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Abstract

Collective matrix factorization has achieved a remarkable

success in document classification in the literature of trans-

fer learning. However, the learned latent factors still suffer

from the divergence between different domains and thus are

usually not discriminative for an appropriate assignment of

category labels. Based on these observations, we impose

a discriminative regression model over the latent factors to

enhance the capability of label prediction. Moreover, we

propose to minimize the Maximum Mean Discrepancy in the

latent manifold subspace, as opposed to typically in the orig-

inal data space, to bridge the gap between different domains.

Specifically, we formulate these objectives into a joint opti-

mization framework with two matrix tri-factorizations for

the source and target domains simultaneously. An iterative

algorithm DTLM is developed and the theoretical analysis

of its convergence is discussed. Empirical study on bench-

mark datasets validates that DTLM improves the classifica-

tion accuracy consistently compared with the state-of-the-

art transfer learning methods.

1 Introduction

In real-world applications, we are often encountered
with the situation where there is lack of labeled data
for training in one domain while there are abundant
labeled data in another domain. To deal with this
situation, transfer learning has been proposed and is
shown very effective for leveraging labeled data in the
source domain to build an accurate classifier in the
target domain. Many existing transfer learning methods
explore common latent factors shared by both domains
to reduce the distribution divergence and bridge the
gap between different domains [3, 13, 17, 5]. Many of
the transfer learning algorithms which are based on the
collective matrix tri-factorization achieve a remarkable
succuss in the recent literature [19, 21, 14, 12].

This paper focuses on the literature of collective ma-
trix factorization based transfer learning. Though there
is a significant success, the learned latent factors still
suffer from the divergence between different domains
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and thus are usually not discriminative for an appro-
priate assignment of category labels. Specifically, there
are several issues that the existing literature on transfer
learning either fail to address appropriately or ignore
completely.

First, in the literature, the learned latent factors
serve two roles simultaneously. They represent the
cluster structures as one role during the matrix fac-
torization, and the category structures as another role
through the supervised guidance of given labels during
the classification. The cluster structures are determined
by the original data whereas the category structures are
determined by the concept summarization, typically su-
pervised by the given labels. Since all the existing collec-
tive matrix factorization based transfer learning meth-
ods make the matrix factorization and the classification
as two separate stages, a semantic gap exists between
the two roles for the same latent factors, which is com-
pletely ignored in the literature. For examples, in image
document classification, images of red balloons and red
apples might be first mapped into the same latent fac-
tors based on the original color data through matrix
factorization and then would have to be classified into
different classes through the supervised learning with
the given labels.

Second, since the matrix factorization and the
classification are done separately, if the learned latent
factors from the matrix factorization stage are wrong,
it may be difficult to ”correct” them back during the
classification stage even with given labels, as these
latent factors would be unable to be appropriately
assigned correct category labels in the low dimensional
manifold space. Figure (1) illustrates this issue, where
the resulting latent factors obtained from the Graph co-
regularized Collective Matrix tri-Factorization (GCMF)
[15] algorithm used to indicate the categories are shown
in the 2D latent space,, together with the decision
boundary of argmax(·) for categories. Clearly it is ”too
late” to assign some of the ”circles” to a correct category
label when they are already on the other side of the
decision boundary. This issue is similar to the trivial
solution and scale transfer problems [9] caused from the
collective matrix factorization.

Third, in transfer learning, the distributions of
the latent factors in source domain and target domain



are largely divergent, making the latent factors in the
target domain difficult to appropriately predict the
correct category labels though the learning in the source
domain.

To address these issues, we propose a domain trans-
fer learning method which incorporates the discrimina-
tive regression model to bridge the gap between the two
roles of the learned latent factors and minimizes the
distribution divergence of the latent factors directly, as
opposed to typically in the original data space, between
the source and the target domains using Maximum
Mean Discrepancy (MMD). Our objective is to minimize
the regression empirical loss and the MMD measure-
ment with respect to the latent factors which parame-
terize the embedded low dimensional manifold space in
different domains simultaneously. Furthermore, we ap-
ply the graph Laplacian regularization to preserve the
geometric structure in both source and target domains.
Based on all these consideratoins, we develop a unified
framework leading to an iterative algorithm called Dis-
criminative Transfer Learning on Manifold (DTLM).

