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1 Introduction

We study the following point-to-point shortest path problem (P2P): given a directed graph G =

(V, A) with nonnegative arc lengths and two vertices, the source s and the destination t, find a

shortest path from s to t. We are interested in exact shortest paths. We allow preprocessing,

but limit the size of the precomputed data to a (moderate) constant times the input graph

size. Preprocessing time is limited by practical considerations. For example, in our motivating

application, driving directions on large road networks, quadratic-time algorithms are impractical.

Finding shortest paths is a fundamental problem. The single-source problem with nonnegative

arc lengths has been studied most extensively [1, 3, 4, 5, 9, 10, 11, 12, 14, 19, 24, 33, 37]. For this

problem, near-optimal algorithms are known both in theory, with near-linear time bounds, and in

practice, where running times are within a small constant factor of the breadth-first search time.

The P2P problem with no preprocessing has been addressed, for example, in [18, 26, 31, 38].

While no nontrivial theoretical results are known for the general P2P problem, there has been

work on the special case of undirected planar graphs with slightly super-linear preprocessing

space. The best bound in this context appears in [8]. Algorithms for approximate shortest

paths that use preprocessing have been studied; see e.g. [2, 20, 34]. Previous work on exact

algorithms with preprocessing includes those using geometric information [23, 36], hierarchical

decomposition [27, 29, 30], the notion of reach [16], and A∗ search combined with landmark

distances [13, 15].

In this paper we focus on road networks. However, our algorithms do not use any domain-

specific information, such as geographical coordinates, and therefore can be applied to any net-

work. Their efficiency, however, needs to be verified experimentally for each particular application.

In addition to road networks, we briefly discuss their performance on grid graphs.

We now discuss the most relevant recent developments in preprocessing-based algorithms for

road networks. Such methods have two components: a preprocessing algorithm that computes

auxiliary data and a query algorithm that computes an answer for a given s-t pair.

Gutman [16] defines the notion of vertex reach. The reach of a vertex is, informally, a number

that is big if the vertex is in the middle of a long shortest path and small otherwise. Gutman

shows how to prune an s-t search based on (upper bounds on) vertex reaches and (lower bounds

on) vertex distances from s and to t. He uses Euclidean distances for lower bounds, and observes

that the idea of reach can be combined with Euclidean-based A∗ search to improve efficiency.

Goldberg and Harrelson [13] (see also [15]) have shown that the performance of A∗ (without

reaches) can be significantly improved if landmark-based lower bounds are used instead of Eu-

clidean bounds. This leads to the alt (A∗ search, landmarks, and triangle inequality) algorithm

for the problem. In [13], it was noted that the alt method could be combined with reach pruning

in a natural way. Not only would the improved lower bounds direct the search better, but they

would also make reach pruning more effective.

Sanders and Schultes [27] (see also [29]) introduce an interesting algorithm based on highway
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hierarchy; we call it the hh algorithm. They describe the algorithm for undirected graphs. They

also comment at high level on how the algorithm can be extended to directed graphs, but their

implementation and experimental results are for undirected graphs only.1 We think it is likely

that the directed version of hh would not lose much performance. Under this assumption, hh

is the most practical of the previously published P2P algorithms for road networks. It has fast

query time, relatively small memory overhead, and reasonable preprocessing complexity.

The notions of reach and highway hierarchies have different motivations: The former is aimed

at pruning the shortest path search, while the latter takes advantage of inherent road hierarchy

to restrict the search to a smaller subgraph. However, as we shall see, the two approaches are

related. Vertices pruned by reach have low reach values and as a result belong to a low level of

highway hierarchy.

In this paper we study the reach method and its relationship to the hh algorithm. We develop

a shortest path algorithm based on improved reach pruning that is competitive with hh. Then

we combine it with alt to make queries even faster. The main contributions of our work are as

follows.

1. We introduce several variants of the reach algorithm, including bidirectional variants that

do not need explicit lower bounds.

2. We introduce the idea of adding shortcut arcs to reduce vertex reaches. A small number

(less than n, the number of vertices) of shortcuts drastically improves the performance of

both preprocessing and query stages of the reach-based method.

3. The above-mentioned improvements lead to an implementation which we call re, whose

performance is similar to that of hh.

4. We suggest an interpretation of hh in terms of reach. Our interpretation explains the

similarities between the preprocessing algorithms of Gutman, hh, and re.

5. We show how to combine the techniques behind re and alt to obtain a new algorithm,

real. On road networks, query operation counts and running times for real are lower

than those for re and hh.

6. We discuss techniques for improving space and cache efficiency of our algorithms as well as

ways of further improving the running time.

Note that while re combines with alt in a natural way, the same approach does not work for

hh. We discuss the hh algorithm in more detail in Section 7.2.

In short, our results lead to a better understanding of several recent P2P algorithms, leading

to simplification and improvement of the underlying techniques. This, in turn, leads to very

1This is an important issue because the directed case is more general and real road networks are directed.
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practical algorithms. For the graph of North America road network (which has almost 30 million

vertices), finding the fastest route between two random points takes less than four milliseconds

on a workstation while scanning about fewer than 2000 of vertices on average. Local queries are

even faster.

The paper is organized as follows. We give background and definitions in Section 2. Section 3

introduces the concept of reach and discusses how one can use them to speed up shortest path

computations. Section 4 describes the reach-based query algorithm in more detail. The prepro-

cessing algorithm is described in 5. In Section 6 we discuss A∗ search and its implementation

based on landmarks, then show how it can be combined with reaches. Section 7 compares the

main aspects of our algorithm with Gutman’s and with hh. An experimental evaluation of our

algorithm is presented in Section 8. In Section 9 we suggest further improvements that can still

be made to the algorithm, and Section 10 contains concluding remarks.

