
Sparse Solutions for Single Class SVMs: A Bi-Criterion Approach

Santanu Das ∗ Nikunj C. Oza†

Abstract

In this paper we propose an innovative learning algorithm -

a variation of One-class ν Support Vector Machines (SVMs)

learning algorithm to produce sparser solutions with much

reduced computational complexities. The proposed tech-

nique returns an approximate solution, nearly as good as

the solution set obtained by the classical approach, by mini-

mizing the original risk function along with a regularization

term. We introduce a bi-criterion optimization that helps

guide the search towards the optimal set in much reduced

time. The outcome of the proposed learning technique was

compared with the benchmark one-class Support Vector ma-

chines algorithm which more often leads to solutions with

redundant support vectors. Through out the analysis, the

problem size for both optimization routines was kept consis-

tent. We have tested the proposed algorithm on a variety

of data sources under different conditions to demonstrate

the effectiveness. In all cases the proposed algorithm closely

preserves the accuracy of standard one-class ν SVMs while

reducing both training time and test time by several factors.

Keywords: Anomaly Detection, Optimization,
Sparse, Scalability, Aeronautics

1 Introduction

Many problems in areas of interest to NASA, such as
aviation safety and Earth science, have benefited and
will continue to benefit from the use of data-driven
methods for anomaly detection. For example, in avi-
ation safety, many airlines have very large datasets rep-
resenting the operation of their fleets of commercial air-
craft. Most of this data represent normal operations
of the aircraft—finding examples of anomalous opera-
tion is comparable to the proverbial problem of finding
a needle in a haystack. An algorithm to find anoma-
lies in such a large dataset clearly needs to be fast and
scalable. The algorithm also must be accurate, which
requires leveraging as many properties of the dataset
as possible. In particular, data from commercial air-
craft contain continuous sequences, representing sensor
data such as airspeed and altitude, as well as discrete

∗UARC, UCSC, NASA Ames Researchh Center, Moffett Field,

CA 94035, Santanu.Das-1@nasa.gov.
†NASA Ames Researchh Center, Moffett Field, CA 94035,

Nikunj.C.Oza@nasa.gov.

sequences, such as sequences of pilot switch presses. An
algorithm that learns from such sequences will tend to
outperform typical machine learning algorithms that as-
sume that data collected at every instant in time is in-
dependent from data collected at every other instant in
time.

We addressed the accuracy issue in [7], where we
devised a Multiple Kernel Learning (MKL) version of
one-class SVMs containing one kernel over discrete se-
quences and one kernel over continuous sequences. We
chose one-class SVMs as the basis of our developments
because of its strong performance as reported by other
researchers, its guarantee of optimality given a partic-
ular training set, and the flexibility of kernel methods
to utilize a variety of different types of features both
in single kernel and multiple kernel methods. In [7],
we demonstrated our algorithm’s effectiveness at find-
ing anomalies within commercial aircraft data. How-
ever, the running time of one-class SVMs is higher than
for other algorithms that we use because of the need to
solve an optimization problem.

In this paper, we address the speed and scalability
issue discussed above. We do this through a bi-criterion
formulation of one-class SVM—that is, we add a crite-
rion to the objective function that biases the algorithm
toward a sparser solution, which we demonstrate theo-
retically and experimentally. We show that our learning
algorithm often has much lower training time than the
classical one-class SVM learning algorithm. In some
cases, our learning algorithm’s run time is higher, but
we demonstrate that, in all these cases, our algorithm’s
time to generate a classification (normal or anomalous)
for a new data point is much lower. In spite of this,
our algorithm’s performance is nearly the same as that
of the classical one-class SVM in terms of how it clas-
sifies new data. We achieved all these results without
requiring any changes to the format of the data or any
changes to the rest of the algorithm, such as the opti-
mization problem solver, thereby making the algorithm
easy to implement.

In the following section we provide some back-
ground research to speed up and scale Support Vector
Machines. This will be followed by our motivation and
contributions. In Section 3, we describe the optimiza-
tion problem of original one-class support vector ma-

chines model which is the underlying algorithm of our
work. Subsequently, Section 4 discusses the bi-criterion
optimization which is the heart of this paper, followed
by some details on the solver. Experimental evidence of
performance of the proposed technique is given in Sec-
tion 5. Finally we conclude the paper with a discussion
in Section 6.

2 Background and Motivation

Kernel based methods like one-class support vector ma-
chines have a significant disadvantage in addressing scal-
ability to large number of training points. With increas-
ing training points, the training time and the memory
requirements drastically increase and at the same time
the prediction time which is proportional to the number
of representative support vectors also increases. The
number of representative support vectors also holds a
proportional relationship with the number of training
points. There have been several efforts to over come
training and testing time scaling issues either by build-
ing an online algorithm, a parallel batch algorithm,
or a sophisticated scheme to select more informative
training samples. A lot of researchers reported satis-
factory contributions in multiple areas like data pre-
processing, data compression, kernel modification [12]
etc., while others have investigated more in the areas
of optimization and solver development. Each of these
tasks individually plays an important role in building
the model. In [3] Burges and Schölkopf proposed “re-
duced set” method in order to improve on classifica-
tion speed and “virtual support vectors” method to im-
prove on accuracy, however at the cost of some increased
training time. Some papers talk about how to improve
the performance of kernel based methods in general.
Most of these literatures examine techniques for effi-
cient matrix factorization, low rank approximation, etc.
Schwaighofer and Tresp [17] conducted a comprehensive
study on using some of these approaches to scale Gaus-
sian process regression technique on large data sets.
Asharaf et al. addresses the scalability problem of SVMs
using cluster based training [1, 14] where some selected
samples representing the cluster abstractions of the en-
tire training data are used to build the model without
compromising the generalized performance. However
the outcome of cluster based training will typically de-
pend on the performance of the clustering algorithm.
Liang Lie-quan and Liang Ying-hong [11] used a mode
sensitive procedure called “mean shift” algorithm for
clustering purpose. Another popular technique is chuck-
ing algorithms [18] which solves a smaller QP problem
formed by samples corresponding to nonzero Lagrange
multipliers. A vast amount of papers discuss iterative
training of support vector machines (e.g. [19, 5]). There

are separate examples of on-going research [13, 15, 8]
looking for effective and efficient solvers that can han-
dle large data sets and improve scalability of machine
learning methods which may require solving optimiza-
tion problems.

