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Abstract

Graphs are used to model interactions in a variety of
contexts, and there is a growing need to quickly assess
the structure of a graph. Some of the most useful graph
metrics, especially those measuring social cohesion, are
based on triangles. Despite the importance of these tri-
adic measures, associated algorithms can be extremely
expensive. We propose a new method based on wedge
sampling. This versatile technique allows for the fast
and accurate approximation of all current variants of
clustering coefficients and enables rapid uniform sam-
pling of the triangles of a graph. Our methods come
with provable and practical time-approximation trade-
offs for all computations. We provide extensive results
that show our methods are orders of magnitude faster
than the state-of-the-art, while providing nearly the ac-
curacy of full enumeration. Our results will enable more
wide-scale adoption of triadic measures for analysis of
extremely large graphs, as demonstrated on several real-
world examples.

1 Introduction

Graphs are used to model infrastructure networks, the
World Wide Web, computer traffic, molecular interac-
tions, ecological systems, epidemics, citations, and so-
cial interactions, among others. Despite the differences
in the motivating applications, some topological struc-
tures have emerged to be important across all these
domains. triangles, which can be explained by ho-
mophily (people become friends with those similar to
themselves) and transitivity (friends of friends become
friends). This abundance of triangles, along with the

∗This work was funded by the DARPA Graph-theoretic Re-

search in Algorithms and the Phenomenology of Social Networks

(GRAPHS) program and by the DOE ASCR Complex Intercon-
nected Distributed Systems (CIDS) program, and Sandia’s Labo-

ratory Directed Research & Development (LDRD) program. San-
dia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary

of Lockheed Martin Corporation, for the U.S. Department of En-

ergy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.
†Sandia National Laboratories, CA, scomand@sandia.gov
‡Sandia National Laboratories, CA, apinar@sandia.gov
§Sandia National Laboratories, CA, tgkolda@sandia.gov

information they reveal, motivates metrics such as the
clustering coefficient and the transitivity ratios [29, 30].
The triangle structure of a graph is commonly used in
the social sciences for positing various theses on behav-
ior [11, 21, 7, 14]. Triangles have also been used in
graph mining applications such as spam detection and
finding common topics on the WWW [13, 4]. The au-
thors’ earlier work used distribution of degree-wise clus-
tering coefficients as the driving force for a new gener-
ative model, Blocked Two-Level Erdös-Rényi [23]. The
authors’ have also observed that relationships among
degrees of triangle vertices can be a descriptor of the
underlying graph [12].

1.1 Clustering coefficients The information about
triangles is usually summarized in terms of clustering
coefficients. Let G be a simple undirected graph with
n vertices and m edges. Let T denote the number of
triangles in the graph and W be the number of wedges
(a path of length 2). The most common measure is the
global clustering coefficient C = 3T/W , which measures
how often friends of friends are also friends. We show
that we can achieve speed-ups of up to four orders of
magnitude with extremely small errors; see Fig. 1 and
Fig. 2.

Figure 1: Speed-up over enumeration for global cluster-
ing coefficient computation with increasing numbers of
wedge samples

Our approach is not limited to clustering coeffi-
cients, however. A per-vertex clustering coefficient, Cv,
is defined as the fraction of wedges centered at v that
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Figure 2: Absolute error in global clustering coefficient
for increasing numbers of wedge samples

Table 1: Graph notation and clustering coefficients

n number of vertices
nd number of vertices of degree d
m number of edges
dv degree of vertex v
Vd set of degree-d vertices
W total number of wedges
Wv number of wedges centered at vertex v
T total number of triangles
Tv number of triangles incident to vertex v
Td number of triangles incident to a degree d vertex

C = 3T/W global clustering coefficient
Cv = Tv/Wv clustering coefficient of vertex v
C̄ = n−1

∑
v Cv local clustering coefficient

Cd = n−1d

∑
v∈Vd

Cv degree-wise clustering coefficient

participate in triangles. The mean value of Cv is called
the local clustering coefficient, C̄. A more nuanced view
of triangles is given by the degree-wise clustering coef-
ficients. This is a set of values {Cd} indexed by de-
gree, where Cd is the average clustering coefficient of
degree d vertices. In addition to degree distribution,
many graphs are characterized by plotting the cluster-
ing coefficients, i.e., Cd versus d. We summarize our
notation and give formal definitions in Tab. 1.

