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Abstract

We use a cluster ensemble to determine the num-
ber of clusters, k, in a group of data. A consen-
sus similarity matrix is formed from the ensem-
ble using multiple algorithms and several val-
ues for k. A random walk is induced on the
graph defined by the consensus matrix and the
eigenvalues of the associated transition proba-
bility matrix are used to determine the num-
ber of clusters. For noisy or high-dimensional
data, an iterative technique is presented to re-
fine this consensus matrix in way that encour-
ages a block-diagonal form. It is shown that the
resulting consensus matrix is generally superior
to existing similarity matrices for this type of
spectral analysis.

1 Introduction

Ensemble Methods have been used in various
data mining fields to improve the performance
of a single algorithm or to combine the results
of several algorithms. In data clustering, these
same strategies have been implemented, and the
techniques are commonly referred to as consen-
sus methods [15, 22]. Since no single algorithm
will work best in any given class of data, it is a
natural approach to use several algorithms to
solve clustering problems. However, the vast
majority of clustering algorithms in the litera-
ture require the user to specify the number of
clusters, k, for the algorithm to create. In ap-
plied data mining, the problem is that it is un-
usual for the user to know this information be-
fore hand. In fact, the number of distinct groups
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in the data may be the very question that the
data miner is attempting to answer.

This paper proposes a solution to this fun-
damental problem by using multiple algorithms
with multiple values for k to determine the most
appropriate value for the number of clusters. We
begin with a brief theoretical motivation and an
example which provides the intuition behind our
basic approach. We will follow this discussion
with results on real datasets which demonstrate
the effectiveness of our iterated approach.

1.1 Data Let X = [x1,x2, . . . ,xn] be an m×
n matrix of column data. For the particular
implementation of our iterated consensus clus-
tering (ICC) approach outlined herein, we as-
sume the data in X is nonnegative and rela-
tively noisy. Neither of these conditions are nec-
essary for the general scheme of ICC but one
of our preferred algorithms for dimension reduc-
tion is nonnegative matrix factorization (NMF),
which, as the name suggests requires nonnega-
tive data. Our main focus falls in the realm of
document clustering, but we demonstrate that
our method works equally well on other types
of data. In document clustering the data ma-
trix X is a term-by-document matrix where Xij

represents the frequency of term i in document
j. The data in X are normalized and weighted
according to term-weighting schemes like those
described in [3, 25, 9].

1.2 Similarity Matrices A similarity
matrix S is an n×n symmetric matrix of pairwise
similarities for the data in X, where Sij mea-
sures some notion of similarity between xi and
xj . Many clustering algorithms, particularly
those of the spectral variety rely on a similarity
matrix to cluster data points [26, 19, 28, 6, 16].
While many types of similarity functions ex-
ist, the most commonly used function in the
literature is the Gaussian similarity function,

Sij = exp(−‖xi−xj‖
2σ2 ), where σ is a parameter,
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set by the user. We will discuss our own similar-
ity matrix, known as a consensus matrix, in Sec-
tion 2. The goal of clustering is to create clusters
of objects that have high intra-cluster similarity
and low inter-cluster similarity. Thus any simi-
larity matrix, once rows and columns are ordered
by cluster, should have a nearly block-diagonal
structure.

1.3 Nearly Uncoupled Markov Chains
Any similarity matrix, S, can be viewed as an
adjacency matrix for nodes on an undirected
graph. The n data points act as nodes on the
graph and edges are drawn between nodes with
weights from the similarity matrix. Figure 1
illustrates such a graph, using the thickness of
an edge to indicate its weight. While edges
may exist between nodes in separate clusters, we
expect the weights of such edges to be far less
than the weights within the clusters.
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Figure 1: A Nearly Uncoupled Markov Chain