The scope of our current effort is intentionally
restricted to scaling up the batch version of classical one-
class SVMs formulation [16] without having to change
the optimization problem solver. We assume that the
entire data set can fit into memory but we plan to
extend our algorithm in the future to run online or in
parallel. Moreover we pose the additional restriction of
not training or building the model iteratively to reach
certain objective [6].

The work most closely related to this one is the
“simple decomposition method” idea presented in [20].
The key idea in [20] is to avoid the burden of general
linear constraints from the optimization and convert
it to a simple bound-constrained problem. In our
formulation we do not get rid of any linear constraints.
Instead we take advantage of the relationship between
the set of linear constraints and the bound information
of the design variables. To the best of our knowledge,
none of the existing literature discusses formulating
this non-trivial regularized approximation from prior
knowledge of constraints in the optimization problem
that leads to a sparse one-class SVMs. Our main
contributions in this paper are:

• We propose an optimization problem with an addi-
tional meaningful criterion. The proposed formula-
tion is acceptable and still equivalent to the classi-
cal SVM problem in terms of generalization error.
The proposed formulation is very simple and can
easily be implemented.

• We provide reasoning on why the proposed algo-
rithm produces sparser solutions which in return
improves the testing time by several factors.

• The proposed algorithm is several orders of mag-
nitude faster than existing learning method and at
the same time it retains the accuracy of the bench-
mark algorithm. We provide theoretical explana-
tions for this.

• We demonstrate the capability of the algorithm in
handling simulated data sets with varying sparsity
and real life data from airlines industry by mea-
suring the performance of the proposed technique
using different metrics, such as frequency, accuracy,
sensitivity, ranking,and run time.

• We provide some useful insights regarding the
effectiveness of proposed technique based on the
experimental and simulation study.

3 Preliminaries on Single Class Support Vector

Machines

Origin

Marginal SVs

Non−SVs

Non−marginal SVs

hyperplane

Seperating

w

‖w‖

ξi

ρ

‖w‖

Figure 1: This figure illustrates the geometric interpre-
tation of optimal hyperplane for one class Support Vec-
tor Machines.The empty circles, solid circles and the
dotted circles represent non-support vectors, bounded
support vectors and unbounded support vectors respec-
tively.

Schölkopf [16] introduced one-class SVMs as an
unique member of the SVMs family. As the name
suggests, one-class SVMs is a unsupervised learning
method which is trained on a single class and used for
estimating the density of the target support objects. In
standard one-class SVMs problem, we are given a set
of labeled training data D = {(~xi, yi)}

n
i=1

in the input
space R, where ~xi ∈ Rd and the corresponding labels
yi ∈ {+1}. The key idea is to construct a hyperplane
that can separate outliers from the rest of the training
examples, as shown in Fig. 1. At the end, we wish to
develop a decision rule from the seen samples, so that
when a new point comes in, we will be able to assign a
class level depending on whether the model has seen this
point or not. Since a N −1 dimensional hyperplane can
exist in the N -dimensional feature space, the primary
task is to find the optimal separating hyperplane that
can maximize the margin between the training examples
and the origin, which is the lone representative of the
second class with negative label. This can be achieved
by solving an optimization problem that leads to a set of
training points, termed “Support Vectors” (SVs) which
are the representatives of the decision boundary.

Let us define a function φ that can be used to
map variables from the input space to the feature
space F , i.e. φ : Rd → F . In feature space the
inner product 〈xi,xj〉 property holds, where xi :=
φ (xi). While evaluating the dot product in the feature
space, the explicit calculation using mapped feature
φ can be avoided by simply evaluating the kernel
function i.e. k (xi, xj) := 〈φ (xi) , φ (xj)〉. However
in order to do so, the chosen inner-product kernel

(R) (F)

φ(.)

Figure 2: In this figure we provide the illustration
of higher dimensional mapping for linear separation
fields. It shows that even if the patterns are nonlinearly
separable in input space, it is possible to map them
in higher dimensional feature space where they may be
linearly separable. Here φ (.) is the mapping function.

must satisfy Mercer’s theorem [4]. We will see an
example of a normalized Longest Common Subsequence
(nLCS) based kernel function later where we discuss our
experimental studies.

3.1 Derivation of the Optimization Problem:

In order to construct the optimal hyperplane we solve
the following primal problem (Eqn. 3.1). The expres-
sion in Eqn. 3.1 simply means, “maximize the margin
between the origin and the hyperplane (Fig. 1) for a
nonseparable problem [16] in the feature space”. The
primal problem is represented as

minimize P (w, ρ, ξi) =
1

2
wwT +

1

νℓ

ℓ
∑

i=1

ξi − ρ

subject to (w.φ(xi)) ≥ ρ− ξi, ξi ≥ 0, ν ∈ [0, 1]
(3.1)

where ν is an user specified parameter that defines
the upper bound on the training error, and also the
lower bound on the fraction of training examples which
are support vectors, ξ is the non-zero slack variable, ρ
is the offset, φ(xi) represents the transformed image of
xi in the Euclidean space and i ∈ [ℓ]. The position of
the optimal margin relative to the origin is represented
by ρ, which in fact is the margin of separation between
positive and negative class.

