. Krause.
Inferring networks of diffusion and influence. In KDD
’10, 2010.

[10] R. Guimerá and M. Sales-Pardo. Missing and spu-
rious interactions and the reconstruction of complex
networks. PNAS, 106(52), 2009.

[11] S. Hanneke and E. Xing. Network completion and
survey sampling. In AISTATS ’09, 2009.

[12] R. H. Keshavan, S. Oh, and A. Montanari. Matrix

completion from a few entries. In ISIT ’09, pages 324–
328, 2009.

[13] P. Killworth, C. McCarty, H. Bernard, G. Shelley,
and E. Johnsen. Estimation of seroprevalence, rape,
and homelessness in the United States using a social
network approach. Evaluation Review, 22(2):289, 1998.

[14] M. Kim and J. Leskovec. Network completion prob-
lem: Inferring missing nodes and edges in networks.
http://www.stanford.edu/∼mykim/paper-kronEM.pdf.

[15] G. Kossinets. Effects of missing data in social net-
works. Social Networks, 28:247–268, 2006.

[16] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins.
Microscopic evolution of social networks. In KDD ’08,
pages 462–470, 2008.

[17] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Falout-
sos, and Z. Ghahramani. Kronecker graphs: An ap-
proach to modeling networks. JMLR, 2010.

[18] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and
C. Faloutsos. Realistic, mathematically tractable
graph generation and evolution, using kronecker mul-
tiplication. In PKDD ’05, pages 133–145, 2005.

[19] J. Leskovec and C. Faloutsos. Scalable modeling of
real graphs using kronecker multiplication. In ICML
’07, 2007.

[20] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In KDD ’05, 2005.

[21] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In CIKM ’03, pages 556–
559, 2003.

[22] M. Mahdian and Y. Xu. Stochastic kronecker graphs.
In WAW ’07, 2007.

[23] P. Marsden. Network data and measurement. Annual
review of sociology, 16(1):435–463, 1990.

[24] T. H. McCormick and M. J. Salganik. How many peo-
ple you know?: Efficiently esimating personal network
size, September 17 2008.

[25] X.-L. Meng and D. B. Rubin. Maximum likelihood es-
timation via the ecm algorithm: A general framework.
Biometrika, 80(2):267–278, 1993.

[26] S. Myers and J. Leskovec. On the convexity of latent
social network inference. In NIPS ’10, 2010.

[27] Price and D. J. de S. A general theory of bibliometric
and other cumulative advantage processes. Journal of
the American Society for Information Science, 27(5-
6):292–306, 1976.

[28] B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link
prediction in relational data. In NIPS ’03, 2003.

[29] C. E. Tsourakakis. Fast counting of triangles in large
real networks without counting: Algorithms and laws.
ICDM, 2008.

[30] G. C. G. Wei and M. A. Tanner. A monte carlo
implementation of the em algorithm and the poor
man’s data augmentation algorithms. Journal of the
American Statistical Association, 85:699–704, 1990.

[31] Y. Yamanishi, J. Vert, and M. Kanehisa. Protein net-
work inference from multiple genomic data: a super-
vised approach. Bioinformatics, 20:i363–i370, 2004.

A APPENDIX: Mathematics of KronEM

In this section, we describe the mathematical details
of KronEM that we described in Section 3. First,
we derive the log-likelihood formula logP (G,Z, σ|Θ)

and its gradient ∂P (G,Z,σ|Θ)
∂Θij

, where G, Z, σ, and Θ

represent the observed network, the missing part of the
network, the node mapping, and Kronecker parameter
matrix, respectively (i.e., Θij is the (i, j) entry of
Θ). Second, we present the proposal mechanism and
its detailed balance equation of Metropolis-Hastings
sampling from P (Z|G, σ,Θ). Finally, we provide the
proposal mechanism and the detailed balance equation
of Metropolis sampling from P (σ|G,Z,Θ).

A.1 Log-likelihood Formula. We begin with show-
ing P (H |σ,Θ) for a complete Kronecker graph H =
G ∪ Z.

P (H |σ,Θ) =
∏

u∼v

[Θk]σ(u)σ(v)
∏

u6∼v

(1− [Θk]σ(u)σ(v))

Since P (G,Z, σ|Θ) = P (H |σ,Θ)P (σ|Θ), if we regard
σ as being independent of Θ when the network H is
unknown and the prior distribution of σ is uniform, then
we obtain

P (G,Z, σ|Θ) ∝ P (H,σ,Θ)

Therefore, when computing the likelihood, we use
the Equation (3.1). If we take the log-value of Equa-
tion (3.1) and remove a constant factor, we define the
equivalent log-likelihood value LL(Θ) as follows:

LL(Θ) = logP (G,Z, σ|Θ) + C

(A.1)