The remainder of this paper is organized as follows.
In Section 2, we discuss the related work. Section 3 de-
fines the symbol notations and presents the formulation
of the proposed framework. The multiplicative iterative
optimization solution is derived in Section 4. In Sec-
tion 5, we provide a theoretical analysis of the DTLM
convergence. The extensive experiments on benchmark
datasets are reported in Section 6. Finally, Section 7
concludes the paper.
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Figure 1: The latent factors learned from algo-
rithm GCMF and the boundary of decision function
argmax(·) to assign category labels

2 Related Work

In this section, we review several existing transfer learn-
ing methods that are related to our work. The existing
methods of transfer learning can be summarized into
four cases [16], transferring the knowledge of the in-
stances [6], transferring the knowledge of the feature
representations [17], transferring the knowledge of the

parameters [8], and transferring the relational knowl-
edge .

The collective matrix tri-factorization based meth-
ods [19, 21, 14, 12] can be categorized into the relation
based transfering. Most of them share the associations
between the word clusters and the document clusters
across different domains. Moreover, Li et al. [11, 12]
propose to share the information of the word clusters for
the task of sentiment classification. However, Zhuang et
al. [21] demonstrate that this assumption does not meet
practical issues and propose a matrix tri-factorization
based classification framework (MTrick) for cross do-
main transfer learning.

Recently, the most closely related literature to our
algorithm is the efforts in [15] and [12]. Though Long et
al. [15] propose GCMF to preserve the geometric struc-
tures of the datasets [2] in learning latent factors, the
algorithm fails to incorporate the cross-domain supervi-
sion information for label predication. In [12], Li et al.
introduce a linear prediction model over the latent fac-
tors. Nonetheless, the algorithm restricts the feature
clusters to be the same across the different domains
and fails to preserve the local geometric structures.
Moreover, the collective matrix tri-factorizations in the
source and target domains are two separate stages. Con-
sequently, the two domains do not share the associations
between the feature and instance clusters. To overcome
both the weakness of these methods, we integrate the
discriminative regression model in an unified latent fac-
tors learning framework. In order to eliminate the do-
main divergence, we minimize the MMD between the
latent factor distributions in different domains whilst
preserving the local geometric structures of data.

3 Notations and Problem Specification

In this section, we first introduce the basic concepts and
mathematical notations used in this paper, and then
formulate the framework.

3.1 Basic Concepts and Mathematical Nota-
tions We consider a source domain Ds and a target
domain Dt. The domain indices are I = {s, t}. Ds and
Dt share the same feature space and label space. There
are m features and c classes. Let Xπ = [xπ

·1, · · · ,xπ
·nπ

] ∈
Rm×nπ , π ∈ I, represent the feature-instance matrix of
domain Dπ, where xπ

·i is the ith instance in domain Dπ.
Labels of the examples in the source domain Dπ are
given as Yπ ∈ Rc∗nπ , where the element yπ

ij = 1 if xπ
·j

belongs to class i, and yπ
ij = 0 otherwise.

3.2 Unified Framework of Collective Matrix
Factorization and Discriminative Regression
Model We propose a domain transfer learning frame-



work based on the collective matrix tri-factorization
which has been proven very effective in [15, 21, 19].

min
Uπ,H,Vπ≥0

∑
π∈I

‖Xπ −UπHVπ‖2

Conceptually, using the existing terminologies, Uπ =
[(uπ

1·)
T , · · · , (uπ

m·)
T ]T ∈ Rm×km denotes the word clus-

ter structures, where km is the number of the feature
clusters. Vπ = [vπ

·1, · · · ,vπ
·nπ

] ∈ Rkn×nπ denotes the
document cluster structures, where kn is the number of
the data instance clusters in domain Dπ. H ∈ Rkm×kn

denotes the association between the word clusters and
the document clusters which is shown to remain stable
across different domains [21].

With the intuitive goal of discovering the intrinsic
discriminative structures and looking for the clusters
which are most linearly separable, we introduce a linear
regression function for the classification on the latent
factors V with the loss function ‖Y − AV‖2, where
matrix A ∈ Rc∗kn is the regression coefficient matrix.
Here we chose the least squares loss for optimization
simplification. Considering that there are labeled data
in the source or target domain for training, we also
introduce the matrix Pπ to indicate which data are
used as the supervised information in the corresponding
domain. Pπ ∈ Rnπ×nπ is a diagonal matrix, where its
element Pπ

ii = 1 denotes the ith data instance in the
corresponding domain used in the supervised training,
and Pπ

ii = 0 otherwise. The objective function of the
unified framework is as follows, which combines the
task of cross domain data co-clustering and the task
of classification simultaneously.

minVπ,Uπ,H,A

∑
π∈I

(‖Xπ −UπHVπ‖2

+β‖YπPπ −AVπPπ‖2) + α‖A‖2(3.1)

where β, α, λ are the trade-off regularization parame-
ters. α‖A‖2 is introduced to avoid the overfitting of the
regression classification.