1.2 Related Work There has been significant work
on enumeration of all triangles [8, 22, 18, 5, 9]. Re-
cent work by Cohen [10] and Suri and Vassilvitskii [24]
give parallel implementations of these algorithms. Ar-
ifuzzaman et al. [1] give a massively parallel algorithm
for computing clustering coefficients. Enumeration al-
gorithms however, can be very expensive, since graphs
even of moderate size (millions of vertices) can have an
extremely large number of triangles (see e.g., Tab. 2).
Eigenvalue/trace based methods have been used by

Tsourakakis [25] and Avron [2] to compute estimates of
the total and per-degree number of triangles. However,
computing eigenvalues (even just a few of them) is a
compute-intensive task and quickly becomes intractable
on large graphs.

Most relevant to our work are sampling mecha-
nisms. Tsourakakis et al. [26] started the use of spar-
sification methods, the most important of which is
Doulion [28]. This method sparsifies the graph by keep-
ing each edge with probability p; counts the triangles
in the sparsified graph; and multiplies this count by
p−3 to predict the number of triangles in the original
graph. Various theoretical analyses of this algorithm
(and its variants) have been proposed [17, 27, 20]. One
of the main benefits of Doulion is that it reduces large
graphs to smaller ones that can be loaded into mem-
ory. However, their estimate can suffer from high vari-
ance [31]. Alternative sampling mechanisms have been
proposed for streaming and semi-streaming algorithms
[3, 16, 4, 6].

Yet, all these fast sampling methods only estimate
the number of triangles and give no information about
other triadic measures.

1.3 Our contributions In this paper, we introduce
the simple yet powerful technique of wedge sampling
for counting triangles. Wedge sampling is really an
algorithmic template, as opposed to a single algorithm,
as various algorithms can be obtained from the same
basic structure. Some of the salient features of this
method are:
• Versatility of wedge sampling: We show

how to use wedge sampling to approximate the various
clustering coefficients: C, C̄, and {Cd}. From these,
we can estimate the numbers of triangles: T and {Td}.
Moreover, our techniques can even be extended to find
uniform random triangles, which is useful for computing
triadic statistics. Other sampling methods are usually
geared towards only T and C.
• Provably good results with precise bounds:

The mathematical analysis of this method is a direct
consequence of standard Chernoff-Hoeffding bounds.
We obtain explicit time-error-accuracy tradeoffs. In
other words, if we want an estimate for C with error
at most 10% with probability at least 99.9% (say), we
know we need only 380 wedge samples. This estimate
is independent of the size of the graph, though the
preprocessing required by our method is linear in the
number of edges (to obtain the degree distribution).
• Fast and scalable: Our estimates converge

rapidly, well within the theoretical bounds provided. Al-
though there is no other method that competes directly
with wedge sampling, we compare with Doulion [28].



Our experimental studies show that our wedge sampling
algorithm is far faster, when the variances of the two
methods are similar (see Tab. 5 in the appendix). We
do not compare to eigenvalue-based approaches since
they are much more expensive for larger graphs.

2 The wedge sampling method

We present the general method of wedge sampling for
estimating clustering coefficients. In later sections, we
instantiate this for different algorithms.

We say a wedge is closed if it is part of a triangle;
otherwise, we say the wedge is open. Thus, in Fig. 3,
5 - 4 - 6 is an open wedge, while 3 - 4 - 5 is a closed
wedge. The middle vertex of a wedge is called its center,
i.e., wedges 5 - 4 - 6 and 3 - 4 - 5 are centered at 4 .

Figure 3: Example graph with 12 wedges and 1 triangle.

Wedge sampling is best understood in terms of the
following thought experiment. Fix some distribution
over wedges and let w be a random wedge. Let X be
the indicator random variable that is 1 if w is closed
and 0 otherwise. Denote µ = E[X].

Suppose we wish to estimate µ. We simply generate
k independent random wedges w1, w2, . . . , wk, with
associated random variables X1, X2, . . . , Xk. Define
X̄ = 1

k

∑
i≤kXi as our estimate. The Chernoff-

Hoeffding bounds give guarantees on X̄, as follows.

Theorem 2.1. (Hoeffding [15]) Let X1, X2, . . . , Xk

be independent random variables with 0 ≤ Xi ≤ 1 for
all i = 1, . . . , k. Define X̄ = 1

k

∑k
i=1Xi. Let µ = E[X̄].

Then for ε ∈ (0, 1), we have

Pr
{
|X̄ − µ| ≥ ε

}
≤ 2 exp(−2kε2).