Using Lagrangian and some simple manipulations,
the constrained primal problem (Eqn. 3.1) is converted
to a dual problem [4],

minimize Q =
1

2

∑

i,j

αiαjk (xi, xj)

subject to 0 ≤ αi ≤
1

νℓ
, 1−

∑

i

αi = 0, ν ∈ [0, 1]

(3.2)

It is not difficult to show that ρ =
∑

i αik (xi, xj)
for the solution w and pattern xi corresponding to
0 < αi < 1 while setting ξi = 0.

Weights to training points are Lagrangian multipli-
ers (~α) that ranges between 0 and 1. There exist at least
νℓ non-zero Lagrangian multipliers. Support Vectors
(SVs) are training points {xi : i ∈ [ℓ] , αi > 0} with non-
zero weights. Non-margin or bounded SVs are the ones
with {xi : i ∈ [ℓ] , αi = 1} and margin or unbounded SVs
are those with {xi : i ∈ [ℓ] , 0 < αi < 1}.

Once ~α is known, SVMs compute the decision
function,

f(~xj) = sign(
∑

i∈Im

αik(~xi, ~xj) +
∑

i∈Inm

k(~xi, ~xj)− ρ)

(3.3)

where I0 = {i : αi = 0}, Im = {i : 0 < αi < 1}
and Inm = {i : αi = 1} are the sets of indices
of Lagrangian multipliers corresponding to non-SVs,
marginal and non-marginal support vectors respectively.
The pseudo-code of one-class SVMs algorithm is shown
in Algorithm 1. Given a test point xj , if f(~xj) < 0, then
xj is predicted to be an outlier, whereas if f(~xj) ≥ 0,
then xj is predicted to be normal.

Algorithm 1 Single Class SVMs Algorithm

1: Input Vector: X = {x1, x2....xm, z}, X ∈ Rd.
2: Map Features: K(φ(xi), φ(xj))).
3: Solve Eqn. 3.2 to obtain α corresponding to

Support Vectors (SVs).

4: Calculate bias, ρ =
∑

Ns

k=1
αkK(Φ(~x)Φ(~xk)).

5: Calculate score, f(~z) =
∑

Ns

k=1
αkK(Φ(~xk)Φ(~z)).

6: if f(~z) > ρ then

7: return 1
8: else

9: return 0
10: end if

4 The Multi-criterion Optimization

The multi-criterion optimization problem has several
fascinating applications that compromise Economics,

Engineering, Mathematics etc. Given a set of criteria
q(x) =

∑

i λifi(x) and a set of feasible points Ω ∈ Rn,
the key idea is to find the optimal point x ∈ Ω, for
which q(x) ≤ q(z), ∀z from the feasible set. This can be
expressed as,

min
x∈Rn

q(x)

subjected to ci = 0, i ∈ ε

ci ≥ 0, i ∈ I(4.4)

where ci = 0, i ∈ ε are equality constraints and ci ≥ 0,
i ∈ I are inequality constraints. There are methods [10]
that also find multiple solutions that cover the full set of
possible trade-offs between the various objective func-
tions. The selection of these criteria are typically based
on the knowledge of optimal design or control variables,
summary statistical, model assumptions, target objec-
tives like smoothing, de-noising etc. A detailed descrip-
tion of techniques that take care of the trade-off between
multiple criteria can be obtained in [2].

4.0.1 Bi-criterion Formulation: The Main Idea

To make the dual formulation more effective, we take
into account the structure of the linear constraints and
their dependencies on the variable bounds. We do this
approximation by incorporating a second-order penalty
function, keeping in mind the description of support
vectors and the properties of the associated Lagrangian
multipliers/weights. The bi-criterion formulation of
one-class SVM takes the form of,

minα∈ℜn Q =
1

2
αTKα− λ(

1

2νℓ
~1− α)T (

1

2νℓ
~1− α)

subject to 0 ≤ α ≤
1

νℓ
~1,~1Tα = 1, ν ∈ [0, 1](4.5)

where α is the vector of Lagrangian multipliers and
K is the similarity matrix. The motivation behind
the additional penalty term is that the bi-criterion
formulation seeks the values of the design variables
closest to the extreme (upper or lower) bounds of the
design variable while simultaneously minimizing the
first term. Only training points with non-negative
weights are considered as support vectors. It is very
intuitive that the equality constraints are satisfied with
the least number of design variables only when the
weights corresponding to those variables tend to be close
to the maximum possible value (i.e. αi = 1

νℓ
). Hence

by solving the above problem we expect to obtain a
sparse solution. In the following sections we will see that
the quadratic penalty function is compatible with the
method of direction search and plays a significant role
to reach the optimal solution using less computations.

Proposition 4.1. Bi-criterion formulation (Eqn. 4.5)
of SVMs is convex.

Proof. Solving this optimization problem means that we
need to minimize two convex criterion on a defined set:

• The Hessian of the objective function Q(in Eqn.
3.2) of classical One-class SVMs problem is given
by ∇2

xQ(x) = K, where K ∈ Sn
+ is a symmetric

kernel matrix. Since we make sure that the defined
kernel matrix is positive definite or positive semi-
definite, it implies that the objective function is
either strictly convex or convex.

• Since the controlled criterion takes the form of a
squared Euclidean norm h = (1

2νℓ
~1−α)T (1

2νℓ
~1−α),

h is strictly convex.

• Given 0 ≤ αi ≤ 1

νℓ
, the constraint in Eqn. 3.2

defines convex set as
∑

i αi is convex.