3.3 Maximum Mean Discrepancy
To transfer cross domain knowledge, we need to bridge

the gap between Ds and Dt. To this end, we employ a
criterion based on Maximum Mean Discrepancy (MMD)
[17, 1]. The empirical estimate of the distance between
domains Ds and Dt defined by MMD is as follows.

Dist(Ds,Dt) = ‖ 1

|Ds|
∑

xi∈Ds

φ(xi)− 1

|Dt|
∑

xj∈Dt

φ(xj)‖2
(3.2)

where |·| denotes the size of a dataset in the correspond-
ing domain. In our case, the function φ(·) maps the
original data, xi ∈ Ds, xj ∈ Dt, from different domains
to the corresponding low dimensional manifold repre-
sentations, vi, vj . That is φ(xπ

·i) = vπ
·i, i = 1, · · · , |Dπ|.

The distance in Eq.(3.2) in our case is

Distv(Ds,Dt) = ‖ 1

ns

ns∑
i=1

vs
·i − 1

nt

nt∑
j=1

vt
·j‖2(3.3)

Similarly, the distance based on MMD criterion for
different domains in the feature space is

Distu(Ds,Dt) = ‖ 1

ns

ns∑
i=1

us
i· − 1

nt

nt∑
j=1

ut
j·‖2(3.4)

Bridging the gap between different domains now be-
comes minimizing the distances defined in Eqs.(3.3)(3.4)
in the latent factor space, as opposed to typically in the
original data space.

3.4 Data Manifold Geometric Regularization
From a manifold geometric perspective, the data points
may be sampled from a distribution supported by a low-
dimensional manifold embedded in a high dimensional
space. Studies on spectral graph theory [4] and manifold
learning theory have demonstrated that the local geo-
metric structures can be effectively modeled through a
nearest neighbor graph on a scatter of data points. Con-
sider a data instance graph Gv

π with nπ vertices where
each vertex corresponds to a data instance in domain
Dπ. Define the edge weight matrix Wv

π as follows:

(W v
π )ij =

{
cos(xπ

·i,x
π
·j) if,xπ

·i ∈ Np(xπ
·j) or,xπ

·j ∈ Np(xπ
·i)

0 otherwise

(3.5)

where Np(x·i) denotes the set of p nearest neighbors of
x·i. The data instance graph regularizer Rv

π used to
measure the smoothness of the mapping function along
the geodesics in the intrinsic geometry of the dataset is
as follows .

Rv
π =

1

2

∑
ij

‖vπ
·i − vπ

·j‖2(Wv
π)ij

=
∑

i

tr(vπ
·i(v

π
·i)

T )Dv
ii −

∑
ij

tr(vπ
·i(v

π
·j)

T )Wv
ij

= tr(Vπ(Dv
π −Wv

π)VT
π )(3.6)

where Dv
π = diag(

∑
i(W

v
π)ij). By minimizing Rv

π we
get the low dimensional representations for the instances
on the manifold, which preserve the intrinsic geometry
of the data distribution.

Similarly, we also construct a feature graph Gu
π with

m vertices where each vertex corresponds to a feature
in domain Dπ. The edge weight matrix Wu

π of it is as
follows:

(W u
π )ij =

{
cos(xπ

i·,x
π
j·) if,xπ

i· ∈ Np(xπ
j·) or,xπ

j· ∈ Np(xπ
i·)

0 otherwise

(3.7)



Preserving the feature geometric structure in domain
Dπ requires minimizing the feature graph regularizer

Ru
π =

1

2

∑
ij

‖uπ
i· − uπ

j·‖2(Wu
π)ij

=
∑

i

tr((uπ
i·)

T (uπ
i·))D

u
ii −

∑
ij

tr((uπ
i·)

T (uπ
j·))W

u
ij

= tr(UT
π (Du

π −Wu
π)Uπ)(3.8)

where Du
π = diag(

∑
i(W

u
π)ij)

