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Abstract
Unsupervised models can provide supplementary soft con-
straints to help classify new target data under the assump-
tion that similar objects in the target set are more likely to
share the same class label. Such models can also help de-
tect possible differences between training and target distri-
butions, which is useful in applications where concept drift
may take place. This paper describes a Bayesian frame-
work that takes as input class labels from existing classifiers
(designed based on labeled data from the source domain),
as well as cluster labels from a cluster ensemble operating
solely on the target data to be classified, and yields a con-
sensus labeling of the target data. This framework is partic-
ularly useful when the statistics of the target data drift or
change from those of the training data. We also show that
the proposed framework is privacy-aware and allows per-
forming distributed learning when data/models have shar-
ing restrictions. Experiments show that our framework can
yield superior results to those provided by applying classifier
ensembles only.

1 Introduction

In several data mining applications, one builds an
initial classification model that needs to be applied
to unlabeled data acquired subsequently. Since the
statistics of the underlying phenomena being modeled
changes with time, these classifiers may also need to
be occasionally rebuilt if performance degrades beyond
an acceptable level. In such situations, it is desirable
that the classifier functions well with as little labeling
of new data as possible, since labeling can be expensive
in terms of time and money, and a potentially error-
prone process. Moreover, the classifier should be able
to adapt to changing statistics to some extent, given the
aforementioned constraints.

This paper addresses the problem of combining
multiple classifiers and clusterers in a fairly general
setting, that includes the scenario sketched above. An
ensemble of classifiers is first learnt on an initial labeled
training dataset after which the training data can be
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discarded. Subsequently, when new unlabeled target
data is encountered, a cluster ensemble is applied to it,
thereby generating cluster labels for the target data.
The heart of our approach is a Bayesian framework
that combines both sources of information (class/cluster
labels) to yield a consensus labeling of the target data.

The setting described above is, in principle, differ-
ent from transductive learning setups where both la-
beled and unlabeled data are available at the same time
for model building [19], as well as online methods [6].
Additional differences from existing approaches are de-
scribed in the section on related works. For the moment
we note that the underlying assumption is that similar
new objects in the target set are more likely to share
the same class label. Thus, the supplementary con-
straints provided by the cluster ensemble can be use-
ful for improving the generalization capability of the
resulting classifier system. Also, these supplementary
constraints can be useful for designing learning methods
that help determining differences between training and
target distributions, making the overall system more ro-
bust against concept drift.

We also show that our approach can combine cluster
and classifier ensembles in a privacy-preserving setting.
This approach can be useful in a variety of applications.
For example, the data sites can represent parties that
are a group of banks, with their own sets of customers,
who would like to have a better insight into the behavior
of the entire customer population without compromis-
ing the privacy of their individual customers.

The remainder of the paper is organized as follows.
The next section addresses related work. The proposed
Bayesian framework — named BC3E, from Bayesian
Combination of Classifiers and Clusterer Ensembles —
is described in Section 3. Issues with privacy preserva-
tion are discussed in Section 4 and the experimental
results are reported in Section 5. Finally, Section 6 con-
cludes the paper.

2 Related Work

The combination of multiple classifiers to generate an
ensemble has been proven to be more useful compared
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to the use of individual classifiers [17]. Analogously,
several research efforts have shown that cluster ensem-
bles can improve the quality of results as compared to a
single clusterer — e.g., see [21] and references therein.
Most of the motivations for combining ensembles of clas-
sifiers and clusterers are similar to those that hold for
the standalone use of either classifier or cluster ensem-
bles. Additionally, unsupervised models can provide
supplementary constraints for classifying new data and
thereby improve the generalization capability of the re-
sulting classifier. These successes provide the motiva-
tion for designing effective ways of leveraging both clas-
sifier and cluster ensembles to solve challenging predic-
tion problems.