Hence, if we set k = d0.5ε−2 ln(2/δ)e, then Pr[|X̄−µ| >
ε] < δ. In other words, with confidence at least 1 − δ,
the error in our estimate is at most ε.

Fig. 4 shows the number of samples needed for
different error rates. We show three different curves for
difference confidence levels. Increasing the confidence
has minimal impact on the number of samples. The
number of samples is fairly low for error rates of 0.1
or 0.01, but it increases with the inverse square of the
desired error.

Figure 4: The number of samples needed for different
error rates and different levels of confidence. A few data
points at 99.9% confidence are highlighted.

3 Computing the global clustering coefficient
and the number of triangles

We use the wedge sampling scheme to estimate the
global clustering coefficient, C. Consider the uniform
distribution on wedges. We can interpret E[X] as the
probability that a uniform random wedge is closed or,
alternately, the fraction of closed wedges.

To generate a uniform random wedge, note that the
number of wedges centered at vertex v is Wv =

(
dv

2

)
and W =

∑
vWv. We set pv = Wv/W to get a

distribution over the vertices. Note that the probability
of picking v is proportional to the number of wedges
centered at v. A uniform random wedge centered at v
can be generated by choosing two random neighbors of
v (without replacement).

Claim 3.1. Suppose we choose vertex v with probability
pv and take a uniform random pair of neighbors of v.
This generates a uniform random wedge.

Proof. Consider some wedge w centered at vertex v.
The probability that v is selected is pv = Wv/W . The
random pair has probability of 1/

(
dv

2

)
= 1/Wv. Hence,

the net probability of w is 1/W . �

Algorithm 1 C-wedge sampler

1: Compute pv for all vertices
2: Select k random vertices (with replacement) accord-

ing to probability distribution defined by {pv}.
3: For each selected vertex v, choose a uniform random

pair of neighbors of v to generate a wedge.
4: Output fraction of closed wedges as estimate of C.

Alg. 1 shows the randomized algorithm C-wedge
sampler for estimating C in a graph G. Combining the



Table 2: Properties of the graphs

Time
Graph n m W T C C̄ (secs)

amazon0312 401K 2350K 69M 3686K 0.160 0.421 0.261
amazon0505 410K 2439K 73M 3951K 0.162 0.427 0.269
amazon0601 403K 2443K 72M 3987K 0.166 0.430 0.268
as-skitter 1696K 11095K 16022M 28770K 0.005 0.296 90.897
cit-Patents 3775K 16519K 336M 7515K 0.067 0.092 3.764
roadNet-CA 1965K 2767K 6M 121K 0.060 0.055 0.095

web-BerkStan 685K 6649K 27983M 64691K 0.007 0.634 54.777
web-Google 876K 4322K 727M 13392K 0.055 0.624 0.894

web-Stanford 282K 1993K 3944M 11329K 0.009 0.629 6.987
wiki-Talk 2394K 4660K 12594M 9204K 0.002 0.201 20.572

youtube 1158K 2990K 1474M 3057K 0.006 0.128 2.740
flickr 1861K 15555K 14670M 548659K 0.112 0.375 567.160

livejournal 5284K 48710K 7519M 310877K 0.124 0.345 102.142

bound of Thm. 2.1 with Claim 3.1, we get the following
theorem.

Theorem 3.1. Set k = d0.5ε−2 ln(2/δ)e. The algo-
rithm C-wedge sampler outputs an estimate X̄ for the
clustering coefficient C such that |X̄−C| < ε with prob-
ability greater than (1− δ).

Note that the number of samples required is independent
of the graph size, but computing pv does depend on the
number of edges, m.

To get an estimate on T , the number of triangles,
we output X̄ ·W/3, which is guaranteed to be within
±εW/3 of T with probability greater than 1− δ.

3.1 Experimental results We implemented our al-
gorithms in C and ran our experiments on a computer
equipped with a 2.3GHz Intel core i7 processor with
4 cores and 256KB L2 cache (per core), 8MB L3 cache,
and an 8GB memory. We performed our experiments
on 13 graphs from SNAP [32] and per private commu-
nication with the authors of [19]. In all cases, direction-
ality is ignored, and repeated and self-edges are omit-
ted. The properties of these matrices are presented in
Tab. 2, where n, m, W , and T are the numbers of ver-
tices, edges, wedges, and triangles, respectively. And
C and C̄ correspond to the global and local clustering
coefficients. The last column reports the times for the
enumeration algorithm. Our enumeration algorithm is
based on the principles of [8, 22, 10, 24], such that each
edge is assigned to its vertex with a smaller degree (us-
ing the vertex numbering as a tie-breaker), and then
vertices only check wedges formed by edges assigned to
them for closure.