2 Preliminaries

The input to the preprocessing stage of the P2P algorithm is a directed graph G = (V, A) with

n vertices and m arcs, and nonnegative lengths ℓ(a) for every arc a. The query stage also has as

inputs a source s and a sink t. The goal is to find a shortest path from s to t.

Let dist(v, w) denote the shortest-path distance from vertex v to vertex w with respect to ℓ.

In general, dist(v, w) 6= dist(w, v).

The labeling method for the shortest path problem [21, 22] finds shortest paths from the source

to all vertices in the graph. The method works as follows (see e.g. [32]). It maintains for every

vertex v its distance label d(v), parent p(v), and status S(v) ∈ {unreached, labeled, scanned}.
Initially d(v) = ∞, p(v) = nil, and S(v) = unreached for every vertex v. The method starts by

setting d(s) = 0 and S(s) = labeled. While there are labeled vertices, the method picks a labeled

vertex v, relaxes all arcs out of v, and sets S(v) = scanned. To relax an arc (v, w), one checks if

d(w) > d(v) + ℓ(v, w) and, if true, sets d(w) = d(v) + ℓ(v, w), p(w) = v, and S(w) = labeled.

If the length function is nonnegative, the labeling method terminates with correct shortest

path distances and a shortest path tree. Its efficiency depends on the rule to choose a vertex to

scan next. We say that d(v) is exact if it is equal to the distance from s to v. It is easy to see

that if one always selects a vertex v such that, at the selection time, d(v) is exact, then each

vertex is scanned at most once. Dijkstra [5] (and independently Dantzig [3]) observed that if ℓ

is nonnegative and v is a labeled vertex with the smallest distance label, then d(v) is exact. We

refer to the labeling method with the minimum label selection rule as Dijkstra’s algorithm. If ℓ

is nonnegative then Dijkstra’s algorithm scans vertices in nondecreasing order of distance from s

and scans each vertex at most once.

For the P2P case, note that when the algorithm is about to scan the sink t, we know that d(t)

is exact and the s-t path defined by the parent pointers is a shortest path. We can terminate the
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algorithm at this point. Intuitively, Dijkstra’s algorithm searches a ball with s in the center and

t on the boundary.

One can also run Dijkstra’s algorithm on the reverse graph (the graph with every arc reversed)

from the sink. The reverse of the t-s path found is a shortest s-t path in the original graph.

The bidirectional algorithm [3, 7, 25] alternates between running the forward and reverse

versions of Dijkstra’s algorithm, each maintaining its own set of distance labels. We denote by

df (v) the distance label of a vertex v maintained by the forward version of Dijkstra’s algorithm,

and by dr(v), the distance label of a vertex v maintained by the reverse version. (We will still

use d(v) when the direction would not matter or is clear from the context.) During initialization,

the forward search scans s and the reverse search scans t. The algorithm also maintains the

length of the shortest path seen so far, µ, and the corresponding path. Initially, µ = ∞. When

an arc (v, w) is relaxed by the forward search and w has already been scanned by the reverse

search, we know the shortest s-v and w-t paths have lengths df (v) and dr(w), respectively. If µ >

df (v)+ℓ(v, w)+dr(w), we have found a path shorter than those seen before, so we update µ and its

path accordingly. We perform similar updates during the reverse search. The algorithm terminates

when the search in one direction selects a vertex already scanned in the other. Intuitively, the

bidirectional algorithm searches two touching balls centered at s and t.

A better stopping criterion (see [15]) is as follows:

Stop the algorithm when the sum of the minimum labels of labeled vertices for the

forward and reverse searches is at least µ, the length of the shortest path seen so far.

Note that any alternation strategy works correctly. Balancing the work of the forward and

reverse searches is a strategy guaranteed to be within factor of two of the optimal off-line strategy.

Also note that remembering µ is necessary, since there is no guarantee that the shortest path will

go through the vertex at which the algorithm stops.

3 Reach-Based Pruning

Given a path P from s to t and a vertex v on P , the reach of v with respect to P is the minimum

of the length of the prefix of P (the subpath from s to v) and the length of the suffix of P (the

subpath from v to t). (For now, assume that the shortest path between any two vertices is unique;

Section 5.1 discusses this issue in more detail.) The reach of v, r(v), is the maximum, over all

shortest paths P through v, of the reach of v with respect to P .

A straightforward way to compute the reaches of all vertices is to compute all shortest paths

and apply the definition. Although polynomial, this is impractical for large graphs. More efficient

heuristics compute an upper bound on the reach of every vertex. We denote an upper bound on

r(v) by r(v). Let dist(v, w) denote a lower bound on the distance from v to w.

The following fact allows using reaches for pruning Dijkstra’s search:
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Figure 1: The reach of v with respect to the shortest path P between s and t is the minimum between
the lengths of its prefix and its suffix (with respect to v).

Suppose r(v) < dist(s, v) and r(v) < dist(v, t). Then v is not on a shortest path from

s to t, and therefore Dijkstra’s algorithm does not need to label or scan v.

Note that this also holds for the bidirectional algorithm.