A random walk is induced on the graph and
a transition probability matrix, P, is created
from the similarity matrix, S, as P = D−1S
where D = diag(Se), and e is a vector of
ones. It is easily verified that a steady-state

distribution of this Markov chain is given by

πT = eTD
eTDe . Let Q = diag(π) = D

eTDe . P
represents a reversible Markov chain because it
satisfies the detailed balance equations, QP =
PTQ [7, 27]. This condition guarantees that the

eigenvalues of P are real since Q1/2PQ−1/2 =
Q−1/2PTQ1/2 indicates that P is similar to a
symmetric matrix. In fact, this symmetric ma-
trix, Q1/2PQ−1/2, is precisely I −L where L
is the normalized Laplacian matrix used in
many spectral clustering algorithms [28]. For
computational considerations, we use this sym-
metric matrix to compute the spectrum of P in
our algorithm.

Let σ(P) = {1 = λ1 ≥ λ2 ≥ . . . ≥ λn} be
the spectrum of P. A block diagonally dominant
Markov Chain is said to be nearly uncoupled if
the diagonal blocks of P are themselves nearly
stochastic, meaning Pie ≈ 1 for each i (for a
more precise definition, see [17]). A nearly un-
coupled Markov chain with real eigenvalues will
have exactly k eigenvalues near 1 where k is the
number of blocks on the diagonal. This cluster of
eigenvalues, [λ1, . . . , λk], near 1 is known as the
Perron cluster [20, 17, 29]. Moreover, if there
is no further decomposition (or meaningful sub-
clustering) of the diagonal blocks, a relatively
large gap between the eigenvalues λk and λk+1

is expected [20, 17, 29]. It has previously been
suggested that this gap be observed to determine
the number of clusters in data [28]. However, as
we will demonstrate in Section 6, the most com-
mon similarity matrices in the literature do not
impart the level of uncoupling that is necessary
for a visible Perron cluster. The main goal of
our algorithm is to construct a nearly uncoupled
Markov chain using a similarity matrix from a
cluster ensemble. The next section fully moti-
vates our approach.

2 The Consensus Similarity Matrix

We will build a similarity matrix using the re-
sults of several, say N , different clustering algo-
rithms. As previously mentioned, most cluster-
ing algorithms require the user to input the num-
ber of desired clusters. We will choose 1 or more
values for k, denoted by k̃ = [k̃1, k̃2, . . . , k̃J ], and
use each of the N algorithms to partition the
data into k̃i clusters, for i = 1, . . . , J . The result
is a set of JN clusterings. These clusterings are
recorded in a consensus matrix, M, by setting
Mij equal to the number of times observation i
was clustered with observation j. Such a matrix
has become popular for ensemble methods, see
for example [22, 15]. We will then observe the



eigenvalues of the transition probability matrix
of the random walk on the graph associated with
the consensus matrix.

To motivate our approach, we’ll look at a
brief fabricated example. We will use the ver-
tices from the graph in Figure 1 which are clearly
separated into 3 clusters. Figure 2 illustrates
(a) two different clusterings of these points (each
with k̃ = 5 clusters), (b) the consensus similar-
ity matrix resulting from these two clusterings,
and (c) the first few eigenvalues of the transition
probability matrix, sorted by magnitude. Using
an incorrect guess of k̃ = 5 and 2 clusterings, the
correct value of k is discovered by counting the
number of eigenvalues in the Perron cluster.

Our use of this consensus similarity matrix
relies on the following assumptions about our
underlying clustering algorithms:

• If there are truly k distinct clusters in a
given dataset, and a clustering algorithm is
set to find k̃ > k clusters, then the original
k clusters will be broken apart into smaller
clusters to make k̃ total clusters.

• Further, if there is no clear “subcluster”
structure, meaning the original k clusters
do not further break down into meaningful
components, then different algorithms will
break the clusters apart in different ways.

Before discussing adjustments made to this basic
approach, we provide a brief description of the
clustering algorithms used herein.