Specific mechanisms for combining classification
and clustering models however have been introduced
only recently in the Bipartite Graph-based Consen-
sus Maximization (BGCM) algorithm [13], the Locally
Weighted Ensemble (LWE) algorithm [12] and, in the
C3E algorithm [3]. Both BGCM and C3E have pa-
rameters that control the relative importance of clas-
sifiers and clusterers. In traditional semi-supervised
settings, such parameters can be optimized via cross-
validation. However, if the training and the target dis-
tributions are different, cross-validation is not possible.
From this viewpoint, our approach (BC3E) can be seen
as an extension of C3E [3] that is capable of dealing
with this issue in a more principled way. In addition,
the algorithms in [13, 12, 3] do not deal with privacy is-
sues, whereas our probabilistic framework can combine
class labels with cluster labels under conditions where
sharing of individual records across data sites is not per-
mitted. It uses a soft probabilistic notion of privacy,
based on a quantifiable information-theoretic formula-
tion [16]. Note that existing works on Bayesian classifier
ensembles — e.g., [10, 8, 14] — do not deal with privacy
issues.

From the clustering side, the proposed model bor-
rows ideas from the Bayesian Cluster Ensemble [21].
In [1], we introduced some preliminary ideas that are
further developed in our current paper. In particular,
the algorithm in [1] is not capable of automatically es-
timating the importance that classifiers and clusterers
should have. This property is fundamental for applica-
tions where training and target distributions are differ-
ent. In addition, the Bayesian model presented here is
considerably different and requires more sophisticated
inference and estimation procedures.

3 Probabilistic Model

We assume that a classifier ensemble has been (previ-
ously) induced from a training set. At this point and
assuming a non-transductive setting, the training data

can be discarded if so desired. Such a classifier ensem-
ble is employed to generate a number of class labels (one
from each classifier) for every object in the target set.
BC3E refines such classifier prediction with the help of
a cluster ensemble. Each base clustering algorithm that
is part of the ensemble partitions the target set, pro-
viding cluster labels for each of its objects. From this
point of view, the cluster ensemble provides supplemen-
tary constraints for classifying those objects, with the
rationale that similar objects — those that are likely
to be clustered together across (most of) the partitions
that form the cluster ensemble — are more likely to
share the same class label.

Consider a target set X = {xn}Nn=1 formed by N
unlabeled objects. A classifier ensemble composed of
r1 models has produced r1 class labels for every object
xn ∈ X . It is assumed that the target objects belong
to k classes denoted by C = {Ci}ki=1 and at least
one object from each of these classes was observed in
the training phase (i.e. we do not consider “novel”
classes in the target set). Similarly, consider that a
cluster ensemble comprised of r2 clustering algorithms
has generated cluster labels for every object in the target
set. The number of clusters need not be the same across
different clustering algorithms. Also, it should be noted
that the cluster labeled as 1 in a given data partition
may not align with the cluster numbered 1 in another
partition, and none of these clusters may correspond to
class 1. Given the class and cluster labels, the objective
is to come up with refined class probability distributions
{(P̂ (Ci|xn))ki=1 = yn}Nn=1 of the target set objects. This
framework is illustrated in Fig. 1.

The observed class and cluster labels are repre-
sented as W = {{w1nl}, {w2nm}} where w1nl is the 1-
of-k representation of class label of the nth object given
by the lth classifier, and w2nm is the 1-of-k(m) represen-
tation of cluster label assigned to the nth object by the
mth clusterer. A generative model is proposed to ex-
plain the observations W , where each object xn has an
underlying mixed-membership to the k different classes.
Let f(yn) denote the latent mixed-membership vector

for xn, where f(x) = exp(xi)∑
i=1 exp(xi)

is the softmax func-

tion. yn is sampled from a normal distributionN (µ,Σ).
Also, corresponding to the ith class and mth base clus-
tering, we assume a multinomial distribution βmi over
the cluster labels of the mth base clustering. Therefore,

βmi is of dimension k(m) and
∑k(m)

j=1 βmij = 1 if the mth

base clustering has k(m) clusters. The data generative
process, whose corresponding graphical model is shown
in 2, can be summarized as follows.