3.5 Discriminative Transfer Learning on
Manifold
Finally, we combine the optimization problems

Eqs.(3.1-3.8) into a joint optimization objective to min-
imize. This allows us to reach the optimization problem
of DTLM as defined in Equation (3.9).

minVs,Vt,Us,Ut,H,A

∑
π∈I

(‖Xπ −UπHVπ‖2(3.9)

+ β‖YπPπ −AVπPπ‖2) + α‖A‖2

+
∑
π∈I

λ(Ru
π +Rv

π) + ‖ 1

ms
1T

ms
Us − 1

mt
1T

mt
Ut‖2

+ ‖ 1

ns
Vs1ns −

1

nt
Vt1nt‖2

s.t. Vs,Vt,Us,Ut,H ≥ 0

4 Solution to the Optimization Problem

Due to the space limitation and for simplicity, we con-
sider computing the variables in domain Dπ and intro-
duce subscript π̄ for the variables in the counterpart
domain of π.

4.1 Computation of Vπ

Optimizing Eq.(3.9) with respect to Vπ is equivalent
to optimizing

min
Vπ

‖Xπ −UπHVπ‖2 + β‖YπPπ −AVπPπ‖2+

λtr(VπLv
πVT

π ) + ‖ 1

nπ
Vπ1nπ −

1

nπ̄
Vπ̄1nπ̄‖2

s.t. Vπ ≥ 0, where Lv
π = Du

π −Wu
π(4.10)

For the constraint Vπ ≥ 0, we present an iterative
multiplicative updating solution. We introduce the La-
grangian multiplier Φ ∈ Rc×nπ . Thus, the Lagrangian
function is

L(Vπ) = ‖Xπ −UπHVπ‖2 + β‖YπPπ −AVπPπ‖2+
λtr(VπLv

πVT
π ) + ‖ 1

nπ
Vπ1nπ −

1

nπ̄
Vπ̄1nπ̄‖2 + tr(ΦVT

π )

Setting ∂L(Vπ)
∂Vπ

= 0, we obtain

Φ = 2(UπH)T Xπ − 2(UπH)T UπHVπ + 2βBπ − 2βEπ

+2λVπLv
π + 2

Vπ̄1π̄1T
π

nπnπ̄
− 2

Vπ1π1T
π

n2
π

(4.11)

where Bπ = AT YπPπPT
π and Eπ = AT AVπPπPT

π .
Using the Karush-Kuhn-Tucker condition Φij(Vπ)ij =
0, we get

[(UπH)T Xπ − (UπH)T UπHVπ + βBπ − βEπ(4.12)

+λVπLv
π +

Vπ̄1π̄1T
π

nπnπ̄
− Vπ1π1T

π

n2
π

]ij(Vπ)ij = 0

By introducing Bπ = B+
π −B−

π , where B+
π = (|(Bπ)ij |+

(Bπ)ij)/2 and B−
π = (|(Bπ)ij | − (Bπ)ij)/2,

Eπ = E+
π − E−π , where E+

π = R+VπPπPT
π , E−π =

R−VπPπPT
π , R = AT A, R+ = (|(R)ij | + (R)ij)/2

and R− = (|(R)ij | − (R)ij)/2, we obtain

[(UπH)T Xπ − (UπH)T UπHVπ + β(B+
π −B−

π )

−β(E+
π −E−π ) + λVπ(Dv

π −Wv
π)

+
Vπ̄1π̄1T

π

nπnπ̄
− Vπ1π1T

π

n2
π

]ij(Vπ)ij = 0(4.13)

Eq.(4.13) leads to the following updating formula

Vπ = Vπ¯√√√√√
β(B+

π + E−π ) + λVπWv
π + (UπH)T Xπ +

Vπ̄1nπ̄ 1T
nπ

nπnπ̄

β(B−
π + E+

π ) + λVπDv
π + (UπH)T UπHVπ +

Vπ1nπ 1T
nπ

n2
π

(4.14)

4.2 Computation of Uπ, H
Computation of Uπ, H is very similar to the compu-

tation of Vπ. Due to the limited space, we omit the
derivation and present the updating formulas directly.

For Uπ in domain π, the updating rule is as follows.

Uπ = Uπ ¯

√√√√√
Xπ(HVπ)T + λWu

πUπ +
1mπ 1T

mπ̄
Uπ̄

mπmπ̄

UπHVπ(HVπ)T + λDu
πUπ +

1mπ 1T
mπ

Uπ

m2
π

(4.15)

The updating formula of H is as follows.