Here we will briefly discuss the nature of solutions
that bi-criterion formulation may yield. With the
control parameter λ = 0 (Eqn. 4.5), we would get
the classical solution. However with a non-zero control
parameter, (say λ = 1), the quadratic term leads to
sparser solutions. Suppose we are given ℓ training
samples and model parameter ν ∈ [0, 1], and define
p = νℓ. The upper bound of the constraint (Eqn.
3.2) is 1

p
. The second order term of the objective

function attains its maxima at 0 and 1

p
and therefore,

the solution will tend to push the α’s toward the extreme
values in the range. Since

∑

i αi = 1 and αi can
attend a maximum value of 1

p
, we can, without the

loss of generality, decompose the previous expression as,
∑N

i=1
αi =

∑p
i=1

αi +
∑N

i=p+1
αi = p 1

p
+ 0 = 1. Hence

the solution is a set of p training inputs with maximum
weights i.e, α1 = α2 = α3 = · · · = αp = 1

p
. If p is not an

integer, it is rounded to the nearest integer value (say p̂)
and the above process is repeated. This results in p̂− 1
design variables attaining the upper bound and thus
forcing the remaining ones to take any values from the
range defined by 0 ≤ αi ≤

1

p
such that

∑

i α
p̂
i=1

= 1 is
satisfied. Therefore with a λ which is large enough, the
optimization is pushed toward a solution that is more
sparse than the classical solution.

4.1 Active Set: The Quadratic solver “Active
set” algorithm [9, 15] is very popular in solving QP
problems with constraints, especially when the positive
semi-definite matrix K is dense in nature. Equation 4.5
can be rewritten as,

minα∈ℜn Q =
1

2
αT K̂α+ CTα

subject to 0 ≤ α ≤
1

νℓ
~e,~eTα = b, ν ∈ [0, 1](4.6)

where ~e = ~1, b = 1, K̂ = K − 2λI, C = λ
νℓ
~e.

The optimization problem defined above is a quadratic
programming problem with a linear set of constraints
and we would like to solve this problem in a finite
number of steps using “Active set” algorithm. In active
set algorithm, the first step is to compute a feasible start
point which satisfies both the bounds and the equality
constraints. Given a feasible start point α0, the task is
to iteratively minimize the objective function. However
this requires us to find the suitable direction of search
and a non-negative step size.

Definition At any α, the active set A(α) consists of
free variable indices from the equality constraints to-
gether with the indices of variables which are temporar-
ily fixed on their upper/lower bounds.

4.1.1 Reduction of Problem Size At any kth it-
eration, suppose we have some αk. We would like to
create a partitioning of the active set. If “X” refer to en-
tities corresponding to design variables whose values are
temporarily fixed and the complement set of variables,
termed as free variables, are denoted by “R”, we can cre-
ate a partitioning of current points αk i.e. αk = [αR

k α
X
k]

and n = [nXnR] where n is the cardinality of the design
variable. Similarly we can also define the partitions is
A = [ARAX] and C = [CRCX]. We can also define,

K̂ =

[

K̂R,R K̂R,X

K̂X,R K̂X,X

]

.

where K̂X,R = (K̂R,X)T . At iteration k, we can
define a working set Wk which is constructed by t
equality constraints only. Temporarily discard all the
fixed variables so that we end up with n = nR and
t = mℓ, where ℓ denotes the total number of equality
constraints. The direction of search is computed by
solving the following reduced problem,

min
α∈Rn

Q =
1

2
αk

RT
K̂R,RαR

k + CRT
αR
k

subjected to 0 ≤ αR
k ≤

1

νℓ
~e,ART

αR
k = b

−AXT
αX
k , ν ∈ [0, 1](4.7)

Once the reduced problem is formed, the next task
is to check if Q(αR) is minimized for the given αR

k and

Wk. If Q(αk
R) is not minimized, we need to compute

the direction and the step size such that Q(αk+1
R) ≤

Q(αk
R). The pseudo code of the algorithm to compute

the direction and the step size is shown in Algorithm
2. The bi-criterion formulation tends to push the α’s
toward the extreme values in the range. However the
optmization prefers αi to attend the maximum value of
1

p
to maintain a finite step size in the suitable direction.

As a consequence, the number of bounded variables
quickly increases, thus resulting in a much smaller
problem (Eqn. 4.7) to solve. The reduced QP problem
(step-3, Algorithm 2) can be solved using elimination of
variables or Lagrangian Methods.

Algorithm 2 Sub-problem of active set algorithm

1: Input: αk
R, K̂R,R, CR. Let direction is denoted by

dk
R = αk+1

R − αk
R and gk = αk

RT
K̂R,R + CR.

2: Q(αk+1
R) = Q(αk

R + dk
R) = 1

2
(αk

R +

dk
R)T K̂R,R(αk

R + dRk) + CRT
(αk

R + dRk) =

Q(αk
R) + 1

2
dk

RT
K̂R,Rdk

R + gk
T dk

R.
3: Modified sub-problem

mind
1

2
dk

RT
K̂R,Rdk

R + gk
T dk

R

subjected to, ART
dk

R = 0
4: if dk

R 6= 0 then

5: Calculating step size along the direction dk
R

6: if αk
R + dk

R is feasible then

7: set αk+1
R = dk

R + αk
R

8: else

9: set αk+1
R = γkdk

R + αk
R, step size γk ∈ [0, 1]

10: end if

11: else

12: Check for KKT condition
[

K̂R,R AR

ART
0

]

[

dk
R

−θ

]

=

−

[

αk
RT

K̂R,R + CR

0

]