=
∑

u∼v

log [Θk]σ(u)σ(v) +
∑

u6∼v

log(1− [Θk]σ(u)σ(v))

=
∑

u,v

log(1− [Θk]σ(u)σ(v))− 2
∑

u∼v

log [Θk]σ(u)σ(v)

However, it takes quadratic time in the number of
nodes N to calculate this LL(Θ), because we should
compute the log-likelihood for every pair of nodes. Since
this computation time is not acceptable for large N ,
we develop a method of approximating the LL(Θ). By
Taylor’s expansion, log(1−x) ≈ −x− 0.5x2 for small x.
Plugging this formula into log(1− [Θk]σ(u)σ(v)),

∑

u,v

log(1− [Θk]σ(u)σ(v)) ≈

−
∑

u,v

(

[Θk]σ(u)σ(v) + 0.5([Θk]σ(u)σ(v))
2
)

Since σ(u) permutates 0 ∼ N0
k,

∑

u,v

log(1 − [Θk]σ(u)σ(v)) ≈ −|Θ|
k
1 − 0.5

(

||Θ||22
)k

(A.2)

where |Θ|1 and ||Θ||22 denote the sum of absolute
and squared values of entries, respectively. Thus, by
combining Equation (A.1) and (A.2), we are able to
approximately compute LL(Θ) in O(E) time for the
number of edges E.

Furthermore, by this combination of equations, we
also derive the approximate gradient of LL(Θ):

∂LL

∂Θij
≈ −k|Θ|k−1

1 − kΘij ||Θ||
k−1
2(A.3)

− 2
∑

u∼v

1

Θij
Cij(σ(u), σ(v))

where Cij(σ(u), σ(v)) denotes the number of bits such
that σ(u)l = i and σ(v)l = j for l = 1, 2, · · · , k when
σ(u) and σ(v) are expressed in N0-base representation.
Therefore, computing each gradient component also
takes O(E) time.

A.2 Metropolis-Hastings Sampling of Z. In the
main paper, we briefly described the algorithm for
sampling the missing part Z where the node mapping σ
and the Kronecker parameter Θ are provided. Here we
present the proposal mechanism and the corresponding
detailed balance condition to determine the acceptance
rate.

We consider the following simple mechanism. Given
the previous sample of the missing part Z, we select an
edge in Z at random and remove it. Then, we select a
pair of nodes in Z which is not connected in the current
state proportionally to its edge probability, and add it as
an edge of the new sample Z ′. When adding this new
edge, we use the same acceptance-rejection algorithm
described in Section 3.

In order to check the detailed balance condition
for Z 6= Z ′, ignoring irrelevant factors (e.g., σ) for
simplicity, we derive the transition probability:

P (Z)P (Z → Z ′)

= P (Z\x, y)P (x ∈ EZ)P (y /∈ EZ)P (del x, add y)

= P (Z\x, y)P (x)(1 − P (y))
1

|EZ |

P (y)
∑

e/∈EZ
P (e) + P (x)

where EZ denotes the set of edges in the missing part
Z and P (x) represents the probability of an edge x for
fixed Θ and σ. Similarly,

P (Z ′)P (Z ′ → Z)

= P (Z ′\x, y)P (y)(1 − P (x))
1

|EZ′ |

P (x)
∑

e/∈EZ′
P (e) + P (y)

Algorithm 3 SampleZ : Sample the new sample of Z

input: observed graph G, Kronecker parameter Θ
node mapping σ, current sample Z

output: new sample Z ′

EZ ← {z ∈ Z|z : edge}
NEZ ← {z ∈ Z|z : non edge}
x← an uniformly random sample from EZ

EZ ← EZ\{x}
NEZ ← NEZ ∪ {x}
y ← a random sample from NEZ proportionally to
P (y|Θ, σ)
u ∼ U(0, 1)

if u < min
(

1, 1−P (y|Θ,σ)
1−P (x|Θ,σ)

)

then

EZ ← EZ ∪ {y}, NEZ ← NEZ\{y}
else

EZ ← EZ ∪ {x}, NEZ ← NEZ\{x}
end if

Z ′ ← Combine EZ and NEZ

return Z ′

Since Z\x, y = Z ′\x, y and |EZ | = |EZ′ |, the ratio
of the transition probabilities for the two directions is
derived by nicely canceling out many terms:

P (Z ′)P (Z ′ → Z)

P (Z)P (Z → Z ′)
=

1− P (x)

1− P (y)
(A.4)

Due to the asymmetric transition probability, Equa-
tion (A.4) has to be introduced as the correction factor
in Metropolis-Hastings algorithm. In the result, we ac-
cept the new sample Z ′ with the following acceptance
probability; otherwise, we reject the new sample and
maintain the current sample Z.