H = H¯
√ ∑

π∈I UT
π XπVT

π∑
π∈I UT

π UπHVπVT
π

(4.16)

4.3 Computation of A
Fixing Uπ, Vπ(π ∈ I), and H, the problem in Eq.(3.9)

reduces to the ridge regression problem as follows, which
has a closed form solution.

min
A

∑
π∈I

β‖YπPπ −AVπPπ‖2 + α‖A‖2(4.17)

Let J(A) denote the objective function. Taking the first
order derivative of J(A) with respect to A and requiring



it to be zero, we have
∂J(A)

∂A
=2β(

∑
π∈I

YπPπ(VπPπ)T

+A
∑
π∈I

VπPπ(VπPπ)T ) + 2αA = 0(4.18)

which leads to the following updating formula

A = (
∑
π∈I

YπPπ(VπPπ)T )(
∑
π∈I

VπPπ(VπPπ)T + γI)−1

(4.19)

where γ = α
β . In summary, we present the iterative mul-

tiplicative updating algorithm of DTLM in Algorithm
1. To make the optimization well-defined, we normal-
ize each row of Uπ and each column of Vπ after every
iteration by l1 norm as done in [21, 15].

Algorithm 1: The Discriminative Transfer
Learning on Manifold (DTLM) Algorithm

Input: data matrices {X}π∈I , label information
matrix {Y}π∈I , parameters α, β, λ, and p.

Output: classification results Ỹt on unlabeled
data in the target domain.

Construct graphs Gv
π and Gu

π using Eq.(3.5) and1

Eq.(3.7). Initialize {U}π∈I , Vs, H following [15],
and initialize Vt by a random positive matrix;
while iter ≤ maxIter do2

Update {U}π∈I using Eq.(4.15).3

Update {V}π∈I using Eq.(4.14).4

Update H using Eq.(4.16).5

Update A using Eq.(4.19).6

Normalize each row of {Uπ}π∈I and each7

column of {Vπ}π∈I by l1 norm.
iter := iter + 1 ;8

Predict labels for the unlabeled data in target9

domain using Ỹt = AVt ;

5 Convergence Analysis

In this section, we investigate the convergence of Algo-
rithm 1. We use the auxiliary function approach [18] to
prove the convergence of the algorithm. Here we first
introduce the definition of auxiliary function [18].

Definition 5.1. [18] Z(h, h′) is an auxiliary function
for J(h) if the conditions

Z(h, h′) ≥ J(h), Z(h, h) = J(h)

are satisfied.

Lemma 5.1. [18] If Z is an auxiliary function for J ,
then J is non-increasing under the updating rule

h(t+1) = arg min
h

Z(h, h(t))

Lemma 5.2. [7] For any nonnegative matrices A ∈
Rn×n, B ∈ Rk×k, S ∈ Rn×k, S′ ∈ Rn×k, and A, B
are symmetric, the following inequality holds

n∑

i=1

k∑

j=1

(AS′B)ijS2
ij

S′ij
≥ tr(ST ASB)

Lemma 5.3. Denote the sum of all the terms in objec-
tive function (3.9) that contain Vπ as

J(Vπ) = tr(VT
π (UπH)T UπHVπ − 2XT

π UπHVπ)

+βtr(2VT
π B− − 2VT

π B+) + βtr(KVT
π R+Vπ)

−βtr(KπVT
π R−Vπ) + λtr(VπDv

πVT
π −VπWv

πVT
π )

+
1

n2
π

1T
π VT

π Vπ1π − 2

nπnπ̄
1T

π VT
π Vπ̄1π̄(5.20)

where Kπ = PπPT
π and R = AT A. R+ = (|R| + R)/2,

R− = (|R| −R)/2.
The following function

Z(Vπ,V′
π) =

∑
ij

((UπH)T UπHV′
π)ij(Vπ)2ij

(V′
π)ij

−2
∑
ij

((UπH)T Xπ)ij(V
′
π)ij(1 + log

(Vπ)ij

(V′
π)ij

)

−2β
( ∑

ij

B+
ij(V

′
π)ij(1 + log

(Vπ)ij

(V′
π)ij

)−
∑
ij

B−
ij

(Vπ)2ij + (V′
π)2ij

2(V′
π)ij

)

+ β
∑
ij

(R+V′
πKπ)ij(Vπ)2ij
(V′

π)ij

− β
∑
ijyz

(Kπ)jyR
−
zi(V

′
π)ij(V

′
π)zy

(
1 + log

(Vπ)ij(Vπ)zy

(V′
π)ij(V′

π)zy

)