13: end if

5 Experiments and Discussions

In this section we conduct computational experiments
of bi-criterion SVMs and present some studies compar-
ing bi-criterion and classical SVMs. In our analysis, we
considered two very different data sets: one real-world
FOQA (Flight Operations Quality Assurance) data and
another simulated data set as benchmark applications.
The aviation data is representative of one of the most
complex engineering systems with very large size and
dimensionality. Such a domain also poses a real chal-
lenge in identifying anomalies in high-dimensional, mul-

tivariate data sets containing discrete, categorical, and
continuous features. Therefore it is an ideal platform to
test the accuracy and scalability of anomaly detection
algorithms. The simulation based study was proposed
to conduct a proof- of-concept analysis that demon-
strates the performance and effectiveness of the pro-
posed bi-criterion algorithm under different test con-
ditions. Both bi-criterion and classical one class SVMs
algorithms were tested on Linux cluster that comprised
of 16 slave nodes, each of which is a dual processor
1− U server containing two, quad-core Intel Xeon pro-
cessors @ 2.66GHz totaling 128 cores and 128GB Ram
(1Gb/Core). It is controlled by two master nodes and
has 30Tb storage. Under each test condition, the de-
sign variable of the optimization from bi-criterion and
classical one class SVMs were initialized with the same
random set to preserve consistency.

5.1 Airlines Data: A Realistic Scenario The
real world data set chosen for analysis is from a com-
mercial airlines. The data is obtained from medium
range narrow body passenger aircraft. In our current
analysis we considered a total of 2048 flights, a small
subset of which landed at the same airport. Each flight
consists of 365 parameters acquired at 1 Hz. Our work-
ing data set consists of the decent portions of the flight
from 10,000 ft to touch-down (average flight length of
10K samples) and has 104 discrete and 45 continuous
parameters which were selected based on domain ex-
perts feedback. For continuous data, each parameter
in the training and testing data are z-score normalized
using the statistics of each parameter calculated across
all training flights. The continuous and discrete data is
converted to continuous and discrete sequences respec-
tively. Once the sequences are generated the continuous
and discrete kernel are separately computed pairwise
across all possible flight combinations in the training
set. For pairwise comparison we used longest common
subsequence based similarity function (Eqn. 5.8).

(5.8) K(~xi, ~xj) =
|LCS(~xi, ~xj)|

√

l~xi
l~xj

,

where l~x is the number of symbols in sequence
~x. Given two sequences the common subsequences of
sequences ~xi and ~xj is identified. The longest such
subsequence of ~xi and ~xj is called the longest common
subsequence (LCS) and is denoted by LCS(~xi, ~xj) and
|LCS(~xi, ~xj)| is its length.

Once the kernels are generated, we combine them in
a convex fashion. Algorithm 3 shows the operations to
generate the kernel. For details see the original paper [7]
where we demonstrated Multiple Kernel Anomaly De-
tection Algorithm (MKAD) algorithm that can detect if

the discrete pilot inputs combined with the observation
vector are nominal or off nominal.

Algorithm 3 Pre-processing steps to generate a kernel

1: Continuous Input : C = {x1c, x2c....xmc, zc},
C ∈ Rd, Discrete Sequence Input :

S = {x1s, x2s....xms, zs}, S ∈ Rd̃.
2: Generate Continuous Sequence:

{x1q, x2q....xmq, zq} =
SAX ({x1c, x2c....xmc, zc}) [?].

3: Generate Continuous and Discrete Features:
{φ(x1q), φ(x2q), · · ·φ(xmq), φ(zq)} and
{φ(x1s), φ(x2s), · · ·φ(xms), φ(zs)}.

4: Combine kernel:
βqKq(φ(xiq), φ(xjq)) + βsKs(φ(xis), φ(xjs)).

Active-set algorithm has been used to solve the
quadratic problem. Through out this experiment, some
of the user defined inputs for example, kernel matrix,
initialization vector, ν parameter, stopping criteria, etc.,
were kept consistent for both the algorithms. From run
to run, the design variables were randomly initialized
with values between 0 and 1. However for any particular
run both the algorithm started from the same initial
point. In the first set of experiments, both models were
built with training sizes varying from 200 samples up
to 2000 sample points with ν = 0.05 and the number
of support vectors were recorded for each case. These
results are unique and reproducible for the given data
and parameter settings. Figure 3 shows that bi-
criterion SVMs always produces fewer support vectors
than the classical approach for different training sizes
and the reduced set size is typically the lower bound
of the number of total support vectors i.e. ν times the
number of the training points.

Figure 4 compares the distribution of the weights
(αi for i ∈ [l]) corresponding to the support vectors for
a case where we used 2000 sample points for training
and set ν = 0.05. For classical SVMs there are more
instances where weights are scattered in-between the
bounds. However for bi-criterion formulation we see all
weights lie on the upper bound. Fig. 3 and Fig. 4
complement each other and show that our algorithm
produces fewer support vectors by forcing weights to-
ward the upper and lower bounds. In summary, with
majority of the Lagrangian multipliers/weights on the
upper bound, the model results in a much reduced set
of non-zero weights.

Here we extend our observation from Fig. 3. We
have seen that bi-criterion SVMs results sparser solu-
tion when compared to classical model. The analysis
(Fig. 4) showed that classical solution consists of 331

200 600 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

Number of observations

N
o.

 o
f s

up
po

rt
 v

ec
to

rs

Classical one−class SVMs
Bi−criterion one−class SVMs

Figure 3: Figure comparing the number of support
vectors obtained from the bi-criterion and classical
SVMs technique for different training sizes over a single
run. For each and every run, bi-criterion formulation
converges with a sparser solution and thus outperformed
classical SVMs formulation.