3 Clustering Algorithms

The authors have chosen four different algo-
rithms to form the consensus matrix: princi-
pal direction divisive partitioning (PDDP) [4],
k-means, and expectation-maximization with
Gaussian mixtures (EMGM) [21]. For each
round of clustering, k-means is run twice, once
initialized randomly and once initialized with
the centroids of the clusters found by PDDP.
This latter hybrid, “PDDP-k-means”, is con-
sidered the 4th algorithm. For text data sets
and the clustering of symmetric matrices, spher-
ical k-means is used as opposed to Euclidean k-
means.

Three different dimension reductions are
used to alter the data input to each of these
algorithms. Our motivation for this is focused
along three objectives. The first objective is
merely to reduce the size of the data matrix,
which speeds the computation time of the clus-
tering algorithms. The second objective is to
reduce noise in the data. The final objective is
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(a) Two Different Clusterings with k̃ = 5

1 2 3 4 5 6 7 8 9 10 11





1 2 1 1 0 0 0 0 0 0 0 0
2 1 2 0 1 0 0 0 0 0 0 0
3 1 0 2 1 0 0 0 0 0 0 0
4 0 1 1 2 0 0 0 0 0 0 0
5 0 0 0 0 2 1 1 1 0 0 0
6 0 0 0 0 1 2 0 2 1 0 0
7 0 0 0 0 1 0 2 0 1 0 0
8 0 0 0 0 1 2 0 2 1 0 0
9 0 0 0 0 0 1 1 1 2 0 0

10 0 0 0 0 0 0 0 0 0 2 2
11 0 0 0 0 0 0 0 0 0 2 2

1

(b) Resulting Consensus Matrix
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(c) k = 3 Eigenvalues in Perron Cluster

Figure 2: A Simple Motivating Example

to decompose the data into components that re-
veal underlying patterns or features. The first
dimension reduction is the ever popular Princi-
pal Components Analysis (PCA) [8]. The sec-
ond dimension reduction is a simple truncated
Singular Value Decomposition (SVD) [18]. We
use Larson’s PROPACK software to efficiently
compute both the SVD and PCA [13]. The third
dimension reduction is a nonnegative matrix fac-
torization (NMF) [14, 11]. The NMF algorithm
used is the alternating constrained least squares
(ACLS) algorithm [12] with sparsity parameters

3



λW = λH = 0.5, and initialization of factor W
with the Acol approach outlined in [12]. For
further explanation on how and why these tech-
niques are used for dimension reduction, see the
complete discussion in [24].

All of the above dimension reduction tech-
niques require the user to input the level of the
dimension reduction, r. The choices for this pa-
rameter can provide hundreds of different clus-
terings for a single algorithm. Here, we choose
three different values for r: r1, r2, r3. For smaller
datasets where it is feasible to compute the com-
plete SVD/PCA of the data matrix, r1, r2, r3
were chosen to be the number of principal com-
ponents required to capture 60%, 75% and 90%
of the variance in the data respectively. We re-
quire that the values of r1, r2, and r3 be unique.
For larger document datasets (n ≥ 3000 docu-
ments), where it is unwieldy to compute the en-
tire SVD of the data matrix, values for r are
chosen such that r1 ≈ 0.01n, r2 ≈ 0.05n, and
r3 ≈ 0.1n.

Using our four different algorithms, 4 repre-
sentations of the data (raw data plus three di-
mension reductions), three ranks of dimension
reduction we can create up to N = 40 different
clusterings for each value of k̃.

4 Our Method

The base version of our method is simple and
works well on datasets with well-defined, well-
separated clusters. Section 5 discusses enhance-
ments that provide an exploratory method for
larger, noisier datasets.

Algorithm 4.1. (Basic Method)
Input: Data Matrix X and a sequence
k̃ = k̃1, k̃2, . . . , k̃J

1. Using each clustering method i = 1, . . . , N ,
partition the data into k̃j clusters, j =
1, . . . , J

2. Form a consensus matrix, M with the JN
different clusterings determined in step 1.
Let D = diag(Me)

3. Compute the eigenvalues of P using the
symmetric matrix I − D−1/2MD−1/2 and
identify the Perron cluster.

Output: The number of eigenvalues, k,
contained in the Perron cluster.