Exact Reaches. As already mentioned, to compute exact reaches it suffices to look at all

shortest paths in the graph and apply the definition of reach to each vertex in each path. A more

efficient algorithm is as follows. Initialize r(v) = 0 for all vertices v. For each vertex x, grow a

complete shortest path tree Tx rooted at x. For every vertex v, determine its reach rx(v) within

the tree, given by the minimum between its depth (the distance from the root) and its height (the

distance to its farthest descendant). If rx(v) > r(v), update r(v). This algorithm runs in Õ(nm)

time, which is still impractical for large graphs. On the largest graph we tested, which has around

30 million vertices, this computation would take years on existing workstations.

Implicit in this algorithm is an efficiently verifiable “certificate” that proves a lower bound on

reach, i.e., proves that r(v) > L. The certificate is a shortest path tree such that with respect to

this tree r(v) > L. If L is in fact a lower bound on r(v), such a certificate always exists, and we

can verify the validity of a certificate in linear time (check if the tree is a shortest path tree, then

compute v’s depth and height in the tree). Unfortunately, there does not seem to be a similar

certificate for upper bounds on reaches.

In contrast, we found that the following approach produces good reach lower bounds, at least

for vertices of high reach. Choose a moderate number of random vertices; for each chosen vertex,

compute a shortest path tree rooted at it and vertex reaches with respect to this tree; take the

maximum reach over all trees for each vertex.

Unfortunately, the query algorithm needs good upper bounds to work correctly, not lower

bounds. Upper bound algorithms are considerably more complex, as Section 5 will show.

4 Queries Using Upper Bounds on Reaches

In this section, we describe how to make the bidirectional Dijkstra’s algorithm more efficient

assuming we have upper bounds on the reach of every vertex. As described in Section 3, to prune

the search based on the reach of some vertex v, we need a lower bound on the distance of v to
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the source and a lower bound on the distance of v to the sink. We show how we can use lower

bounds implicit in the search itself to do the pruning, thus obtaining a new algorithm.

4.1 Implicit Bounds on Distances

During the bidirectional Dijkstra’s algorithm, consider the search in the forward direction, and

let γ be the smallest distance label of a labeled vertex in the reverse direction (i.e., the topmost

label in the reverse heap). If a vertex v has not been scanned in the reverse direction, then γ is

a lower bound on the distance from v to the destination t. (The same idea applies to the reverse

search: we use the topmost label in the forward heap as a lower bound for unscanned vertices in

the reverse direction.) When we are about to scan v we know that df (v) is the distance from the

source to v. So we can prune the search at v if v has not been scanned in the reverse direction,

r̄(v) < df (v), and r̄(v) < γ. When using these bounds, the stopping condition is the same as

for the standard bidirectional algorithm (without pruning). We call the resulting procedure the

bidirectional bound algorithm. See Figure 2.

t�����������
t

vdf (s, v)

t

s t

H
H

H
H

H
H

H
H γ = dist(v, t)

Figure 2: Pruning using implicit bounds. Assume v is about to be scanned in the forward direction,
has not yet been scanned in the reverse direction, and that the smallest distance label of a vertex not yet
scanned in the reverse direction is γ. Then v can be pruned if r̄(v) < df (v) and r̄(v) < γ.

An alternative is to use the distance label itself for pruning. Assume we are about to scan a

vertex v in the forward direction (the procedure in the reverse direction is similar). If r(v) < df (v),

we prune the vertex. Note that if the distance from v to t is at most r(v), the vertex will still be

scanned in the reverse direction, given the appropriate stopping condition. It is easy to see that

the following condition works.

Stop the search in a given direction when either there are no labeled vertices or the

minimum distance label of labeled vertices for the corresponding search is at least half

the length of the shortest path seen so far.

We call this the self-bounding algorithm. The reason why this algorithm can safely ignore the

lower bound to the destination is that it leaves to the other search to visit vertices that are closer

to it. Note, however, that when scanning an arc (v, w), even if we end up pruning w, we must
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check if w had been scanned in the opposite direction and, if so, check if the candidate path using

(v, w) is the shortest path seen so far.

Remark. The self-bounding method has the following property. If a search in a certain direction

prunes a vertex v, all vertices scanned by the search afterwards have reaches greater than v. This

defines a “continuous hierarchy” of reaches: Once the search leaves a reach level, it never comes

back to it.

The following natural algorithm falls into both of the above categories. It balances the radius

of the forward and reverse search regions by picking the labeled vertex with minimum distance

label, considering both directions. Note that the distance label of this vertex is also a lower bound

on the distance to the target, as the search in the opposite direction has not selected the vertex

yet. The algorithm can be implemented with only one priority queue. We refer to this algorithm

as distance-balanced. Note that one could also use explicit lower bounds in combination with the

implicit bounds.

4.2 Further Optimizations

As described earlier, reach-based pruning applies the reach test to a labeled vertex about to be

scanned. In addition, we apply the test to an unreached vertex that is about to be labeled (and

added to the search queue). If both d(v) and the lower bound on v’s distance to the target are

greater than r̄(v), we do not add v to the queue. We call this optimization early pruning. If at a

later stage d(v) decreases to a value below r̄(v), then we will place v on the queue at that stage,

maintaining correctness of the algorithm. Note that it is still useful to test the pruning condition

before the vertex is scanned, because the lower bound on its distance to the target may have

increased (because γ increased), allowing us to prune the vertex.

Another optimization, arc sorting, aims at early-pruning vertices without explicitly looking

at them. We sort the arcs that leave a vertex by the reach bound of the head (in non-increasing

order). Suppose we have just scanned an arc (v, w) and looked up r(w). Then r(w) is an upper

bound on the reaches of the neighbors of v that follow w.