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

x 10
−3

La
gr

an
gi

an
 m

ul
tip

lie
rs

/w
ei

gh
ts

 o
f S

V
s

Counts

Classical one−class SVMs
Bi−criterion one−class SVMs

upper bound

Figure 4: In this figure we compare the distribution of
the weights of support vectors obtained from the clas-
sical and bi-criterion SVMs. We can observe that most
design variables in bi-criterion formulation corresponds
to the “upper bound” (i.e. 1

νℓ
, see Eqn. 3.2). For clas-

sical SVMs there are some instances where the design
variables hold values between upper and lower bounds.

non-zeros weights while bi-criterion SVMs produced 308
which is exactly ν× 2048, the number of training sam-
ples. An initial investigation found that solutions from
both these methods have a total of 304 support vectors
in common and that jointly compromises approximately
97−98% of the total weights (see the linear constraint in
Eqn. 3.2) which is unity. To account for the remaining
weight, bi-criterion SVMs proposes 4 unique SVs while
the classical assigns 27 SVs which can very well be some
source of redundancy. These results are summaries in
table 1.

Table 1: Here we compare classical and bi-criterion
SVMs to check the presence and the influence of redun-
dancy. The analysis showed that 304 indices (of Sup-
port Vectors) are common in both solutions and they
jointly compromises approximately 97−98% of the total
weights. To account for the remaining weight, classical
SVMs uses approximately 7 times the number of unique
SVs used by bi-criterion SVMs.

Algorithms Overlapping index Unique index
(influence) (influence)

MKAD 304 27
(97.17%) (2.83%)

Bi-criterion 304 4
MKAD (98.7%) (1.3%)

0

5

10

15

20

25

QP QP with regularization

R
un

 ti
m

e
(h

ou
rs

)

10x
speed up

Classical one−class SVMs Bi−criterion one−class SVMs

Figure 5: The figure shows the run time analysis for
classical and bi-criterion SVMs under different initial-
ization conditions. This experiment was repeated 100
times with random initializations and the running time
were recorded. These are observed run times with ran-
dom initializations. It is clear that bi-criterion formula-
tion performs much better compared to classical SVMs.

In Fig. 5 we show the resulting training time (in
hours) for the exact solution and bi-criterion formu-
lation with 2000 sample points as training points and
ν = 0.15. In the box plot, we show the mean training
time over 100 runs and their corresponding error bars.
The mean rum times are 21.64 hours and 2.43 hours for
classical and bi-criterion SVMs respectively. The stan-
dard deviations are 2.4 and 0.23 for the respective mod-
els. It can be observed that the proposed formulations
consistently performs on average 10 times faster than
the classical one-class SVM model for the given model
parameter settings. This performance gain factor is ex-
pected to increase with increasing training set size. In
a separate experiment, we repeated the same case with
randomly initializations from the feasible region defined

by the bound constraints. This led us to further gain in
run time. This is because the optimization routine does
not spend any time looking for a initialization set from
the feasible region. However this observation is true for
both the algorithms.

10
−2

10
−1

10
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Sorted index of the top 50 anomalous in training observations

N
or

m
al

iz
ed

 s
co

re
s

(in
 lo

g
sc

al
e)

Bi−criterion one−class SVMs

Classical one−class SVMs

Figure 6: Normalized scores of the top 50 abnormal
entries detected in the FOQA training set data. Both
the scores were arranged in a descending order of
the classical algorithm’s score. This experiment was
repeated 100 times with random initializations. This
figure shows that the bi-criterion algorithm almost
always orders data points the same way as the classical
algorithm.

In this section we present some results on prediction
performance. In this analysis, we asked both the models
to predict the top 50 outliers from the training pool
of 2048 and we compare their associated outlier scores
and ranking. We sorted the outliers and thereafter
normalized them to 1. In Fig. 6 we compare the mean
score with associated error bars from multiple runs in
log scale. This experiment was repeated 100 times with
random initializations. Figure 6 clearly shows that bi-
criterion SVMs correctly predicts and ranks the points
in terms of their outlierness in a consistent fashion and
the outcome is very comparable to observations from
classical one-class SVMs.

We have conducted an initial study that describes
the nature of the solution we obtain for varying λ. In
the bi-criterion formulation, the value of the λ decides
which criterion is weighted more. In Fig. 7, we plot
the number of support vectors for a wide range of λ
values. The case when we obtain maximum number
of support vectors is for λ = 0 and we normalize the
entire outcome using the maximum count. What we
observed is, the number of support vectors drastically
changes (7% change) as we start increasing λ from
0 but as λ becomes large enough (greater than 0.5)
the influence of λ on the outcome diminishes and the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Weights of control parameter

N
or

m
al

iz
ed

 p
ar

am
et

er

(n
um

be
r

of
 s

up
po

rt
 v

ec
to

rs
)

Figure 7: Figure demonstrating the influence of the
control parameter λ on the performance of the bi-
criterion SVMs algorithm. There is very small influence
of the control parameter (λ) on the multi-criterion
optimization outcome for λ ≥ 1

2
.

sparsity of the solution is steady for the given data and
parameter settings. We therefore set λ = 1 for all of our
experiments..

Data sparseness

R_1

R_2

R_3

dominant matrix

diagonaly

increasingly

Figure 8: A cartoon that represents various levels of
sparseness that can be observed in the kernel matrix
K(xi, xj). Region-1 (R1) and Region-3 (R3) represent
extreme scenarios. When all entries of x and y are
very different from each other and unique, the resultant
similarity matrix is strictly diagonally dominant (R1).
With very similar x and y the K matrix will be
very dense with very similar diagonal and off-diagonal
elements (R3). Region-2 (R2) represents a case when
the diagonal and off-diagonal elements are distributed
over a certain range.