To demonstrate the effectiveness of our
base method on a simple synthetic dataset, we
employed it on the Ruspini dataset, a two-
dimensional dataset that has commonly been
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(a) Scatter Plot of Ruspini Data
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(b) Eigenvalues of Probability Matrix

Figure 3: Results on Ruspini Dataset

used to validate clustering methods and metrics.
We simply used our four different algorithms and
five different values for k̃ = 6, . . . , 10. The result-
ing eigenvalue plot, displayed in Figure 3, clearly
shows the correct number, k = 4, of eigenvalues
in the Perron cluster.

For the purposes of comparison Figure 4
shows the eigenvalues of the Markov chain in-
duced by the Gaussian similarity matrix. In
all of our experiments we set the parameter

σ2 = 1
n−1

∑n
i=1 ‖xi − µ‖22 where µ = Xe

n is the
mean. While there are 4 relatively large eigen-
gaps in Figure 4, the largest gap occurs after
the first eigenvalue and there is little indication
of the block-diagonal dominance (uncoupling) il-
lustrated in Figure 1.

5 Adjustments to the Algorithm

This section discusses two adjustments to our al-
gorithm, each of which are meant to combat the
effect of noise in large datasets, particularly doc-
ument sets. In document clustering, although
the underlying topics that define individual clus-
ters may be quite distinct, the spatial concept
of “well-separated” clusters becomes convoluted
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Figure 4: Eigenvalues from Gaussian Similarity
Matrix for Ruspini Dataset

in high dimensions. Thus the nearly uncoupled
structure depicted in Figure 1 is rare in prac-
tice. The adjustments presented in this section
are meant to refine the data in an iterative way
to encourage such uncoupling.

5.1 Drop Tolerance, τ There will necessar-
ily be some similarity between documents from
different clusters. As a result, clustering algo-
rithms make errors. However, if the algorithms
are independent, it is reasonable to expect that
the majority of algorithms will not make the
same error. To this end, we introduce a drop
tolerance, τ , 0 ≤ τ < 0.5 for which we will drop
(set to zero) entries Mij in the consensus ma-
trix if Mij < τJN . For example τ = 0.1 means
that when xi and xj are clustered together in
fewer than 10% of the clusterings they are dis-
connected in the graph.

5.2 Iteration In the basic algorithm previ-
ously outlined, we use several clusterings to
transform our original data matrix, X, into a
similarity matrix, M. The rows/columns of M
are essentially a new set of variables describing
our original observations. Thus M can be used
as the data input to our clustering algorithms,
and the procedure can be iterated as follows:

Algorithm 5.1. (Iterated Method (ICC))
Input: Data Matrix X, drop-tolerance τ ,
and sequence k̃ = k̃1, k̃2, . . . , k̃J

1. Using each clustering method i = 1, . . . , N ,
partition the data into k̃j clusters, j =
1, . . . , J

2. Form a consensus matrix, M with the JN
different clusterings determined in step 1.

3. Set Mij = 0 if Mij < τJN .

4. Let D = diag(Me). Compute the eigen-
values of P using the symmetric matrix
I−D−1/2MD−1/2.

5. If the Perron Cluster is clearly visible, stop
and output the number of eigenvalues in the
Perron cluster, k. Otherwise, repeat steps
1-5 using M as the data input in place of
X.

While the uncoupling benefit of the drop toler-
ance should be clear from the graph in Figure
1, the benefit of iteration may not be apparent
to the reader until the result is visualized. In
the next section, we will use noisy datasets to
illustrate.

6 Results on Noisy Data

In order to demonstrate the uncoupling effect of
iteration, we use three datasets that are difficult
to cluster because of their inherent noise.

6.1 Newsgroups Dataset Our Newsgroups
dataset is a subset of 700 documents, 100 from
each of k = 7 clusters, from the 20 Newsgroups
dataset [1]. The topic labels from which the
documents were drawn can be found in Table
1.