For each xn ∈ X :

1. Choose yn ∼ N (µ,Σ), where µ ∈ Rk is the mean



Figure 1: Combining Classifiers and Clusterers.
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Figure 2: Graphical Model for BC3E

and Σ ∈ Rk×k is the covariance.

2. Choose θn ∼ N (yn, δ
2Ik), where δ2 ≥ 0 is the

scaling factor of the covariance of the normal
distribution centered at yn, and Ik is the identity
k × k matrix.

3. ∀l ∈ {1, 2, · · · , r1}, choose w1nl ∼ f(yn).

4. ∀m ∈ {1, 2, · · · , r2}:

(a) Choose znm ∼ f(θn), where znm is a k-
dimensional vector with 1-of-k representation.

(b) Choose w2nm ∼ multinomial(βrznm
).

The observed class labels {w1nl} are assumed to
be sampled from the latent mixed-membership vector
f(yn). If the nth object is sampled from the ith class
in the mth base clustering (implying znmi = 1), then
its cluster label will be sampled from the multinomial
distribution βmi. This particular generative process
is analogous to the one used by the Bayesian Cluster
Ensemble in [21]. The fact that θn is sampled from
N (yn, δ

2Ik) needs further clarification. In practice, the
observed class labels and cluster labels carry different
intrinsic weights. If the observations from the classi-
fiers are assigned too much weight compared to those
from clustering, there is little hope for the clustering
to enhance classification. Similarly, if the observations
from the clustering are given too much of importance,
the classification performance might deteriorate. Ide-
ally, the unsupervised information is only expected to
enhance the classification accuracy.

Aimed at building a “safe” model that can intel-
ligently utilize or reject the unsupervised information,
θn is sampled from N (yn, δ

2Ik) where the parameter
δ decides how much the observations from the cluster-
ings can be trusted. If δ2 is a large positive number,
yn does not have to explain the posterior of θn. From
the generative model perspective, this means that the

sampled value of θn is not governed by yn anymore as
the distribution has very large variance. On the other
hand, if δ2 is a small positive number, yn has to ex-
plain the posterior of θn and hence the observations
from the clustering. Therefore, the posteriors of {yn}
are expected to get more accurate compared to the case
if they only had to explain the classification results. A
concrete quantitative argument for this intuitive state-
ment will be presented later.

To address the log-likelihood function of BC3E,
let us denote the set of hidden variables by Z =
{{yn, {θn}, {znm}}. The model parameters can conve-
niently be represented by ζ0 = {µ,Σ, δ2, {βmi}}. The
joint distribution of the hidden and observed variables
can be written as:

(3.1) p(X,Z|ζ0) =

N∏
n=1

p(yn|µ,Σ)p(θn|yn, δ2Ik).

r1∏
l=1

p(w1nl|f(yn))

r2∏
m=1

p(znm|f(θn))p(w2nm|β, znm)

The inference and estimation is performed using Varia-
tional Expectation-Maximization (VEM) to avoid com-
putational intractability due to the coupling between θ
and β.

3.1 Approximate Inference and Estimation:

3.1.1 Inference: To obtain a tractable lower bound
on the observed log-likelihood, we specify a fully factor-
ized distribution to approximate the true posterior of
the hidden variables:

q(Z|{ζn}Nn=1) =

N∏
n=1

q(yn|µn,Σn)q(θn|εn,∆n)

r2∏
m=1

q(znm|φnm)(3.2)



where yn ∼ N (µn,Σn), θn ∼ N (εn,∆n) ∀n ∈
{1, 2, · · · , N}, znm ∼ multinomial(φnm) ∀n ∈
{1, 2, · · · , N} and ∀m ∈ {1, 2, · · · , r2}, and ζn =
{µn,Σn, εn,∆n), {φnm}} – the set of variational pa-
rameters corresponding to the nth object. Further,
µn, εn ∈ Rk, Σn,∆n ∈ Rk×k ∀n and φnm =
(φnmi)

k
i=1 ∀n,m; where the components of the corre-

sponding vectors are made explicit. To work with
less parameters, all the covariance matrices are as-
sumed to be diagonal. Therefore, Σ = diag