Arc sorting allows us to eliminate some outgoing arcs without even looking at them. If

r(w) < d(v) and r(w) < γ (where γ is the radius of the ball searched in the opposite direction),

we do not need to look at any more neighbors of v explicitly: we know they will all be pruned.

Even if only the second condition holds (r(w) < γ), we might still be able to early-prune w if

r(w) < d(v) + ℓ(v, w), but we must still look at the remaining neighbors of v.

We call our implementation of the bidirectional Dijkstra’s algorithm with reach-based pruning

re. The query is distance-balanced and uses early pruning and arc sorting. Note that its code

is very simple, with just a few tests added to the implementation of the bidirectional Dijkstra’s

algorithm.
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5 Preprocessing

In this section we present an algorithm for efficiently computing upper bounds on vertex reaches.

Our algorithm combines three main ideas, two introduced in [16], and the third implicit in [27].

The first idea is the use of partial trees. Instead of running a full shortest path computation

from each vertex, which is expensive, we stop these computations early and use the resulting

partial shortest path trees, which contain all shortest paths with length lower than a certain

threshold. These trees allow us to divide vertices into two sets, those with small reaches and

those with large reaches. We obtain upper bounds on the reaches of the former vertices. The

second idea is to delete these low-reach vertices from the graph, replacing them by penalties used

in the rest of the computation. Then we recursively bound reaches of the remaining vertices. The

third idea is to introduce shortcut arcs to reduce the reach of some vertices. This speeds up both

the preprocessing (since the graph will shrink faster) and the queries (since more vertices will be

pruned).

The preprocessing algorithm works in two phases: during the main phase, partial trees are

grown and shortcuts are added; this is followed by the refinement phase, when high-reach vertices

are re-evaluated in order to improve their reach bounds.

The main phase uses two subroutines: one adds shortcuts to the graph (shortcut step), and the

other runs the partial-trees algorithm and eliminates low-reach vertices (partial-trees step). The

main phase starts by applying the shortcut step. Then it proceeds in iterations, each associated

with a threshold ǫi (an increasing function of i, the iteration number). By the end of the i-th

iteration, the algorithm will have eliminated every vertex whose reach it can prove is less than ǫi.

Each iteration applies a partial-trees step followed by a shortcut step. If there are still vertices

left in the graph after iteration i, we set ǫi+1 = α ǫi (for some α > 1) and proceed to the next

iteration.

The remainder of this section describes in detail each of the main components of the algorithm:

growing partial trees (Section 5.2), adding shortcuts (Section 5.3), and the refinement phase

(Section 5.4). Before that, we introduce the concept of canonical paths, which are essential to our

preprocessing algorithm.

5.1 Canonical Paths and Shortcuts

Consider the graph G = ({a, b, c, d}, {(a, b), (b, c), (c, d)}) with ℓ(a, b) = ℓ(c, d) = 100 and ℓ(b, c) =

1. It is easy to see that r(a) = r(d) = 0 and r(b) = r(c) = 100. Suppose we add an arc (a, d) with

length ℓ(a, d) = 201, equal to the distance from a to d in the original graph. No distances change.

However, if we break the tie by making the path using the new arc preferable (i.e., implicitly

shorter than the original path), the reaches of b and c decrease from 100 to 1. Thus, introducing

“preferred” shortcuts can drastically reduce vertex reaches. See Figure 3.

Given a path P from v to w, we say that an arc (v, w) is a shortcut arc for P if the length of
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Figure 3: Without the shortcut (a, d), r(b) = r(c) = 100; with the shortcut, r(b) = r(c) = 1. Both a and
d have reach 0 with or without the shortcut.

the arc is equal to the length of the path.

Approximate reach algorithms, including ours, need the notion of canonical path, which is a

shortest path with additional properties. We require the following properties, which are sufficient

and easy to work with, but may not be necessary.

1. A canonical path is a simple shortest path.2

2. For every pair s, t, there is a unique canonical path between s and t.

3. A subpath of a canonical path is a canonical path.

4. There is an implementation of Dijkstra’s algorithm that always finds canonical paths.

5. (Non-shortcut property.) A path Q is not a canonical path if Q contains a subpath P with

more than one arc such that the graph contains a shortcut arc for P .

6. (Nesting property.) Original graph paths corresponding to shortcuts are nested: for any

pair of such paths, either they do not intersect, or one is contained in the other.

We need Property 5 of canonical paths to ensure that adding shortcut arcs decreases vertex

reaches. Property 6 simplifies the correctness proof and, if no parallel shortcut arcs are introduced,

bounds the number of shortcut arcs by 2n.

We implement canonical paths as follows. For each arc a, we generate a length perturbation

ℓ′(a). When computing the length of a path, we separately sum lengths and perturbations along

the path, and use the perturbation to break ties in path lengths.

First suppose there are no shortcut arcs. If the perturbations are chosen uniformly at random

from a big enough range of integers, with high probability all shortest paths (with respect to

length and perturbations) are canonical paths.3 Shortcut arcs are added after the perturbations

are introduced. The length and the perturbation of a shortcut arc are equal to the sum of

the corresponding values for the arcs on the path that we shortcut. To break ties in a graph

with shortcuts, we use the number of hops on the paths (fewer hops are better) in addition to

perturbations. Note that Dijkstra’s algorithm can maintain the number of hops of candidate paths.

Because of the nesting property of shortcut paths one can see that there are no ties remaining

2If the graph has no cycles of zero-length arcs, all shortest paths are simple.
3In our implementation, perturbations were picked uniformly at random from the range [1, 65535].
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after breaking ties by perturbations and hops even in the presence of shortcuts. Furthermore, it

is not hard to see that the shortest paths that win the tie breaking are canonical.