As seen in Fig. 1 wedge sampling works orders
of magnitude faster than the enumeration algorithm.
Detailed results on times can be seen in Tab. 3 in the

appendix. The timing results show tremendous savings;
for instance, wedge sampling only takes 0.015 seconds
on as-skitter while full enumeration takes 90 seconds.

Fig. 2 show the accuracy of the wedge sampling
algorithm. Again detailed results on times can be
seen in Tab. 3 in the appendix. At 99.9% confidence
(δ = 0.001), the upper bound on the error we expect
for 2K, 8K, and 32K samples is .043, .022, and .011,
respectively. Most of the errors are much less than the
bounds would suggest. For instance, the maximum error
for 2K samples is .007, much less than that 0.43 given
by the upper bound. Fig. 5 shows the fast convergence
of the clustering coefficient estimate (for the graph
amazon0505) as the number of samples increases. The
dashed line shows the error bars at 99.9% confidence.
In all our experiments, the real error is always much
smaller than what is indicated by Thm. 2.1.

Figure 5: Convergence of clustering coefficient estimate
as the number of samples increases for amazon0505.



4 Computing the local clustering coefficient

We now demonstrate how a small change to the under-
lying distribution on wedges allows us to compute the
local clustering coefficient, C̄. Alg. 2 shows the proce-
dure C̄-wedge sampler. The only difference between
C̄-wedge sampler and C-wedge sampler is in picking
random vertex centers. Vertices are picked uniformly
instead of from the distribution {pv}.

Algorithm 2 C̄-wedge sampler

1: Pick k uniform random vertices.
2: For each selected vertex v, choose a uniform random

pair of neighbors of v to generate a wedge.
3: Output the fraction of closed wedges as an estimate

for C̄.

Theorem 4.1. Set k = d0.5ε−2 ln(2/δ)e. The algo-
rithm C̄-wedge sampler outputs an estimate X̄ for the
clustering coefficient C̄ such that |X̄−C̄| < ε with prob-
ability greater than (1− δ).

Proof. Let us consider a single sampled wedge w, and
let X(w) be the indicator random variable for the wedge
being closed. Let V be the uniform distribution on
wedges. For any vertex v, let Nv be the uniform
distribution on pairs of neighbors of v. Observe that

E[X] = Pr
v∼V

[ Pr
(u,u′)∼Nv

[wedge {(u, v), (u′, v)} is closed]]

We will show that this is exactly C̄.

C̄ = n−1
∑
v

Cv = Ev∼V [Cv]

= Ev∼V [frac. of closed wedges centered at v]

= Ev∼V [E(u,u′)∼Nv
[X({(u, v), (u′, v)})]]

= Pr
v∼V

[ Pr
(u,u′)∼Nv

[{(u, v), (u′, v)} is closed]]

= E[X]

For a single sample, the probability that the wedge is
closed is exactly C̄. The bound of Thm. 2.1 completes
the proof. �

Fig. 6 and Fig. 7 present the results of our exper-
iments for computing the local clustering coefficients.
More detailed results can be found Tab. 4 in the ap-
pendix. Experimental setup and the notation are the
same as in §3.1. The results again show that wedge
sampling provides accurate estimations with tremen-
dous improvements in runtime. In this case, we come
closer to the theoretical error bounds. For instance, the
largest different in the 2K sample case is 0.017, which
is much closer to the theoretical error bound of 0.043.

Figure 6: Absolute error in local clustering coefficient
for increasing numbers of wedge samples

Figure 7: Speed-up in local clustering coefficient com-
putation time for increasing numbers of wedge samples

5 Computing degree-wise clustering
coefficients and triangle estimates

We demonstrate the power of wedge sampling by esti-
mating the degree-wise clustering coefficients {Cd}. We
also provide a sampling algorithm to estimate Td, the
number of triangles incident to degree-d vertices. Alg. 3
shows procedure Cd-wedge sampler.

Algorithm 3 Cd-wedge sampler

1: Pick k uniform random vertices of degree d.
2: For each selected vertex v, choose a uniform random

pair of neighbors of v to generate a wedge.
3: Output the fraction of closed wedges as an estimate

for Cd.