(
(σi)

k
i=1

)
,

Σn = diag
(
(σni)

k
i=1

)
, and ∆n = diag

(
(δni)

k
i=1

)
. Us-

ing Jensen’s inequality, a lower bound on the observed
log-likelihood can be derived as:

log[p(X|ζ0)] ≥ Eq(Z) [log[p(X,Z|ζ0)]] +H(q(Z))

= L(q(Z))(3.3)

where H(q(Z)) = −Eq(Z)[log[q(Z)]] is the entropy of
the variational distribution q(Z), and Eq(Z)[.] is the
expectation w.r.t q(Z).

Let Q be the set of all distributions having a
fully factorized form as given in (3.2). The optimal
distribution that produces the tightest possible lower
bound L is given by:

q∗ = arg min
q∈Q

KL(p(Z|X, ζ0)||q(Z)).(3.4)

In equations (4), (6), (8), (10), (12), (13) and (14) in
Table 1, the optimal values of the variational parameters
that satisfy (3.4) are presented. Since the logistic
normal distribution is not conjugate to multinomial,
the update equations of all the parameters cannot be
obtained in closed form. For the parameters that do
not have a closed form solution for the update, we
just present the part of the objective function that
depends on the concerned parameter and some numeric
optimization method has to be used for optimizing the
lower bound. Since φnm is a multinomial distribution,
the updated values of the k components should be
normalized to unity. Note that the optimal value of
one of the variational parameters depends on the others
and, therefore, an iterative optimization is adopted to
minimize the lower bound till convergence is achieved.

.4
Equations (6) and (8) present updates for two

new parameters. These parameters come from
Eq(log p(w1nl|f(yn))) and Eq(log p(znm|f(θn))) re-
spectively. Both of these integrations do not have ana-
lytic solution and hence a first order Taylor approxima-
tion is utilized as also done in [5]. A closer inspection
of (12) reveals that δ2 appears in the denominator of

the term

k∑
i=1

(µni − εni)
2/δ2 in the objective. Hence,

larger values of δ2 will nullify any effect from εn which,
in turn, is affected by the observations {w2nm} (as is
obvious from (14)). On the other hand, if δ2 is small
enough, εn can strongly impact the values of µn.

3.1.2 Estimation: For estimation, we maximize the
optimized lower bound obtained from the variational in-
ference w.r.t the free model parameters ζ0 (by keeping
the variational parameters fixed). The optimal values
of the model parameters are presented in equations (5),
(7) and (9). Since βmi is a multinomial distribution,
the updated values of k(m) components should be nor-
malized to unity. However, no closed form of update
exists for σ2, and a numeric optimization method has
to be resorted to. The part of the objective function
that depends on σ2 is provided in Eq. (11). Once
the optimization in M-step is done, E-step starts and
the iterative update is continued till convergence. The
variational parameters {µn}Nn=1 are then investigated
which serve as proxy for the refined posterior estimates
of {yn}Nn=1. The main steps of inference and estimation
are concisely presented in Algorithm 1.

Algorithm 1 Learning BC3E
Input: W .

Output: θm, {µn}Nn=1.

Initialize θm, {ζn}Nn=1.

Until Convergence
E-Step

Until Convergence

1. Update κn using Eq. (6) ∀n ∈ {1, 2, · · · , N}.
2. Update ξn using Eq. (8) ∀n ∈ {1, 2, · · · , N}.
3. Update φnmi using Eq. (4) ∀n,m, i. Normalize φnm.

4. Maximize (12) w.r.t. µn ∀n.
5. Maximize (13) w.r.t. σ2

n ∀n s.t. σ2
n ≥ 0.