5.2 A Simulated Study: To test the robustness
of the bi-criterion formulation, we developed a common
test platform with a set of diverse test scenarios using
synthetic data. Till now we have studied the influence

of the quadratic penalty function (Eqn. 4.5) and the
control parameter on the outcome. For problems of this
nature, the property of the kernel matrix (K) in Eqn.
4.5 plays an important role. The implicit mapping into
feature space based on different similarity functions and
data sets are bound to conceal different types of density
structures in the kernel matrix. The main optimization
algorithm involves quadratic programming which learns
on these kernel matrices. Here we intend to investigate
the influence of varying kernel density on model per-
formance and outcome. When the entries of the input
data xi and xj are very different from each other and
unique, the resultant similarity matrix is strictly diag-
onally dominant i.e. |K(xi, xi)| >

∑

i6=j |K(xi, xj)| , ∀i.
The other extreme scenario is when all the entries x
and y are very similar in feature space and tightly clus-
tered. The latter will result in a highly dense K ma-
trix. In Fig. 8, we explain the above scenarios in a
cartoon form. Region 1 (R1) and Region 3 (R3) rep-
resent the extremely sparse and highly dense cases, re-
spectively. Region-2 (R2) represents a case when the
diagonal and off-diagonal elements are distributed over
a certain range.

We will further illustrate the above scenarios of
varying sparseness by using synthetic data set. This
data is randomly generated from the normal distribu-
tion with user defined mean parameter µ and standard
deviation parameter σ. The resultant kernel matrices
we generate are symmetric and of size 2048. We force
the diagonal elements to unity, as this is case for most
similarity functions (e.g. nLCS function shown in Eqn.
??) which vary between 0 and 1, where 1 represents the
highest similarity or exact match. For each combination
of µ and σ, we binned the elements of K into 50 equally
spaced groups each of which represents a “values range”
between 0 and 1. In returns we obtain the number of
elements in each group. In the analysis, we conducted a
total of 20 different cases where the density distribution
of the matrix moves from one end of the “values range”
to the other end. Figure 9 presents some of these exam-
ples. Subfigure ??-(a) shows an example where all the
elements of the kernel matrix, beside the diagonals, are
of extremely small. This is a typical example of diag-
onally dominant matrix. Subfigure ??-(c) is the other
extreme case with very comparable diagonal and off-
diagonal elements. Subfigure ??-(b) and Subfigure ??-
(d) represent a simulated and a realistic (aviation data)
scenario where the off-diagonal elements of the matrix
K hold values from intermediate ranges. Under each
test condition, we ran 10 experiments with random ini-
tializations and recorded the run time and number of
support vectors for bi-criterion and Classical SVMs al-
gorithm. To measure the effectiveness of the model, we

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5
x 10

6

Range of values (50 bins)

C
ou

nt
s

0.4 0.6 0.8 1 1.2
0

5

10

15
x 10

5

Range of values (50 bins)

C
ou

nt
s

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2
x 10

5

Range of values (50 bins)

C
ou

nt
s

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6
x 10

5

Range of values (50 bins)

C
ou

nt
s

(a)

(c)

(b)

(d)

Figure 9: The above figure represents the histogram plots comparing the distributions of the elements of the kernel
K under different test cases. Each element of K represents the similarity between two entities. The diagonal
elements represent self similarities. Subfigure (a-c) was obtained from simulated data while subfigure (d) was
obtained from a real airlines FOQA data consisting of 2048 flights with 149 continuous and discrete features.
In subfigure (a) the kernel K is a diagonally dominant matrix while subfigure (c) represents the case where the
diagonal and off-diagonal elements of the matrix K are very comparable. Subfigure (b) represents an intermediate
scenario.

define the following two performance metrics.

Definition We defined degree of sparsity, a gain met-
ric, that calculates the ratio of the counts of non-zero
Lagrangian multipliers from bi-criterion to that of clas-
sical SVMs model. This metric explain how effective
is the proposed model in testing phase. If degree of
sparsity if high this simply implies that the solution is
obtained with lesser support vectors.

Definition The execution time gain is a run time re-
lated gain metric, that calculates the ratio of the run
time of bi-criterion to that of classical SVMs model.
This metric shows how quick is the proposed optimiza-
tion converges to a solution compared to the benchmark
method.

Figure 10 summarizes the results using the perfor-
mance metrics in a quadrant format for a better vi-
sual understanding. The two right hand quadrants al-
ways confirm a sparse solution. Similarly the upper two
quadrants indicates seep up by some factors. Anywhere
in the +/ + ve quadrant is the most desired operat-
ing region where under any circumstances the proposed
solution is sparse and the execution time is less. A neg-
ative execution gain means that the classical solution

converges faster. In Fig. 10, the execution time gain
is intentionally plotted in log scale to obtain a better
resolution in order to understand the differences in the
performance space. As can be seen, bi-criterion formu-
lation outperforms the benchmark algorithm consider-
ably in most cases. On all occasions, bi-criterion SVMs
always reported the lest number of support vectors (i.e.
νN) but the solution of the classical method changes
depending on the density structure of the kernel ma-
trix. For instance, from diagonally dominant matrix
(refer Fig. 8 region -1 and Fig. 9 -(a)) classical SVMs
reports N support vectors which is equal to the num-
ber of training points. This is because all the training
examples are so different and unique that all of them
carries equal weightage to be a support vectors. How-
ever the convergence time of the classical approach was
varying a lot. Under this scenario, there were several
occasions where bi-criterion ran slower than the classi-
cal SVMs by a couple of factors. But majority of the
gain was noticed during test phase where to evaluate a
single test point the classical will have to do at least 1

ν

times more operations. On the other hand for highly
dense kernel matrix with very similar diagonal and off-
diagonal elements (refer Fig. 8 region -3 and Fig. 9

Figure 10: Performance comparison between bi-criterion and classical SVMs method. The execution time gain is
in log scale.