Theorem 5.1. Set k = d0.5ε−2 ln(2/δ)e. The algo-
rithm Cd-wedge sampler outputs an estimate X̄ for the
clustering coefficient Cd such that |X̄ − Cd| < ε with
probability greater than (1− δ).

Proof. The proof of the following is similar to that of
Thm. 4.1. Since Cd is the average clustering coefficient
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Figure 8: Computing degree-wise clustering coefficients using wedge sampling

of a degree d vertex, we can apply the same arguments
as in Thm. 4.1. �

By modifying the template given in §2, we can also
get estimates for Td. Now, instead of simply counting
the fraction of closed wedges, we take a weighted sum.
Alg. 4 describes the procedure Td-wedge sampler. We
let Wd = nd ·

(
d
2

)
denote the total number of wedges

centered at degree d vertices.

Algorithm 4 Td-wedge sampler

1: Pick k uniform random vertices of degree d.
2: For each selected vertex v, choose a uniform random

pair of neighbors of v to generate a wedge.
3: For each wedge wi generated, let Yi be the associ-

ated random variable such that

Yi =


0 if w is open,
1
3 if w is closed and has 3 vertices in Vd,
1
2 if w is closed and has 2 vertices in Vd,

1 if w is closed and has 1 vertex in Vd.

4: Ȳ = 1
k

∑
i Yi.

5: Output Wd · Ȳ as the estimate for Td.

Theorem 5.2. Set k = d0.5ε−2 ln(2/δ)e. The algo-
rithm Td-wedge sampleroutputs an estimate Wd · Ȳ for
the Td with the following guarantee: |Wd ·Ȳ −Td| < εWd

with probability greater than 1− δ.

Proof. For a single sampled wedge wi, we define Yi. We
will argue that the expected value of E[Y ] is exactly
Td/Wd below. Once we have that, an application of the
Hoeffding bound of Thm. 2.1 shows that |Ȳ −Td/Wd| <

ε with probability greater than 1 − δ. Multiplying this
inequality byWd, we get |Wd·Ȳ−Td| < εWd, completing
the proof.

To show E[Y ] = Td/Wd, partition the set S of
wedges centered on degree d vertices into four sets
S0, S1, S2, S3. The set Si (i 6= 0) contains all closed
wedges containing exactly i degree-d vertices. The
remaining open wedges go into S0. For a sampled wedge
w, if w ∈ Si, i 6= 0, then Yi = 1/i. If w ∈ S0, then
nothing is added. The wedge w is a uniform random
wedge from those centered on degree-d vertices. Hence,
E[Y ] = |S|−1(|S1|+ |S2|/2 + |S3|/3).

Now partition the set of triangles involving degree
d vertices into three sets S′1, S

′
2, S
′
3, where S′i is the

set of triangles with i degree d vertices. Observe that
|Si| = i|S′i|. If a triangle has i vertices of degree d,
then there are exactly i wedges centered in degree d
vertices (in that triangle). So, |S1| + |S2|/2 + |S3|/3 =
|S′1|+ |S′2|+ |S′3| = Td. Therefore, E[Y ] = Td/Wd. �

5.1 Computing the clustering coefficient for
bins of vertices Algorithms in the previous section
present how to compute the clustering coefficient of
vertices of a given degree. In practice, it may be
sufficient to compute clustering coefficients over bins
of degrees. Wedge sampling algorithms can still be
extended for bins of degrees by a small adjustment of the
sampling procedure. Within each bin, we weight each
vertex according to the number of wedges it produces.
This guarantees that each wedge in the bin is equally
likely to be selected.

5.2 Experimental results Fig. 8 shows results on
three graphs for clustering coefficients; the remaining
figures are shown in the Fig. 12 in the appendix. The
data is grouped in logarithmic bins of degrees, i.e.,



{ 2 } , { 3, 4 } , { 5, 6, 7, 8 } , . . . . In other words, 2i−1 <
dv ≤ 2i form the i-th bin. We show the estimates with
increasing number of samples. At 8K samples, the error
is expected to be less than 0.02, which is apparent in the
plots. Observe that even 500 samples yields a reasonable
estimate in terms of the differences by degree.

Fig. 9 shows the time to calculate all Cd values,
showing a tremendous savings in runtime as a result
of using wedge sampling. In this figure, runtimes
are normalized with respect to the runtimes of full
enumeration. As the figure shows, wedge sampling takes
only a tiny fraction of the time of full enumeration
especially for large graphs.