Our way of dealing with canonical paths is conceptually simple but has two disadvantages: a

small probability of failure due to ties in sums of perturbations and memory overhead for storing

perturbations. Regarding the issue former, the algorithm worked correctly for every one of the

tens of thousands instances used in our experiments. As for the latter, it is an issue in the

preprocessing phase only, however. During the query phase, where memory efficiency is most

important, we can completely ignore the tie-breaking rules; in fact, we do not need perturbations

at all to ensure correctness.

Our preprocessing algorithm computes upper bounds on reaches with respect to the set of

canonical paths as defined above using tie breaking by perturbations and hops. The following

fact justifies pruning vertices based on these reaches.

Suppose r is a reach function with respect to some choice of canonical paths. Consider

an implementation of Dijkstra’s algorithm (unidirectional or bidirectional) that prunes

vertices v such that r(v) < dist(s, v) and r(v) < dist(v, t). Then this implementation

of Dijkstra’s algorithm is correct.

This observation follows from the fact that vertices on the canonical path from s to t are not

pruned, and therefore the algorithm will find some shortest path.

5.2 Growing Partial Trees

To gain intuition on the construction and use of partial trees, we consider a graph such that all

shortest paths are unique (and therefore canonical) and a parameter ǫ. We outline an algorithm

that partitions vertices into two groups, those with high reach (ǫ or more) and those with low

reach (less than ǫ). For each vertex x in the graph, the algorithm runs Dijkstra’s shortest path

algorithm from x with an early termination condition. Let T be the current tentative shortest

path tree maintained by the algorithm, and let T ′ be the subtree of T induced by the scanned

vertices. Note that any path in T ′ is a shortest path in the graph. The tree construction stops

when for every leaf y of T ′, one of the following two conditions holds:

1. y is a leaf of T .

2. if x′ is the vertex adjacent to x on the x-y path in T ′, then the length of the x′-y path in

T ′ is at least 2ǫ.

Let Tx, the partial tree of x, denote T ′ at the time the tree construction stops. The algorithm

marks all vertices that have reach at least ǫ with respect to a path in Tx as high-reach vertices.

It is clear that the algorithm will never mark a vertex whose reach is less than ǫ, since its reach

restricted to the partial trees cannot be greater than its actual reach. Therefore, to prove the

correctness of the algorithm, it is enough to show that every vertex v with high reach is marked
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at the end. Consider a minimal canonical path P such that the reach of v with respect to P is

high. Let x and y be the first and the last vertices of P , respectively. Consider Tx. By uniqueness

of shortest paths, either P is a path in Tx, or P contains a subpath of Tx that starts at x and

ends at a leaf, z, of Tx. In the former case, v is marked. For the latter case, note that z cannot

be a leaf of T as z has been scanned and the shortest path P continues past z. The distance from

x to v is at least ǫ and the distance from x′, the successor of x on P , to v is less than ǫ (otherwise

P would not be minimal). By the algorithm, the distance from x′ to z is at least 2ǫ and therefore

the distance from v to z is at least ǫ. Thus in this case v is also marked.

Note that long arcs pose an efficiency problem for this approach. For example, if x has an arc

with length 100ǫ adjacent to it, the depth of Tx is at least 102ǫ. Building Tx will be expensive. All

partial-tree-based preprocessing algorithms, including ours, deal with this problem by building

smaller trees in such cases and potentially classifying some low-reach vertices as having high

reach. This results in weaker upper bounds on reaches and potentially slower query times, but

correctness is preserved.

Our preprocessing routine runs the partial-trees algorithm in iterations, multiplying the value

of ǫ by a constant α each time it starts a new iteration. In each subsequent iteration the algorithm

runs the partial-trees algorithm only on the subgraph consisting of arcs whose reach bound is larger

than ǫ, incorporating penalties inherited from arcs deleted in previous iterations. Note that, to

facilitate the addition of shortcuts, we use arc reaches, which are closely related to vertex reaches.

After all iterations are finished, we convert these arc reaches to vertex reaches. Section 5.2.2 will

describe the algorithm in more detail. Before we start, however, we need the definition of arc

reach.

5.2.1 Arc Reach

The notion of arc reach (implicit in [27]) is similar to that of vertex reaches. (We shall refer to

our original definition as vertex reach whenever there is ambiguity.) Given a path P from s to t

and an arc (v, w) on P , we define the reach of (v, w) with respect to P to be the minimum of the

length of the prefix of P from s to w and the length of the suffix of P from v to t.4 The reach

of (v, w), denoted by r(v, w), is the maximum, over all shortest paths P containing (v, w), of the

reach of (v, w) with respect to P . We denote an upper bound on r(v, w) by r(v, w). Pruning

based on arc reaches is similar to pruning based on vertex reaches. The following fact allows using

arc reaches for pruning:

Suppose r(v, w) < dist(s, v)+ ℓ(v, w) and r(v, w) < dist(w, t)+ ℓ(v, w). Then (v, w) is

not on a shortest path from s to t, and therefore Dijkstra’s algorithm does not need

to scan (v, w).

4Note that arc (v, w) is included in both the prefix and the suffix. A natural alternative definition would be to
exclude the arc from both. These two definitions are equivalent, since it suffices to add or subtract ℓ(v, w) to get
from one to the other.
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Arc reaches are more powerful than vertex reaches. If r(v, w) = R, then r(w) ≥ R − ℓ(v, w).