6. Maximize (14) w.r.t. εn ∀n.
7. Maximize (10) w.r.t. δ2n ∀n s.t. δ2n ≥ 0.

M-Step

8. Update µ using Eq. (5).
9. Update δ2 using Eq. (9).

10. Update βmij using Eq. (7) ∀m, i, j. Normalize θmi.
11. Maximize (11) w.r.t. σ2 s.t. σ2 ≥ 0.

4 Privacy Preserving Learning

Most of the privacy-aware distributed data mining tech-
niques developed so far have focused on classifica-
tion or on association rules [4, 11]. There has also
been some work on distributed clustering for vertically
partitioned data (different sites contain different at-
tributes/features of a common set of records/objects)
[15], and on parallelizing clustering algorithms for hori-
zontally partitioned data (i.e. the objects are distributed
amongst the sites, which record the same set of features
for each object) [9]. These techniques, however, do not



Update Equations

φ∗nmi ∝ exp

εni +

k(m)∑
j=1

βmijw2nmj

 ∀n,m, i. (4) µ∗ = 1
N

N∑
n=1

µn. (5)

κ∗n =

k∑
i=1

exp(µni + σ2
ni/2) ∀n. (6) β∗mij ∝

N∑
n=1

φnmiw2nmj ∀j ∈ 1, 2, · · · , km. (7)

ξ∗n =

k∑
i=1

exp(εni + δ2ni/2) ∀n. (8) δ2 = 1
Nk

N∑
n=1

k∑
i=1

[
(εni − µni)2 + σ2

ni + δ2ni
]
. (9)

L[δ2n] = −
1
2

k∑
i=1

δ2ni

δ2
−

1

2

k∑
i=1

log(δ
2
ni)−

r2

ξn

k∑
i=1

exp(εni + δ
2
ni/2). (10) L[σ2] = −

N
2

k∑
i=1

log(σ
2
i )−

1

2

N∑
n=1

k∑
i=1

[σ2
ni + (µni − µi)

2

σ2
i

]
. (11)

L[µn]
= − 1

2

k∑
i=1

(µni − µi)2

σ2
i

− 1

2δ2

k∑
i=1

(µni − εni)2 +

r1∑
l=1

k∑
i=1

w1nliµni −
r1
ξn

k∑
i=1

exp(µni + σ2
ni/2). (12)

L[σ2
n]

= − 1
2

k∑
i=1

σ2
ni

σ2
i

− 1

2

k∑
i=1

log(σ2
ni)−

1

2

k∑
i=1

σ2
ni

δ2
− r1
κn

k∑
i=1

exp(µni + σ2
ni/2). (13)

L[εn] =

r2∑
m=1

k∑
i=1

φnmiεni −
1

ξn

k∑
i=1

exp(εni + δ2ni/2)− 1

2

k∑
i=1

(εni − µni)2

δ2
. (14)

Table 1: Equations for update of variational and model parameters in BC3E

specifically address privacy issues, other than through
encryption [20].

This is also true of earlier, data-parallel methods
[9] that are susceptible to privacy breaches, and also
need a central planner that dictates what algorithm
runs on each site. Finally, recent works on distributed
differential privacy focus on query processing rather
than data mining [7].

In the sequel, we show that the inference and esti-
mation in BC3E using VEM allows solving the clus-
ter ensemble problem in a way that preserves privacy.
Depending on how the objects with their cluster/class
labels are distributed in different “data sites”, we can
have three scenarios – i) Row Distributed Ensemble, ii)
Column Distributed Ensemble, and iii) Arbitrarily Dis-
tributed Ensemble.

4.1 Row Distributed Ensemble: In the row dis-
tributed ensemble learning framework, the test set X is
partitioned into D parts and different parts are assumed
to be at different locations. The objects from partition
d are denoted by Xd so that X = ∪Dd=1Xd. Now, a care-
ful look at the E-step equations reveal that the update
of variational parameters corresponding to each object
in a given iteration is independent of those of other ob-
jects. Therefore, we can maintain a client-server based
framework where the server only updates the model pa-
rameters (in the M-step) and the clients (there should
be as many number of clients as there are distributed
data sites) update the variational parameters.