Figure 9: Speed-up in degree-wise clustering coefficient
computation time for increasing numbers of wedge
samples

6 Generating a uniform sample of the triangles

While most triadic measures focus on the number of tri-
angles and their distribution, the triangles themselves,
not only their count, can reveal a lot of information
about the graph. The authors’ recent work [12] has
looked at the relations among the degrees of the ver-
tices of triangles. In these experiments, a full enumera-
tion of the triangles was used, which limited the sizes of
the graphs we could use. To avoid this computational
burden, a uniform sampling of the triangles can be used.

Wedge sampling provides a uniform sampling the
triangles of a graph. Consider the uniform wedge
sampling of Alg. 1. Some of these wedges will be closed,
so we generate a random set of triangles. Each such
triangle is an independent, uniform random triangle.
This is because wedges are chosen from the uniform
distribution, and every triangles contains exactly 3
closed wedges. Fig. 10 presents the results using triangle
sampling to estimate the percentage of triangles where
the maximum to minimum degree ratio is ≥ 10, which
is motivated by an experiment in [12]. The figure shows
that accurate results can be achieved by using only 500

triangles and that wedge sampling provides an unbiased
selection of triangles. The expected number of wedges
to be sampled to generate Ts triangles is 3Ts/C, which
means the method will be effective unless the clustering
coefficient is extremely small.

Figure 10: Error in computing percentage of triangles
where the maximum to minimum degree ratio is ≥ 10
for increasing number of samples.

7 Comparison to Doulion

Doulion [28] is an alternative sampling mechanism for
estimating the number of triangles in a graph. It has a
single parameter p. Each edge is chosen independently
at random with probability p, leading to a subgraph of
expected size pm (m is the total number of edges). We
count the number of triangles T ′ in this subgraph, and
estimate the total number of triangles by T ′/p3. It is
not hard to verify that this is correct in expectation,
but bounding the variance requires a lot more work.
Some concentration bounds for this estimate are known
[27, 20], but they depend on the maximum number of
triangles incident to an edge in the graph. So they
do not have the direct form of Thm. 3.1. Some bad
examples for Doulion have been observed [31]. Doulion

Figure 11: Speedups of wedge sampling with 32K
samples over Doulion with p = 1/25.



is extremely elegant and simple, and leads to an overall
reduction in graph size (so a massive graph can now fit
into memory). Common values of p used are p = 1/10
and p = 1/25.

We show that wedge sampling performs at least
as good as Doulion in terms of accuracy, and has
better runtimes. We run wedge sampling with 32K
samples. We start with setting the Doulion parameter
p = 1/25, which has been used in the literature. Note
that the size of the Doulion sample is m/25, which is
much larger than 32K. (For amazon0312, one of the
smaller graphs we consider, m/25 ≈ 90K.) We run
each algorithm 100 times. The (average) runtimes are
compared in Fig. 11, where we see that wedge sampling
is always competitive. The accuracy of the estimate
is comparable for both algorithms. In Tab. 5 in the
appendix, we present the minimum, maximum, and
standard deviation for the 100 runs. This also shows the
good convergence properties of both algorithms, since
even the minimum and maximum values are fairly close
to the true clustering coefficient. We also try p = 1/50
and note that wedge sampling with 32K samples is
still faster in terms of runtime while offering somewhat
better accuracy. By setting p = 1/100, the sample size
of Doulion becomes comparable to 32K, but Doulion is
quite inaccurate (the range between the maximum and
the minimum is large).

In Tab. 6 of the appendix, we also compare results
for the local clustering coefficient.

8 Significance and Impact

We have proposed a series of wedge-based algorithms
for computing various triadic measures on graphs. Our
algorithms come with theoretical guarantees in the form
of specific error and confidence bounds. We want to
stress that the number of samples required to achieve a
specified error and confidence bound is independent of
the graph size. For instance, 38,000 samples guarantees
and error less than 0.1% with 99.9% confidence for
any graph, which gives our algorithms an incredible
potential for scalability. The limiting factors have
to do with determining the sampling proportions; for
instance, we need to know the degree of each vertex and
the overall degree distribution to compute the global
clustering coefficient.