A(Z ′ → Z) = min

(

1,
1− P (y)

1− P (x)

)

Algorithm 3 shows the overall process of this
Metropolis-Hastings sampling for the missing part Z.
For an additional advantage of this process, we can
update the log-likelihood or the gradient of the log-
likelihood in very short time (O(k)).

A.3 Metropolis Sampling of σ. Here we present
the sampling algorithm for the node mapping σ. As
decribed in the main paper, we develop a Metropolis
sampling that updates the new sample σ′ given the
current sample σ. For the update σ → σ′, it turns
out that a random node-mapping swapping practically
works well [19].

To examine the detailed balance condition of node-
mapping swapping (i.e., σ′(u) = σ(v), σ′(v) = σ(u) for
nodes u, v),

Algorithm 4 SampleSigma : Sample the new sample
of σ
input: full network H , Kronecker parameter Θ

current node-mapping sample σ
output: new node-mapping sample σ′

u, v← randomly sample two nodes
σ′ ← σ
σ′(u)← σ(v)
σ′(v)← σ(u)
u ∼ U(0, 1)

if u ≥ min
(

1, P (H|σ′,Θ)
P (H|σ,Θ)

)

then

σ′ ← σ // Roll-back
end if

return σ′

P (σ′)P (σ′ → σ)

P (σ)P (σ → σ′)
=

P (H |σ′,Θ)

P (H |σ,Θ)

=
∏

x∼u

Pσ′(x, u)

Pσ(x, u)

∏

x 6∼u

1− Pσ′(x, u)

Pσ(x, u)

×
∏

x∼v

Pσ′(x, v)

Pσ(x, v)

∏

x 6∼v

1− Pσ′(x, v)

Pσ(x, v)

=

(

∏

x∼u

Pσ(x, u)

Pσ′(x, u)

∏

x∼v

Pσ(x, v)

Pσ′(x, v)

)2

where H and Θ respectively represent the complete
network and the Kronecker parameter, and Pσ(x, u) =
P (x ∼ u|Θ, σ).

Applying this ratio to the correction factor for
Metropolis sampling, we develop the Algorithm A.3.

B Supplementary Experiments

We already presented some experimental results in
Section 4, but we omitted several results due to the lack
of space in the main paper. Here we provide additional
results of our experiments.

B.1 Correctness of KronEM in the Recovery of

Global Network Properties. We showed that Kro-

nEM outperforms KronFit in the accuracy of Kro-
necker parameter recovery. We additionally performed
the experiment that compares the performance in the
recovery of network global properties on the same syn-
thetic Kronecker graph as in Section 4.1. Figure 8 shows
that KronEM almost perfectly recovers the network
properties whereas KronFit cannot.

100

101

102

100 101

D
is

tr
ib

ut
io

n

In-Degree

True
KronFit

KronEM

(a) In-Degree Distribution

100

101

102

100 101

D
is

tr
ib

ut
io

n

Out-Degree

True
KronFit

KronEM

(b) Out-Degree Distribution

100

101

100 101 102

S
in

gu
la

r
V

al
ue

Rank

True
KronFit

KronEM

(c) Singular Values

100

101

102

100 101 102

N
um

be
r

of
 N

od
es

Number of Triads

True
KronFit

KronEM

(d) Triad Participation

Figure 8: Network properties of the true graph H∗ and the
estimated properties obtained by KronFit and KronEM.
Notice that KronEM almost perfectly recovers the proper-
ties of the partially observed network H∗.

B.2 Performance of KronEM in the Recovery

of Network Global Properties. We already pro-
vided PowerKS statistics for the recovery of global
network properties in Section 4.2. We achieved these
statistics only considering the recovery of the missing
part Z. Here we plot Figure 9 that represents the ac-
tual distribution of each network property for AS and
Flickr networks. Even though it is somewhat difficult to
distinguish the curves each other, KronEM favorably
performs in overall as represented in PowerKS statis-
tics.

B.3 Robustness of KronEM. In Section 4.4, we
briefly provided the AUC score of each method for
synthetic graphs generated by various social-network
models to examine the robustness of KronEM against
the underlying network structure. Here we additionally
present the other scores omitted in Section 4.4: AUCNZ

,
LL, and LLNZ

. Table 6 shows these inference per-
formance scores on each synthetic network (Kronecker
graph, Preferential attachment, Forest fire model, and
Stochastic block model). These AUCNZ