+ λ
∑
ij

(V′
πDv

π)ij(Vπ)2ij
(V′

π)ij

− λ
∑
ijz

Wv
πjz(V

′
π)ij(V

′
π)iz

(
1 + log

(Vπ)ij(Vπ)iz

(V′
π)ij(V′

π)iz

)

+
1

n2
π

∑
ij

(V′
π1π1T

π )ij(Vπ)2ij
(V′

π)ij

− 2

nπnπ̄

∑
ij

(Vπ̄1π1T
π̄ )ij(V

′
π)ij(1 + log

(Vπ)ij

(V′
π)ij

)

is an auxiliary function for J(Vπ). Furthermore, it is
a convex function with respect to Vπ and has a global
minimum with Vπ in the representation of Eq.(4.14).

Theorem 5.1. Updating Vπ using Eq.(4.14) monoton-
ically decreases the value of the objective in Eq.(3.9).
Hence, Algorithm 1 converges.

The detailed proofs of Lemma 5.3 and Theorem 5.1
are given in the supplementary file. Moreover, the



convergence analysis of the updating rules of Uπ and
H is similar to that of Vπ by Lemma 5.1 and Lemma
5.3 and we omit the details here. The convergence of
the updating rules of A is obvious from the optimization
objective of Eq.( 4.17). Consequently, the convergence
of Algorithm 1 is achieved.

6 Complexity Analysis

Here we analyze the computation complexity briefly re-
grading with the space limitation. We count the arith-
metic multiplication operations for each iteration. For
updating the Vπ of both domain in 4.14, the compu-
tational complexity is O(3kn(n2

s + n2
t ) + knkmm(ns +

nt) + k2
nk2

mm(ns + nt) + 2knnsnt + kn(ns + nt)). For
updating the Uπ of both domain in formula 4.15,
the computational complexity is O(8m2km + m(ns +
nt)knkm + m(ns + nt)k2

nk2
m + 2mkm). For updat-

ing the H in 4.16, the computational complexity is
O(kmkn + kmknm(ns + nt) + k2

mk2
nm(ns + nt)). For

updating the A in 4.19, the computational complex-
ity is O(k3

n + ckn(ns + nt) + k2
n(ns + nt)). The total

computational complexity of the DTLM algorithm is
O(k2

nk2
mm(ns + nt)p), where p is the iteration number.

7 Experiment

In this section, we demonstrate the promise of DTLM
by conducting experiments on datasets generated from
two benchmark data collections and compare the per-
formance of DTLM with those of several state-of-the-art
semi-supervised, and transfer learning methods.

7.1 Dataset We use the 20-Newsgroups corpus to
conduct experiments on document classification. This
corpus consists of approximately 20,000 news articles
harvested from 20 different newsgroups. Each news-
group corresponds to a different topic. Some of the
newsgroups are closely related and can be grouped into
one category at a top level, while others remain as sep-
arate categories. There are four top level categories
used for class label, i.e. comp, rec, sci, and talk.
Each of them has subcategories. For an example, un-
der sci category there are four subcategories sci.crypt,
sci.electronics, sci.med, and sci.space. We split each
top category into two different groups as listed in Table
1. To construct a domain dataset, we randomly select
two out of the four top categories, A and B, as positive
class and negative class, respectively. The subcategory
groups of A and B are A1, A2 and B1, B2. We merge
A1 and B1 as the source domain data and merge A2
and B2 as the target domain data. This ensures that
the two domains’ data are related, but at the same time
the domains are different because they are drawn from
different subcategories. Such a preprocessing is a com-

mon practice for data preparation in transfer learning
[20]. Consequently, we generate six domain datasets for
binary classification in the transfer learning setting as
in [15], i.e., comp vs rec, comp vs sci, comp vs talk, rec
vs sci, rec vs talk, and sci vs talk.

To further validate our algorithm, we also perform
experiments on the dataset Reuters-21578, which has
a hierarchical structure and contains five top level
categories. We evaluate DTLM on three classification
tasks with the data collection constructed by Gao et al.
[8], which contains three cross-domain datasets orgs vs
people, orgs vs place, and people vs place.