For instance, consider a situation where a dataset
is partitioned into two subsets X1 and X2 and these two
subsets are located in two different data sites. Data
site 1 has access to X1 and a set of clustering and
classification results pertaining to objects belonging to
X1. Similarly, data site 2 has access to X2 and a set of
clustering and classification results corresponding to X2.
Further assume that a set of distributed classification
(clustering) algorithms were used to generate the class
(cluster) labels of the objects belonging to each set.
Now, data site 1 can update the variational parameters
ζn, ∀xn ∈ X1. Similarly, data site 2 can update the
variational parameters for all objects xn ∈ X2. Once the
variational parameters are updated in the E-step, the
server gathers information from two sites and updates
the model parameters. Now, a closer inspection of
the M-step update equations reveals that each of them
contains a summation over the objects. Therefore,
individual data sites can send only some collective
information to the server without transgressing privacy.
For example, consider the update equation for βmij . Eq.
(7) can be broken as follows:

(4.15) βmij
∗ ∝

∑
xn∈X1

φnliw2nli +
∑
xn∈X2

φnliw2nli

The first and second terms can be calculated in data
sites 1 and 2 separately and sent to the server where
the two terms can be added and βmij can get updated
∀m, i, j. Similarly, the other M-step update equations
(performed by the server in an analogous way) also do



not reveal any information about class or cluster labels
of objects belonging to different data sites.

4.2 Column Distributed Ensemble: In the col-
umn distributed framework, different data sites share
the same set of objects but only a subset of base clus-
terings or classification results are available to each data
site. For example, consider that we have two data sites
and four sets of class and cluster labels and each data
site has access to only two sets of classification or clus-
tering results. Assume that data site 1 has access to
the 1st and 2nd classification and clustering results and
data site 2 has access to the rest of the results. As in the
earlier case, a single server and two clients (correspond-
ing to two different data sites) are maintained. Since
each data site has access to all the objects, it is neces-
sary to share the variational parameters corresponding
to these objects. Therefore, {κn, ξn,µn,σn, εn, δn}Nn=1

are all updated in the server (which is accessible from
each client).

The site (and object) specific variational parameters
{φnmi}, however, cannot be shared and should be
updated in individual sites. This means that the
updates (6), (8), (12), (14), (10) and (13) should be
performed in the server. On the other hand, the update
for {φnmi}∀n, i and m ∈ {1, 2} (corresponding to the
1nd and 2nd clustering or classification results) should
be performed in data site 1. Similarly, the update for
{φnmi} ∀n, i and m ∈ {3, 4} has to be performed in data
site 2. However, while updating {µn}, the calculation of

the term

r1∑
l=1

k∑
i=1

w1nliµni has to be performed without

revealing the class labels {w1nl} to the server. To that
end, it can be rewritten as:
(4.16)
r1∑
l=1

k∑
i=1

w1nliµni =

2∑
l=1

k∑
i=1

w1nliµni +

4∑
l=3

k∑
i=1

w1nliµni,

where the first term can be computed in data site 1 and
the second term can be computed by data site 2 and
then can be added in the server. It can be seen that
{w1nl} can never be recovered by the server and hence
privacy is ensured in the updates of the E-step. Except
for {βmij}, all other model parameters can be updated
in the server in the M-step. However, the parameters
{βmij} have to be updated separately inside the clients.
Since {βmij} do not appear in any update equation
performed in the server, there is no need to send these
parameters to the server either. Therefore, in essence,
the clients update the parameters {φnmi} and {βmij} in
E-step and M-step respectively, and the server updates
the remaining parameters.

4.3 Arbitrarily Distributed Ensemble: In an ar-
bitrarily distributed ensemble, each data site has access
to only a subset of the data points or a subset of the
classification and clustering results. Fig. 3 shows a situ-
ation with arbitrarily distributed ensemble with six data
sites.

We now refer to Fig. 4 and explain the privacy
preserved EM update for this setting. As before, corre-
sponding to each different data site, a client node is cre-
ated. Clients that share a subset of the objects should
have access to the variational parameters corresponding
to common objects. To highlight the sharing of objects
by clients, the test set X is partitioned into four subsets
— X1,X2,X3 andX4 as shown in Fig. 3. Similarly, the
columns are also partitioned into three subsets: G1, G2,
and G3.