This implies that, if one of the reach pruning conditions fails, then the corresponding arc-reach

pruning condition also fails. Thus if a search that uses arc reaches scans (v, w), the search that

uses vertex reaches will not early-prune w from v. However, one can construct a graph where

r(v, w) is much smaller than r(v) and r(w), so the search based on arc reaches will prune an arc

(v, w) but the search based on vertex reaches will prune neither v nor w.

Although arc reaches are more effective, they are more expensive to store, for two reasons.

First, the number of arcs is bigger than the number of vertices. Second, since each arc appears

twice (in the forward graph and in the reverse graph), we must either replicate the reach value

in two locations or assign identifiers to the arcs (and store them somewhere). We use arc reaches

in preprocessing, where memory is less of an issue and the performance improvement is more

significant. For queries, we use vertex reaches.

To do that, we must convert the upper bounds we obtain on arc reaches into upper bounds on

vertex reaches. Consider a vertex v, an arc (v, w), and a path P that determines r(v). Assume

that r(v) > 0 and therefore that v is not an endpoint of P . Let (u, v) and (v, w) be the arcs

of P entering and leaving v. Clearly, the reach of these arcs with respect to P is at least r(v);

conversely, r(v) ≤ min{r(u, v), r(v, w)}. Unfortunately, we do not know which neighbors of v are

the ones that determine the reach (i.e., which ones are u and w). But a straightforward bound

on r(u, v) and r(v, w) yields r(v) ≤ min{maxx{r(x, v)}, maxy{r(v, y)}}. In other words, a valid

bound for r(v) is the minimum over the highest incoming arc reach and the highest outgoing arc

reach.

Often, however, the two maximums are achieved for x = y. Although the upper bound in

this case is still valid, it may be much higher than necessary. Since we know that u 6= w, we

can exclude this case as follows. First, we find the maximum of r(x, v) over all x. Let x′ be the

neighbor of v such that this maximum is r(x′, v). Then we find the maximum of r(v, y) over all

y 6= x′. Let y′ be the outgoing neighbor of v such that r(v, y′) is this maximum. Let δ1 be the

minimum of r(x′, v) and r(v, y′). Second, we find the maximum of r(v, y) over all y, and the vertex

y′ such that r(v, y′) is this maximum. Then we find the maximum of r(x, v) over all x 6= y′, and

the vertex x′ such that r(x′, v) is this maximum. Let δ2 be the minimum of r(x′, v) and r(v, y′).

Note that δ1 and δ2 may be different from each other in a directed graph. It is not hard to see

that a valid upper bound on r(v) is the maximum of δ1 and δ2.

5.2.2 Partial Trees for Arc Reaches

We now describe how one can use partial trees to find arcs whose reaches are smaller than a

threshold ǫ. Let G′ = (V ′, A′) be the graph we are working with. We initialize the reach estimates

of all arcs in A′ to zero. We then grow the partial trees from each vertex in V ′, compute the

reaches of the appropriate arcs within these trees, and update the reach estimates accordingly.

For each arc, the reach will end up being the maximum reach observed within all relevant partial
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trees.

Consider a partial shortest path tree Tx rooted at a vertex x, and let v 6= x be a vertex in this

tree. Let f(v) be the vertex adjacent to v on the shortest path from x to v. The inner circle of

Tx is the set containing the root x and all vertices v ∈ Tx such that d(v)− ℓ(x, f(v)) ≤ ǫ. We call

vertices in the inner circle inner vertices; all other vertices in Tx are outer vertices. The distance

from an outer vertex w to the inner circle is defined in the obvious way, as the length of the path

(in Tx) between the closest (to w) inner vertex and w itself. The partial tree stops growing when

all labeled vertices are outer vertices and have distance to the inner circle greater than ǫ.

Remark. Note that the criterion we use to stop growing the tree is heuristic. To guarantee that

all short paths are considered, we must grow the tree until the parent of every labeled vertex

is within distance greater than ǫ from the inner circle. Our stopping criterion makes the search

faster, but it may cause the reach estimates of some vertices to be higher than the actual value.

Once the partial tree is built, we compute the reach (within the tree) of all arcs whose heads

belong to the inner circle. For that, we define the depth of v, denoted by depth(v), as the distance

from the root x to v within the tree. The height of v, denoted by height(v), is defined as the

distance from v to its farthest descendant, as long as no descendant is labeled (i.e., if they are all

scanned). If v does have a labeled descendant, then height(v) = ∞. The reach of an arc (u, v)

with respect to the tree is defined as r((u, v), Tx) = min{depth(v), height(v) + ℓ(u, v)}. One can

compute the reach of all inner arcs (arcs whose endpoints are both inner vertices) in O(|Tx|) total

time. For each such arc, we verify if the reach within the tree is greater than the current estimate;

if it is, the estimate is updated.

After all partial trees are grown, every reach estimate with value at most ǫ will be valid. We

then eliminate all arcs with reach estimate below ǫ from the graph. The remaining arcs, i.e., those

with estimate greater than ǫ (including ∞), are kept in the graph for the next iteration.

In general, iteration i applies the partial-trees algorithm to a graph Gi = (Vi, Ai). This is the

graph induced by all arcs that have not been eliminated yet (considering not only the original

arcs, but also shortcuts added in previous iterations). All arcs in Ai have reach estimates above

ǫi−1 (for i > 1). To compute valid upper bounds for these arcs, the partial-trees algorithm must

take into account the deleted arcs. It does so using penalties, which we define next.