7.2 Evaluation Metric In this paper, we employ
the metric accuracy for comparing different algorithms
by considering the binary classifications. Assume that
Y is the function which maps from document d to
its true class label y = Y (d), and F the function
which maps from document d to its prediction label
ỹ = F (d) by a classifier. The accuracy is defined as:
Accuracy = |{d|d∈Dt∧F (d)=Y (d)}|

|Dt| .

7.3 Comparison Methods To verify the effective-
ness of DTLM, we compare it with the state-of-the-
art transfer learning methods Matrix Tri-factorization
based Classification (MTrick) [21], Dual Knowledge
Transfer (DKT) [19], and Graph co-regularized Collec-
tive Matrix tri-Factorization (GCMF) [15]. Support
Vector Machine (SVM) and Semi-supervised learning
method Transductive Support Vector Machine (TSVM)
are also introduced in the comparison experiments.

7.4 Implementation Details TSVM and SVM are
implemented by SV M light [10] with the corresponding
default parameters. For Mtrick, DKT, and GCMF,
the parameters and initializations of these algorithms
follow the settings of the experiments in the literature
respectively.

In DTLM, the number of the data instance clus-
ters in the source and target domains kn is set as
2 to meet the number of the classes. The weight
coefficients for the regression items, β and α, are
both set as default value 10. We abbreviate the
number of the feature clusters km as k with varying
values 2, 4, 8, 16, 32, 64, 100. Similarly, we evaluate
the trade-off regularization parameters λ in the values of
{0.001, 0.005, 0.01, 0.05, 0.1, 1, 10, 50, 100, 250, 500, 1000}
for the parameter sensitivity analysis. In the com-
parison experiments with other methods, we use the
parameter settings λ = 0.1, k = 100 for 20-Newsgroups
datasets and λ = 1, k = 100 for Reuters-21578 datasets.
Us, Ut, and H are initialized as the random positive
matrices. Vs is initialized by Ys and Vt is is initialized



Table 1: Top categories and their groups. Each top
category is partitioned into two groups 1 and 2.

Categories Subcategories

comp
(1): comp.graphics, comp.os.ms-windows.misc

(2): comp.sys.ibm.pc.hardware, comp.sys.mac.hardware

rec
(1): rec.autos, rec.motorcycles

(2): rec.sport.baseball, rec.sport.hokey

sci
(1): sci.crypt, sci.electronics

(2): sci.med, sci.space

talk
(1): talk.politics.guns, talk.politics.mideast

(2): talk.politics.misc, talk.religion.misc

as the predicted results of Logistic Regression, which is
trained based on the source domain data. We set the
iteration number maxIter as 100 for 20-Newsgroups
and 210 for Reuters-21578.

7.5 Experimental Results and Discussion We
perform all the six methods ten times for each case
and the performance results are averaged over the ten
times reported in Table 2. Since most of the comparison
methods are unsupervised in the target domain, we use
the target domain unsupervised version of DTLM for a
fair comparison and set Pt = 0.

From Table 2, we see that all the transfer learn-
ing methods perform better than non-transfer learning
methods. Even the semi-supervised learning method
TSVM cannot deliver a good performance as well as
the transfer learning methods. This validates the fact
that the transfer learning methods exploit the shared
information between different domains and enhance the
classification capability. Moreover, we see that DTLM
performs the best of all the transfer learning methods.
Though the transfer learning methods MTrick and DKT
work better than the non-transfer learning methods,
they fail to explore the geometric structures underly-
ing the data manifold and cannot reach the best per-
formance. This is consistent with the discussion in the
literature [15]. For GCMF, though it adopts the geo-
metric regularization to obtain an enhancement in data
clustering, it still fails to address the divergence between
the cluster structures and the categories of the labels.
Superior to the other transfer learning methods, DTLM
not only takes into account the intrinsic character of the
data structures, but also incorporates the power of the
discriminative regression model to correctly predict the
category labels. Furthermore, the imposed MMD reg-
ularization constraint minimizes the gap between the
latent factor distributions in different domains. GCMF
is a special case of DTLM when parameters β, α = 0 and
the MMD regularization is degenerated. The improved
capacity in transfer learning of DTLM is validated as
seen in Table 2.

7.6 Parameter Effect In the following, we examine
the impact of the parameters on the performance of
DTLM. We show the performance of DTLM under
different settings of λ, k on the six datasets from 20-
Newsgroups in Fig (2a, 2b) and on the three datasets
from Reuters-21578 in Fig (4a, 4b, 4c).