Now, corresponding to each row partition, an “Aux-
iliary Server”(AS) node is created. Each AS updates
the variational parameters corresponding to a set of
shared objects. For example, in Fig. 4.3, AS1 updates
the variational parameters corresponding to X1 (using
equations (8), (6), (12), (13), (14), and (10)). However,
any variational parameter that is specific to both an
object and a column is updated separately inside the
corresponding client (and hence it is connected with C1

and C2). Therefore, {φnmi : n ∈ X1,m ∈ G1} are up-
dated inside client 1 and {φnmi : n ∈ X1,m ∈ G2 ∪G3}
are updated inside client 2 (using Eq. (4)). Once all
variational parameters are updated in the E-step, M-
step starts. Corresponding to each column partition, an
“Auxiliary Client” (AC) node is created. This node up-
dates the model parameters βmij (using Eq. (7)) which
are specific to columns belonging to G1. Since C1, C3,
and C5 share the columns from the subset G1, AC1 is
connected with these three nodes in Fig. 4.3. The re-
maining model parameters are, however, updated in a
“Server” (using equations (5), (9), (11)).

In Fig. 4.3, the bidirectional edges indicate that
messages are sent to and from the connecting nodes.
We have avoided separate arrows for each direction only
to keep the figure uncluttered. The edges are also
numbered near to their origin. For a comprehensive
understanding of the privacy preservation, the messages
transfered through each edge have also been enlisted in
the supplementary material. The messages sent from
the auxiliary servers to the main server are of the form
given in Eq. (4.15) and are denoted as “partial sums”.
Expectedly, messages sent out from a client node are
“masked” in such a way that no other node can decode
the cluster labels or class labels of points belonging to
that client. This approach is completely general and will
work for any arbitrarily partitioned ensemble given that
each partition contains at least two sets of classification
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results. Note that the ACs and ASs are only helpful
in conceptual understanding of the parameter update
and sharing. In practice, there is no real need for
these extra storage devices/locations. Client nodes can
themselves take the place of ASs and ACs and even the
main server as long as the updates are performed in
proper sequence1.

5 Experiments

In this section, two different sets of experiments are
reported. The first set is for transfer learning with a
text classification data from eBay Inc. The other set
is for non-transductive semisupervised learning where
some publicly available datasets are used to simulate
the working environment of BC3E.

5.1 Transfer Learning: To show the capability of
BC3E in solving transfer learning problems, we use
a large scale text classification dataset from eBay Inc.
The training data consists of 83 million items sold over
a three month period of time and the test set contains
several millions of items sold a few days after the train-
ing period. More details about the dataset can be found
in [18]. eBay organizes items into a six-level category
structure where there are 39 top level nodes called meta
categories and 20K+ bottom level nodes called leaf cate-
gories. The dataset is generated when users provide the

1Note that such framework allows running the updates of

the same stage in parallel in different sites, thereby saving the
computation time in large scale implementations.

titles of items they intend to sell on eBay. Each title is
limited to 50 characters, based on which the user gets
recommendation of some leaf categories the item should
belong to. Such categorization of the item helps a seller
list an item in the correct branch of the product list,
thereby allowing a buyer more easily search through a
list of few million items sold via eBay every single day. A
carefully designed k-Nearest Neighbor (k-NN) classifier
(with the help of improved search engine algorithms)
categorizes each of the items in less than 100 ms [18].
However, due to the large number of categories (20K),
items belonging to similar types of categories often get
misclassified.

To avoid such confusion, larger categories are
formed by aggregating examples from categories which
are relatively difficult to separate. Such aggregation is
easy once the confusion matrix of the classification, ob-
tained from a development dataset, is partitioned and
strongly connected vertices (each vertex representing
one of 20K leaf categories) are identified from the confu-
sion graph, thereby forming a set of cliques which repre-
sent the large categories. Note that the large categories
so discovered might not at all follow the internal hier-
archy that is maintained. Next, clustering is performed
with examples belonging to each of the large categories
and the clustering results, along with the predictions
from k-NN classification, are fed to BC3E (and also
to its competitors i.e. C3E, BGCM, and LWE). The
idea here is to first reduce the classification space and
then use unsupervised information to refine the predic-
tions from k-NN on a smaller number of categories. The



number of leaf categories belonging to such large cate-
gories usually varies between 4-10.