5.2.3 Penalties

Let Gi = (Vi, Ai) be the subgraph processed by the partial-trees algorithm at iteration i. We

define the in-penalty of a vertex v ∈ Vi as

in-penalty(v) = max
(u,v)∈A\Ai

{r̄(u, v)},
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if v has at least one eliminated incoming arc, and zero otherwise. The out-penalty of v is defined

similarly, considering outgoing arcs instead of incoming arcs:

out-penalty(v) = max
(v,w)∈A\Ai

{r̄(v, w)}.

If there is no outgoing arc, the out-penalty is zero.

The partial-trees algorithm will work as before, but depth and height must be redefined. Given

a partial tree Tx rooted at x, the depth of a vertex v ∈ Tx is now defined as

depth(v) = d(v) + in-penalty(x),

where d(v) is the distance between x and v in the tree.

To define the height of a vertex, we need the concept of pseudo-leaves. For each vertex v in

the partial tree, create a new child v′ (the pseudo-leaf) and an arc (v, v′) with length equal to

out-penalty(v). Intuitively, v′ acts as a representative of all original arcs incident to v that are

not present in the current subgraph. We conservatively assume that the shortest path from x to

v could actually be extended to v′. As this is not always true, we end up computing only upper

bounds on reaches.

The height of a vertex v is now defined as the distance between v and the farthest pseudo-leaf.

We stress that pseudo-leaves need to be added only implicitly, and only after the partial tree has

been built. When growing a partial tree, we do not need to worry about pseudo-leaves at all.

Remark. At the end of iteration i, an arc (u, v) may end up with a reach estimate that is greater

than ǫi, but finite. This arc cannot be eliminated, since its actual reach may be higher than this

estimate. The algorithm might miss the path x-y that proves this is the case because v may not

belong to the inner circle of x.

5.3 Shortcuts

The shortcut step looks for bypassable vertices. We call a vertex v bypassable if one of the

following conditions holds:

• v has exactly one incoming arc (u, v) and one outgoing arc (v, w);

• v has exactly two outgoing arcs, (v, u) and (v, w), and exactly two incoming arcs, (u, v) and

(w, v);

In both cases, we assume that u 6= w, which means that v has exactly two neighbors. In the first

case, we say v is a candidate for a one-way bypass; in the second, v is a candidate for a two-way

bypass. Shortcuts will be used to go around bypassable vertices.

A line is a path in the graph containing at least three vertices such that all vertices, except

the first and the last, are bypassable. Every bypassable vertex belongs to exactly one line. Lines
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can be either one-way or two-way, depending on the type of bypassable vertices it contains (it is

easy to see that there can be only one vertex type in a line).

Once a line is identified, we may bypass it. The simplest approach would be to do it in a

single step: if its first vertex is u and the last one is w, we could simply add a shortcut (u, w)

(and (w, u), in case it is a two-way line). However, if the line has several arcs, it is a good idea to

shortcut “sub-lines” as well. This will reduce the reaches even further, as the example in Figure 4

shows.
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Figure 4: In this graph, (s, u), (u, x), (x, v), (v, y), (y, w), and (w, t) are the original edges (for simplicity,
the graph is undirected). Without shortcuts, their reaches are r(s) = 0, r(u) = 20, r(x) = 30, r(v) = 36,
r(y) = 29, r(w) = 18, and r(t) = 0. If we add just shortcut (u,w), the reaches of three vertices are reduced:
r(x) = 19, r(v) = 12, and r(y) = 19. If we also add shortcuts (u, v) and (v, w), the reaches of x and y are
reduced even further, to r(x) = r(y) = 0.

More precisely, we proceed as follows. Let Λ = (u · · ·w) be a line with k ≥ 2 segments (k + 1

vertices). If k = 2, we bypass the only internal vertex by adding a new arc (u, w). If k > 2, we

find the internal vertex v that is closest to the median of path u · · ·w (with respect to arc lengths,

not number of vertices).5 Then we recursively process subpaths (u · · · v) and (v · · ·w), causing

shortcuts (u, v) and (v, w) to be added to the graph (unless the corresponding arcs already belong

to the graph). Finally, we create the shortcut (u, w).

5.3.1 Avoiding Long Arcs

The method above tends to create long shortcuts, since there are often lines with dozens of arcs.

This may cause the partial-trees algorithm to be less effective in future iterations. To prevent this

from happening, for each iteration i we define a maximum length λi that new arcs may have. In

our experiments, we set λi = ǫi+1/2 for i ≥ 0 (note that λ0 is the value used by the shortcut step

that precedes the first iteration).

To take this bound into account, we modify the procedure above in the obvious way. Consider

a line Λ = (u · · ·w) with k segments. If k = 2, we only create a shortcut if the length of the line

is smaller than λi; if it is longer, we do nothing. If k > 3, we make the recursive calls regardless

of the length of the line; however, the final shortcut (linking u and w) is only added if its length

is less than λi.

5When finding v on a two-way line, we consider the length of a segment (x, y) to be max{ℓ(x, y), ℓ(y, x)}; on
road networks, these two lengths are usually the same or very close to each other.
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To decide whether to add shortcuts or not, we compute the length of a bidirectional line by

taking the maximum length of the two arcs in each segment and adding them all. As a result, if

the algorithm decides to create a shortcut in one direction, it will also create one in the other.

5.3.2 Eliminating Bypassed Vertices

Consider a one-way line composed of three vertices, u, v, and w. When we add a shortcut from

u to w, we know that arc (u, v) will never be used on a shortest path that goes through u to w

anymore. Any path that uses (u, v) will end either in v or in some low-reach area neighboring v.