, LL, and LLNZ

scores are in agreement not only with the corresponding
AUC scores but also with the results on the real dataset,
AS and Flickr networks. While the model-based ap-
proaches (BM and KronEM) in general outperforms
the classical link-prediction methods for every score (by
larger than 10%), KronEM outperforms BM in AUC
and AUCNZ

scores. In some LL scores, BM seems to

100

101

102

103

104

100 101 102

D
is

tr
ib

ut
io

n

In-Deg

True
KronEM

DP
AA
BM

100

101

102

103

104

100 101 102

D
is

tr
ib

ut
io

n

In-Deg

True
KronEM

DP
AA
BM

100

101

102

103

104

100 101 102

D
is

tr
ib

ut
io

n

Out-Deg

True
KronEM

DP
AA
BM

100

101

102

103

104

100 101 102

D
is

tr
ib

ut
io

n

Out-Deg

True
KronEM

DP
AA
BM

10-2

10-1

100

101

102

100 101 102

S
in

gu
la

r
V

al
ue

Rank

True
KronEM

DP
AA
BM

10-2

10-1

100

101

102

100 101 102

S
in

gu
la

r
V

al
ue

Rank

True
KronEM

DP
AA
BM

10-2

10-1

100

100 101 102

P
rim

ar
y

S
ng

V
ec

 C
om

po
ne

nt

Rank

True
KronEM

DP
AA
BM

10-2

10-1

100

100 101 102

P
rim

ar
y

S
ng

V
ec

 C
om

po
ne

nt

Rank

True
KronEM

DP
AA
BM

100

101

102

103

100 101 102

N
um

be
r

of
 N

od
es

Number of Triads

True
KronEM

DP
AA
BM

(a) Flickr network

100

101

102

103

100 101 102

N
um

be
r

of
 N

od
es

Number of Triads

True
KronEM

DP
AA
BM

(b) AS network

Figure 9: Network properties of the true Z∗ and the inferred
Ẑ using KronEM. We compare the results with the other
models: Degree-Product (DP), Adamic-Adar (AA), and
Stochastic block model (BM). Overall KronEM performs
favorably.

perform better than KronEM, however it is already
shown that BM overestimates LL scores because of the
large number of parameters.

Furthermore, we also compare the performance
of the recovery of global network properties on these
synthetic networks as we did on the real networks.
Table 7 gives the PowerKS statistic for each network
property on the same synthetic networks as above.

Kronecker graph

Method AUC AUCNZ
LL LLNZ

DP 0.749 0.5 -48,931 -7,026

AA 0.833 0.903 -52,194 -11,659

BM 0.862 0.813 -40,704 -5,993

KronEM 0.916 0.917 -38,835 -5,466

Preferential attachment

Method AUC AUCNZ
LL LLNZ

DP 0.600 0.5 -131,544 -21,005

AA 0.660 0.788 -148,283 -42,715

BM 0.751 0.640 -120,721 -19,451

KronEM 0.779 0.800 -126,409 -18,959

Forest fire

Method AUC AUCNZ
LL LLNZ

DP 0.865 0.5 -173,410 -26,324

AA 0.769 0.941 -211,932 -49,495

BM 0.946 0.937 -91,814 -13,677

KronEM 0.942 0.943 -117,892 -16,897

Stochastic block model

Method AUC AUCNZ
LL LLNZ

DP 0.663 0.5 -82,199 -11,730

AA 0.641 0.773 -101,848 -22,089

BM 0.772 0.684 -76,000 -11,105

KronEM 0.796 0.776 -76,724 -10,338

Table 6: Inference performance (AUC) on synthetic net-
works generated using different network generative mod-
els (Kronecker graph (Kron), Preferential attachment (PA),
Forest fire (FF) and Stochastic block model (SBM)). Perfor-
mance of KronEM is stable regardless of the model used to
generate the underlying synthetic network.

Kronecker graph

Method InD OutD SVal SVec TP

DP 1.44 1.44 0.15 0.47 4.59

AA 2.16 2.05 0.22 0.28 0.59

BM 2.06 1.91 0.14 0.25 3.39

KronEM 1.94 1.77 0.22 0.29 1.11

Preferential attachment

DP 2.06 2.05 7.26 0.03 3.00

AA 1.80 1.78 0.03 0.11 1.97

BM 1.81 1.80 0.13 0.07 2.00

KronEM 1.95 1.95 0.06 0.10 2.30

Forest fire

DP 1.54 1.79 4.22 0.13 6.61

AA 2.43 1.64 0.29 0.38 3.52

BM 1.73 1.70 0.52 0.25 4.55

KronEM 1.42 1.15 0.55 0.12 4.99

Stochastic block model

DP 1.91 1.96 0.24 0.37 4.95

AA 2.05 2.18 0.15 0.37 3.39

BM 2.08 2.05 0.12 0.38 3.07

KronEM 2.43 2.45 0.44 0.45 1.19

Table 7: PowerKS statistics for synthetic graphs with
different models : Kronecker graph, Preferential attachment,
Forest fire, and Stochastic block model. In most networks,
KronEM recovers the global network properties the most
favorably.