However, the dataset is very dynamic and, typi-
cally over a span of three months, 20% of new words
are added to the existing vocabulary. One can retrain
the existing k-NN classifier every three months, but
the training process requires collecting new labeled data
which is time consuming and expensive. One can addi-
tionally design classifiers to segregate examples belong-
ing to each of the large categories. However, such ap-
proach might not improve much upon the performance
of the initial k-NN classifier if the data changes so fre-
quently. Therefore, we require a system that can adap-
tively predict newer examples without retraining the
existing classifier or employing another set of classifica-
tion algorithms. BC3E is useful in such settings. The
parameter δ can adjust the weights of prediction from
classifiers and unsupervised information. As the results
reported in Table 5.1 reveal, as long as the classification
performance is not that poor, BC3E can improve on
the performance of k-NN using the clustering ensemble.

The column “Group ID” denotes anonymized
groups representing different large categories. |X | shows
the number of examples in the test data. The column
“C3E-Ideal” shows the performance of C3E if the cor-
rect tuning parameter for C3E were known. For a trans-
fer learning problem, estimating such tuning parameter
requires some labeled data from the target set which is
not available in our setting. If the tuning parameter is
chosen from cross-validation on the training data, the
final prediction on target set can get affected adversely
if the underlying distribution changes (and in fact it
does in our experiments). Therefore, we need to adopt
a fail-safe approach where we can do at least as good
as the k-NN prediction. The results reveal that BC3E
significantly outperforms BGCM and LWE, and some-
times achieves as good a performance as C3E-Ideal (i.e.
when correct tuning parameter of C3E is known). The
performance of C3E-Ideal can essentially be considered
as the best accuracy one could achieve from the given
inputs (i.e. class and cluster labels) using other existing
algorithms — BGCM, LWE, C3E — that work on the
same design space. Though BGCM has a tuning pa-
rameter, its variation did not affect performance much
and we just report results corresponding to unity value
of this parameter.

5.2 Semi-supervised Learning: Six datasets are
used in our experiments for semi-supervised learning:
Half-Moon (a synthetic dataset with two half circles
representing two classes), Circles (another synthetic
dataset that has two-dimensional instances that form
two concentric circles — one for each class), and four

datasets from the Library for Support Vector Machines
— Pima Indians Diabetes, Heart, German Numer, and
Wine. In order to simulate semi-supervised settings
where there is a very limited amount of labeled in-
stances, small percentages (see the values reported in
Table 5.2) of the instances are randomly selected for
training, whereas the remaining instances are used for
testing (target set). We perform 20 trials for every
dataset. For running experiments with BGCM, and
C3E, the parameters reported in [13] and [2] are used re-
spectively. The parameters of BC3E are initialized ran-
domly and approximately 10 EM iterations are enough
to get the results reported in Table 5.2. The classi-
fier ensemble consists of decision tree (C4.5), linear dis-
criminant, and generalized logistic regression. Cluster
ensembles are generated by means of multiple runs of
k-means [2]. LWE [12] is better suited for transfer
learning applications and hence has been left out from
comparison. The column “Best” in Table 5.2 refers to
the performance of the best classifier in the ensemble.
Note that BC3E has superior performance for the most
difficult problems, where one has an incentive to use a
more complex mechanism. Most importantly, BC3E
has the privacy preserving property not present in any
of its counterparts.

6 Conclusion and Future Work

The BC3E model proposed in this paper has been
shown to be useful for difficult non-transductive semisu-
pervised and transfer learning problems. A good trade-
off between accuracy and privacy has also been estab-
lished empirically – a property absent in any of BC3E’s
competitors. With minor modification, BC3E can also
handle soft outputs from classification and clustering
ensembles which can further improve the results.
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