Alt: Atheism
Comp: Graphics

Comp: OS MS Windows Misc.
Rec: Sport Baseball

Sci: Medicine
Talk: Politics Guns
Talk: Religion Misc.

Table 1: Topics for Newsgroups Dataset

The documents were clustered using k̃ =
[10, 11, . . . , 20] clusters and a drop tolerance of
τ = 0.1. David Gleich’s VISMATRIX tool
allows us to visualize our matrices as heat maps.
In Figure 5, observe the difference between
the consensus matrix prior to iteration (after
the drop tolerance enforced) and after just two
iterations. Each non-zero entry in the matrix is
represented by a colored pixel. The colorbar on
the right indicates the magnitude of the entries
by color.

After 2 iterations, the magnitude of intra-
cluster similarites are clearly larger and the mag-
nitudes of inter-cluster similarities (noise) are
noticeably diminished. Note the strong similar-
ities between clusters 1 and 7, and some weaker
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(a) Consensus Matrix prior to iteration
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(b) Consensus Matrix after 2 iterations

Figure 5: The Uncoupling Effect of Iteration

similarities between clusters 2 and 3. This is
due to the meaningful subcluster structure of
the document collection: the categorical topics
for clusters 1 and 7 are “atheism” and “misc.
religion” respectively and the topics for clus-
ters 2 and 3 are “computers- graphics” and
“computers- OS MS windows misc”. In fact,
one of the beautiful aspects of our algorithm is
its ability to detect this “subcluster” structure
of data.

In Figure 6 we visualize the uncoupling
effect of iteration by observing the difference
in the eigenvalues of the transition probability
matrix. Prior to iteration, the Perron cluster
of eigenvalues is not apparent because there is
still too much inter-cluster noise in the matrix.
However, after 2 iterations, the Perron cluster
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(a) Eigenvalues prior to iteration

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

i

(b) Eigenvalues after 2 iterations

Figure 6: Newsgroups Dataset - ICC Results

is clearly visible, and contains the “correct”
number of k = 7 eigenvalues. Furthermore, the
7th eigenvalue belonging to the Perron-cluster
is smaller in magnitude (λ7 = 0.89) than the
others (λ6 = 0.99). This type of effect in the
eigenvalues should cause the user to consider a
subclustering situation like the one caused by
the topics labels “atheism” and “misc. religion”
where one topic could clearly be considered a
subtopic of another.

To complete our discussion of this text
dataset, we present in Figure 7 the eigenvalue
plots of the Markov chains induced by two other
similarity matrices, the cosine matrix and the
Gaussian matrix. It is evident from this illus-
tration that these measures of similarity fail to
yield a nearly uncoupled Markov chain.

6.2 PenDigits17 PenDigits17 is a dataset, a
subset of which was used in [6], which consists
of coordinate observations made on handwritten
digits. There are roughly 1000 instances each of
k = 2 digits, ‘1’s and ‘7’s, drawn by 44 writers.
This is considered a difficult dataset because of
the similarity of the two digits and the number
of ways to draw each. The complete PenDigits
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(a) Eigenvalues from Cosine Graph
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(b) Eigenvalues from Gaussian Graph

Figure 7: Newsgroups dataset

dataset is available from the UCI machine learn-
ing repositiory [2]. For our experiments we used
the sequence k̃ = [3, 4, 5, 6] and a drop-tolerance
τ = 0.1. As seen in Figure 8 the Perron-cluster
is convincing prior to iteration, and the system is
almost completely uncoupled after 6 iterations.

For the purposes of comparison, we observe
the eigenvalues of the transition probability ma-
trices associated with the graphs defined by the
cosine similarity matrix (used for clustering of
this dataset in [6]) and the Gaussian similarity
matrix. In Figure 9 it is again clear that these
similarity matrices are inadequate for determin-
ing the number of clusters.