Fig (2a) shows the average classification accuracy
of DTLM on 20-Newsgroups datasets under varying
values of λ with fixed k = 100. We find that DTLM
performs stably very well when λ spans over a wide
range, i.e., [0.1, 1000]. Fig (2b) shows the average
classification accuracy of DTLM under varying values
of k, the number of feature clusters, with fixed λ = 0.1.
We see that DTLM also performs stably well when k
takes a value in a wide range, i.e., [2, 64].

For Reuters-21578 datasets, DTLM’s performance
varies when λ is tuned in a range of [0.1, 1000], in partic-
ular for people vs place dataset, which is seen from Fig
(4a) with fixed k = 100 . This is a common phenomenon
in the graph geometric regularization literature, called
the trivial solution and scale transfer problems, which
is discussed in [9]. The phenomenon exists in GCMF,
too. Without the MMD regularization and the discrim-
inative prediction, the classification accuracy of GCMF
stays at an even lower score over a wide range of λ value,
i.e., [0.1, 1000]. To investigate the impact of k under dif-
ferent fixed λ values, we report the experiment results
under different k values with λ set as 1 and 100, respec-
tively, in Fig (4b) and Fig (4c). From these figures, it
is easy to see that DTLM still stably achieves a good
performance over a wide range of k, i.e., [2, 100], with
a wide range of λ = 1, 100.

Figure (5) shows the DTLM’s performance on semi-
supervised classification in the target domain. From
the figure, we see that the classification accuracy does
not improve much with the increasing percentage of
the labeled data in the target domain. This implies
that the benefit of a portion of the data labeled in the
target domain is relatively small and the complementary
shared knowledge from the source domain is more
significant instead in transfer learning, which further
verifies the rationale of DTLM.

7.7 Convergence The method that we use to find
the optimal objective value in Equation (3.9) is an
multiplicative updating algorithm, which is an iterative
process that converges to a local optimum. In this
subsection we investigate the convergence of DTCM
empirically. Fig (3a) and Fig (3b) show the average
classification accuracy with respect to the number of
iterations on datasets from 20-Newsgroups and Reuters-
21578, respectively. Clearly, the average classification
accuracy of DTLM increases stably with more iterations



Table 2: Performance comparison on different domain
datasets with the measurement of average classification
accuracy (10 repeated times). Due to space limitation,
all the standard deviations of the comparing methods
are omitted.

DataSet SV M TSV M DTK MTrick GCMF DTLM

comp vs rec 0.6879 0.7042 0.8641 0.8812 0.9275 0.9727± 0.0087
comp vs sci 0.6981 0.7278 0.9031 0.9113 0.9322 0.9613± 0.0254
comp vs talk 0.7023 0.7174 0.9106 0.9028 0.9399 0.9545± 0.0039

rec vs sci 0.6618 0.6944 0.8723 0.8872 0.9168 0.9398± 0.0059
rec vs talk 0.6714 0.6989 0.8401 0.8946 0.8964 0.9646± 0.0056
sci vs talk 0.6538 0.6754 0.8890 0.8862 0.9071 0.9398± 0.0180

orgs vs people 0.6643 0.6625 0.8042 0.7931 0.8228 0.8836± 0.0261
orgs vs place 0.6128 0.6419 0.7611 0.7784 0.7966 0.8338± 0.0118

people vs place 0.5911 0.5882 0.6910 0.6832 0.7002 0.8246± 0.0275
Average 0.6604 0.6790 0.8373 0.8464 0.8711 0.9194± 0.0148

and then converges after 50 iterations on 20-Newsgroups
and 150 iterations on Reuters-21578, which verifies
Theorem 5.1.

8 Conclusion

We argue that in the existing literature of collective ma-
trix factorization based transfer learning, the learned la-
tent factors still suffer from the divergence between dif-
ferent domains and thus are usually not discriminative
for an appropriate assignment of category labels, result-
ing in a series of issues that are either not addressed well
or ignored completely. To address these issues, we have
developed a novel transfer learning framework as well
as an iterative algorithm based on the framework called
DTLM. Specifically, we apply a cross-domain matrix
tri-factorization simultaneously incorporating a discrim-
inative regression model and minimizing the MMD dis-
tance between the latent factor distributions in different
domains. Meanwhile, we exploit the geometric graph
structure to preserve the manifold geometric structures
in both domains. Theoretical analysis and extensive em-
pirical evaluations demonstrate that DTLM achieves a
better performance consistently than all the comparing
state-of-the-art methods in the literature.
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