-(c)), it takes extremely long time for the classical to
converge but the solutions are very similar to those ob-
tained by bi-criterion formulation. Under this scenario,
the gain is in the run time while building the model. For
any other cases the importance of regularization term
was reflected. There are the test cases (refer Fig. 8 any
combination of region -1, region -2 and region -3 and
Fig. 9 -(b) and (d)) where the proposed algorithm out-
performs the baseline in run-time by several factors and
also results in a sparse solution. In reality, this is ex-
actly one expects from an algorithm that can learn much
faster and produce sparser solution so that the model
can be used to test large volume of data in short time.
Obviously, this sort of scaling will be very attractive for
high-dimensional and dense data matrix, particularly
when the detection accuracy is well preserved.

6 Conclusion

In this paper we devised a version of one-class SVMs
with an addition to the objective function that leads to
sparser solutions. We demonstrated that these solutions
are nearly as accurate as the solutions from the classical
one-class SVM algorithm but are obtained in much less
time and/or can be used to classify new examples in
much less time. We demonstrate that the reduced
number of support vectors and the resulting reduction
in running time that we obtain are not sensitive to λ
which is the weight used to control the tradeoff between
the two terms in our objective function. In combination
with our earlier development of MKAD [7], we are able

to identify anomalies in data from commercial aviation
accurately and in a practical amount of time without
losing any of the advantages of kernel methods such as
global optimality for a given training set.

We plan to investigate further efficiency and scala-
bility improvements by developing distributed and on-
line versions of our algorithm. Because our algorithm
only involved a simple change to the objective function
and did not require any changes to the solver, we can
utilize any other solvers used for SVMs. We plan to
investigate how strong our efficiency improvements re-
main when using other solvers.

Acknowledgments

This work was supported through funding from the
NASA Aeronautics Researchh Mission Directorate, Avi-
ation Safety Program, Integrated Vehicle Health Man-
agement project. The authors thank Bryan Matthews
for valuable discussions and suggestions.

References

[1] S. Asharaf, M. Narasimha Murty, and S.K. Shevade.
Cluster based training for scaling non-linear support
vector machines. International Conference on Com-

puting: Theory and Applications, 0:304–308, 2007.
[2] Stephen Boyd and Lieven Vandenberghe. Convex

Optimization. Cambridge University Press, 2004.
[3] Chris J.C. Burges and Bernhard Schlkopf. Improving

the accuracy and speed of support vector machines. In
Advances in Neural Information Processing Systems 9,
pages 375–381. MIT Press, 1997.

[4] Christopher J. C. Burges. A tutorial on support vector
machines for pattern recognition. Data Mining and

Knowledge Discovery, 2:121–167, 1998.
[5] Gert Cauwenberghs and Tomaso Poggio. Incremen-

tal and decremental support vector machine learning,
2000.

[6] Santanu Das, Kanishka Bhaduri, Nikunj C. Oza, and
Ashok N. Srivastava. nu-anomica: A fast support vec-
tor based novelty detection technique. Data Mining,

IEEE International Conference on, 0:101–109, 2009.
[7] Santanu Das, Bryan L. Matthews, Ashok N. Srivastava,

and Nikunj C. Oza. Multiple kernel learning for het-
erogeneous anomaly detection: algorithm and aviation
safety case study. In KDD ’10: Proceedings of the 16th

ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 47–56, New York,
NY, USA, 2010. ACM.

[8] Gary William Flake and Steve Lawrence. Efficient svm
regression training with smo, 2001.

[9] Philip E. Gill, Walter Murray, Michael A. Saunders,
and Margaret H. Wright. Procedures for optimization
problems with a mixture of bounds and general linear
constraints. ACM Trans. Math. Softw., 10(3):282–298,
1984.

[10] Yaochu Jin, editor. Multi-Objective Machine Learning,
volume 16 of Studies in Computational Intelligence.
Springer, 2006.

[11] Liang Lie-quan and Liang Ying-hong. Sample cluster-
ing for fast classification by using the mean shift pro-
cedure. In ISECS ’09: Proceedings of the 2009 Second

International Symposium on Electronic Commerce and

Security, pages 179–183, Washington, DC, USA, 2009.
IEEE Computer Society.

[12] Subhransu Maji, Alexander C. Berg, and Jitendra
Malik. Classification using intersection kernel support
vector machines is efficient ?

[13] John C. Platt. Sequential minimal optimization: A
fast algorithm for training support vector machines,
1998.

[14] Ya-Li Qi, Wei He, and Hou Shu. An optimized
approach on reduced kernel matrix to clustersvm.
pages 1446 –1449, aug. 2008.

[15] Katya Scheinberg. An efficient implementation of an
active set method for svms. J. Mach. Learn. Res.,
7:2237–2257, 2006.

[16] Bernhard Schölkopf, John C. Platt, John C. Shawe-
Taylor, Alex J. Smola, and Robert C. Williamson. Es-
timating the support of a high-dimensional distribu-
tion. Neural Comput., 13(7):1443–1471, 2001.

[17] Anton Schwaighofer and Volker Tresp. Transductive
and inductive methods for approximate gaussian pro-
cess regression. In In, page 953. MIT Press, 2002.

[18] Sren Sonnenburg, Gunnar Rtsch, Bernhard Schlkopf,
and Gunnar Rtsch. Large scale multiple kernel learn-
ing. JOURNAL OF MACHINE LEARNING RE-

SEARCH, 7:2006, 2006.
[19] S. V. N. Vishwanathan, Alexander J. Smola, and

M. Narasimha Murty. Simplesvm.

[20] Chih wei Hsu and Chih-Jen Lin. A simple decomposi-
tion method for support vector machines. IEEE Trans-

actions on Neural Networks, 12:291–314, 1999.