6.3 AGblog is an undirected hyperlink net-
work mined from 1222 political blogs. This
dataset was used in [6] and is described in [10]. It
contains k = 2 clusters pertaining to the liberal
and conservative division. We set our algorithms
to find k̃ = [2 : 7] clusters with a drop tolerance
of τ = 0.2. The resulting eigenvalue plots are
displayed in Figure 10.

Figure 11 displays the eigenvalues from the
Markov chain imposed by the similarity matrix
used in [6], which was simply the original hyper-
link matrix. This plot is particularly interesting
because it does contain what appears to be a
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Figure 8: PenDigits17 Dataset - ICC Results
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(a) Eigenvalues from Cosine Graph
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(b) Eigenvalues from Gaussian Graph

Figure 9: PenDigits17 Dataset

Perron cluster as defined by the large gap after
the 11th eigenvalue. There is, however, no indi-
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Figure 10: AGBlog Dataset - ICC Results

cation in any type of analysis that suggests there
are 11 communities in this dataset. We encour-
age readers to check out the visualizations of this
graph at www4.ncsu.edu/∼slrace which support
this hypothesis. We believe this “uncoupling”
is due, in fact, to rather isolated blogs that do
not link to other sites with the frequency that
others do. This example warns that outliers can
have a misleading effect on the eigenvalues of an
affinity matrix.

It may be unreasonable to expect a graph
clustering algorithm like Normalized Cut (NCut)
[26], Power Iteration (PIC) [6], or that of Ng,
Jordan and Weiss (NJW) [19] to accurately di-
vide a graph into two clusters when the eigen-
values of the associated Markov chain indicate
eleven potential groups to be formed rather than
two. In fact, we see the accuracy or purity of
the clusters found by these algorithms may in-
crease dramatically when the consensus matrix
is used in place of the original matrix. Table
2 shows the purity of the clusterings found by
these three spectral algorithms which were com-
pared in [6]. The consensus matrix makes the
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(a) Eigenvalues from Hyperlink Graph

Figure 11: AGBlog Dataset

true clusters more obvious to the first two algo-
rithms, and has little to no effect on the third.
The cluster solutions from the three algorithms
on the consensus matrix are identical. This type
of agreement is important in practice because it
gives the user an additional level of confidence
in the cluster solution [24].

Similarity Matrix NCut NJW PIC
Undirected Hyperlink 0.52 0.52 0.96
Consensus Matrix 0.95 0.95 0.95

Table 2: Comparison of purity measurements for
spectral algorithms on two similarity matrices
for AGBlog Data

7 Conclusions

This paper demonstrates the effectiveness of It-
erated Consensus Clustering (ICC) at the task
of determining the number of clusters, k, in a
dataset. Our main contribution is the formation
of a consensus matrix from multiple algorithms
and dimension reductions without prior knowl-
edge of k. This consensus matrix is superior to
other similarity matrices for determining k due
to the nearly uncoupled structure of its associ-
ated graph. If the graph of the initial consensus
matrix is not nearly uncoupled, then the adjust-
ments of iteration and drop tolerance outlined
in Section 5 will encourage such a structure.

Once the number of clusters is known, ICC
has been previously been shown to obtain ex-
cellent clustering results by encouraging the un-
derlying algorithms to agree upon a common
solution through iteration [23]. Here we have
demonstrated that using the consensus similar-
ity matrix instead of existing similarity matrices



can improve the performance of existing spectral
clustering algorithms as suggested in [15].

ICC is a flexible, exploratory method for de-
termining the number of clusters. Its framework
can be adapted to use any clustering algorithms
or dimension reductions preferred by the user.
This flexibility allows for scalability, given that
the computation time of our method is depen-
dent only upon the computation time of the al-
gorithms used. The drop tolerance, τ can be
changed to reflect the confidence the user has
with their chosen clustering algorithms based
upon the level of noise in the data. The range
of values specified for k̃ and the level of dimen-
sion reduction (if any) can also changed for the
purposes of investigation.
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