The flexibility of wedge sampling along with the
hard error bounds essentially redefines what is feasible
in terms of graph analysis. The very expensive compu-
tation of clustering coefficient is now much faster (en-
abling more near-real-time analysis of networks) and we
can consider much larger graphs than before. In an
extension of this work, we are pursuing a MapReduce
implementation of this method that scales to O(100M)

nodes and O(1B) edges, needing only a few minutes of
compute time (based on preliminary results).

With triadic analysis no long being a computational
burden, we can extend our horizons into new territories
and look at directed triangles, attributed triangles (e.g.,
we might compare the clustering coefficient for “male”
and “female” nodes in a social network), evolution of
triadic connections, higher-order structures such a 4-
cycles and 4-cliques, and so on.
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A Appendix

Various detailed results are shown in the appendix.
We present the runtime results for global clustering

coefficient computations in Tab. 5. As mentioned ear-
lier, we perform 100 runs of each algorithm and show
the minimum, maximum, and standard deviations of the
output estimates. We also show the relative speedup of
wedge sampling over Doulion with p = 1/50.

We also used Doulion to compute the local clus-
tering coefficient. For this purpose, we predicted the
number of triangles incident to a vertex by counting
the triangles in the sparsified graph and then dividing
this number by p3. The results of our experiments are
presented in Tab. 6, which shows that Doulion fails in
accuracy even for p = 1/10. This is because local clus-
tering coefficient is a finer level statistic, which becomes
a challenge for Doulion. Wedge sampling on the other
hand, keeps its accurate estimations with low variance.



Table 3: Estimating the global clustering coefficient

Wedge Sampling Time (sec)

Graph n m W T C 2K 8K 32K E 2K 8K 32K

amazon0312 401K 2350K 69M 3686K 0.160 0.163 0.161 0.160 0.261 0.004 0.007 0.016
amazon0505 410K 2439K 73M 3951K 0.162 0.158 0.165 0.163 0.269 0.005 0.007 0.016
amazon0601 403K 2443K 72M 3987K 0.166 0.161 0.164 0.167 0.268 0.004 0.007 0.017
as-skitter 1696K 11095K 16022M 28770K 0.005 0.006 0.006 0.006 90.897 0.015 0.019 0.026

cit-Patents 3775K 16519K 336M 7515K 0.067 0.064 0.067 0.068 3.764 0.035 0.040 0.056
roadNet-CA 1965K 2767K 6M 121K 0.060 0.061 0.058 0.058 0.095 0.018 0.022 0.037

web-BerkStan 685K 6649K 27983M 64691K 0.007 0.005 0.006 0.007 54.777 0.007 0.009 0.016
web-Google 876K 4322K 727M 13392K 0.055 0.055 0.054 0.056 0.894 0.009 0.011 0.020

web-Stanford 282K 1993K 3944M 11329K 0.009 0.013 0.008 0.009 6.987 0.003 0.005 0.011
wiki-Talk 2394K 4660K 12594M 9204K 0.002 0.004 0.003 0.002 20.572 0.021 0.024 0.033

youtube 1158K 2990K 1474M 3057K 0.006 0.005 0.006 0.006 2.740 0.011 0.013 0.021
flickr 1861K 15555K 14670M 548659K 0.112 0.110 0.113 0.112 567.160 0.019 0.026 0.051

livejournal 5284K 48710K 7519M 310877K 0.124 0.127 0.126 0.124 102.142 0.048 0.051 0.073

Table 4: Estimating the local clustering coefficients

Estimate Time (sec)
Graph C̄ 2K 8K 32K E 2K 8K 32K

amazon0312 0.421 0.427 0.417 0.420 0.301 0.001 0.002 0.008
amazon0505 0.427 0.422 0.423 0.426 0.310 0.001 0.002 0.008
amazon0601 0.430 0.435 0.421 0.430 0.314 0.001 0.002 0.007
as-skitter 0.296 0.280 0.288 0.297 88.290 0.002 0.009 0.036
cit-Patents 0.092 0.089 0.094 0.091 4.081 0.001 0.003 0.012
roadNet-CA 0.055 0.049 0.059 0.054 0.112 0.000 0.002 0.006

web-BerkStan 0.634 0.629 0.639 0.633 53.892 0.006 0.021 0.085
web-Google 0.624 0.624 0.619 0.628 0.996 0.001 0.004 0.013

web-Stanford 0.629 0.612 0.635 0.633 6.868 0.002 0.010 0.038
wiki-Talk 0.201 0.199 0.194 0.199 20.254 0.007 0.028 0.108
youtube 0.128 0.130 0.132 0.131 18.948 0.002 0.008 0.031
flickr 0.375 0.369 0.371 0.377 575.493 0.001 0.006 0.021

livejournal 0.345 0.338 0.348 0.345 102.142 0.001 0.004 0.015
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Figure 12: Computing degree-wise clustering coefficients using wedge sampling



Table 5: Comparison of wedge sampling and Doulion for computing the global clustering coefficient

Wedge Sampling Doulion 1/25 Doulion 1/50 Doulion 1/100 Time

Graph C min max sd min max sd min max sd min max sd D50/WS

amaz0312 .160 .155 .166 .002 . .137 .188 .011 .093 .234 .031 .000 .392 .080 7.06
amaz0505 .162 .159 .167 .002 .133 .193 .011 .098 .241 .028 .000 .370 .081 7.37
amaz0601 .166 .162 .172 .002 .140 .193 .010 .088 .260 .028 .000 .457 .078 7.30
skitter .005 .005 .007 .000 .005 .006 .000 .004 .007 .001 .002 .008 .001 17.80
cit-Pat .067 .064 .071 .001 .060 .077 .003 .042 .099 .010 .027 .116 .022 15.76
road-CA .060 .058 .065 .001 .000 .133 .023 .000 .250 .062 .000 1.001 .193 5.84
w-BerSta .007 .006 .008 .001 .006 .008 .000 .006 .008 .000 .004 .011 .001 16.28
w-Google .055 .052 .059 .001 .051 .060 .002 .044 .071 .005 .021 .107 .016 1.20
w-Stan .009 .007 .010 .001 .007 .010 .001 .006 .012 .001 .003 .018 .003 7.18
wiki-T .002 .002 .003 .000 .002 .002 .000 .002 .003 .000 .001 .004 .001 8.52
youtube .006 .005 .007 .000 .005 .007 .001 .004 .010 .001 .000 .018 .004 7.55
flickr .112 .108 .117 .002 .110 .115 .001 .107 .118 .002 .098 .125 .005 11.38

livejour .124 .120 .128 .002 .121 .128 .001 .116 .130 .003 .105 .143 .007 3.49

Table 6: Comparison of wedge sampling and Doulion for computing the local clustering coefficient

Wedge Sampling Doulion 1/10 Doulion 1/25 Doulion 1/50
Graph C̄ min max stdev min max stdev min max stdev min max stdev

amaz0312 .421 .415 .426 .003 .395 .463 .014 .318 .558 .047 .195 .869 .140
amaz0505 .427 .421 .432 .003 .395 .463 .014 .338 .568 .056 .195 .869 .140
amaz0601 .430 .423 .437 .003 .403 .466 .013 .329 .633 .058 .239 .819 .120
skitter .296 .288 .303 .003 .272 .322 .011 .206 .384 .039 .122 .667 .105
cit-Pat .092 .088 .096 .002 .085 .099 .003 .066 .126 .011 .028 .199 .035
road-CA .055 .052 .058 .001 .038 .071 .006 .000 .118 .022 .000 .279 .062

w-BerSta .634 .627 .641 .003 .586 .700 .024 .532 .808 .057 .339 1.273 .165
w-Google .624 .615 .630 .003 .580 .688 .021 .471 .772 .063 .335 1.276 .183

w-Stan .629 .622 .636 .003 .532 .737 .038 .441 .982 .109 .218 1.218 .230
wiki-T .201 .195 .206 .002 .171 .240 .015 .055 .379 .067 .006 .609 .160
youtube .128 .167 .179 .002 .128 .218 .015 .055 .294 .057 .007 .767 .182
flickr .375 .368 .381 .003 .316 .411 .016 .212 .553 .066 .086 .774 .154

livejour .345 .337 .355 .003 .330 .359 .006 .296 .401 .023 .214 .500 .060


	1 Introduction
	1.1 Clustering coefficients
	1.2 Related Work
	1.3 Our contributions 

	2 The wedge sampling method
	3 Computing the global clustering coefficient and the number of triangles
	3.1 Experimental results

	4 Computing the local clustering coefficient
	5 Computing degree-wise clustering coefficients and triangle estimates
	5.1 Computing the clustering coefficient for bins of vertices
	5.2 Experimental results

	6 Generating a uniform sample of the triangles
	7 Comparison to Doulion
	8 Significance and Impact
	A Appendix