Therefore, a valid upper bound for the reach of (u, v) is r(u, v) = ℓ(u, v)+out-penalty(v). Similarly,

a valid upper bound for the reach of (v, w) will be r(v, w) = ℓ(v, w) + in-penalty(v). Once we

have these bounds, we can immediately remove v, as well as (u, v) and (v, w), from the graph and

update the appropriate penalties. A similar procedure can be adopted for a two-way line. The

two bounds above remain valid, and we can also say that r(w, v) = ℓ(w, v) + out-penalty(v) and

r(v, u) = ℓ(v, u) + in-penalty(v).

Although we could generalize this for lines with more than three vertices, there is no need

to. Our algorithm never creates a shortcut that bypasses more than one vertex; whenever it

encounters a longer line, it finds a vertex v close to the median, divides the line into two parts,

and recursively replaces each part by a single segment. When the recursive call is finished, the

neighbors of v will be the extremes of the original line.

5.4 The Refinement Phase

The fact that penalties are used to help compute valid upper bounds tends to make the bounds less

tight (in absolute terms) as the algorithm progresses, since penalties become higher. Therefore,

additive errors tend to be larger for vertices that remain in the graph after several iterations.

This is unfortunate because these are arguably the most important vertices in the graph. Since

they have high reach, they are visited by more queries than other vertices. If we could make these

reaches more precise, the query would be able to prune more vertices.

This is the goal of the refinement phase of our algorithm. After finding valid upper bounds

using the partial-trees algorithm, the refinement step will recompute the reach of the δ vertices

with highest (upper bounds on) reaches, where δ is a user-defined parameter.

Let Vδ be this set of high-reach vertices of G. To recompute the reaches, we first compute

the subgraph Gδ = (Vδ, Aδ) induced by Vδ. This graph contains not only original arcs, but also

the shortcuts between vertices in Vδ added during the main phase. We then run an exact reach

computation on Gδ by growing a complete shortest path tree from each vertex in Vδ. Because

these shortest path trees include vertices in Gδ only, we still have to use in- and out-penalties to

account for the remaining vertices. But these penalties tend to be smaller, since the arcs with

highest reaches will be inside Gδ.
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During the refinement phase, we compute vertex reaches directly (instead of arc reaches),

since we need not worry about making the graph shrink faster at this point. No new shortcuts are

added (even though they could be). Since the refinement phase grows a shortest path tree from

every vertex in Vδ, its running time is at least Ω(δ2). For our experiments, we chose δ = ⌈10
√

n⌉,
which made the refinement phase take a fraction of the time taken by the main phase of the

preprocessing algorithm (usually around 30% for road networks with travel times, less for other

graphs).

5.5 Correctness

By now we have completely described our preprocessing algorithm. We start with a shortcut

step, and then proceed in iterations. Each iteration applies a partial-trees step to compute upper

bounds on arc reaches, followed by a shortcut step that adds shortcuts and deletes bypassed

arcs (while bounding their reach). We then convert arc reaches to vertex reaches as described in

Section 5.2.1, and, finally, compute better upper bounds for high-reach vertices in the refinement

phase. The following theorem establishes the correctness of our preprocessing algorithm.

For the proof we need the notion of penalty reaches. We define penalty reaches with respect

to a set of canonical paths, in a graph where each vertex v has an in-penalty(v), and an out-

penalty(v) associated with it as follows. Let P be a canonical path from vertex y to vertex z

containing arc (v, w). The penalty reach of (v, w) with respect to P is the minimum between the

length of the prefix of P from y to w plus in-penalty(y), and the length of the suffix of P from

v to z plus out-penalty(z). The penalty reach of an arc (v, w) is the maximum over all canonical

paths P containing (v, w) of the penalty reach of (v, w) with respect to P . Analogously we define

a penalty reach for each vertex in G.

Theorem 5.1 Let G′ = (V, A′) be the original graph G = (V, A) with all shortcuts added. The

reach bounds computed by our preprocessing algorithm are valid with respect to canonical paths in

G′.

Proof. We start by proving that upper bounds on arc reaches computed by the main phase of

the algorithm are correct with respect to canonical paths in G′.

We break the iterations of the algorithm into steps and prove the theorem by induction on

number of steps. We define a step to be either (1) a partial trees computation followed by

elimination of all arcs with reach smaller than the appropriate threshold, or (2) an addition of a

single shortcut and the elimination of the bypassed arcs.

We denote by Gt the graph on which we perform step t: Gt includes all original arcs and

shortcuts that have been added up to step t and have not been eliminated by step t. Let G′
t be

the original graph along with all shortcuts added up to step t. Note that Gt is a subgraph of G′
t.

We prove by induction on the number of steps that
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1. Upper bounds on reaches computed for arcs eliminated up to (but not including) step t are

valid with respect to canonical paths in G′
t, and

2. Suppose (v, w) is present in Gt. Let P ′ be a canonical path in G′
t through (v, w). Let P be

the maximal subpath of P ′ in Gt containing (v, w). Then the penalty reach of (v, w) in Gt

with respect to P is no smaller than the reach of (v, w) with respect to P ′ in G′
t.

In the following we assume that the induction hypothesis holds before step t (for Gt and G′
t),

and show that it holds after step t (for Gt+1 and G′
t+1).

Partial tree step, first part. Assume first that step t is a partial tree computation at the

beginning of iteration i. It is straightforward to verify that our partial tree algorithm computes

upper bounds on penalty reaches in Gt for every arc whose penalty reach is at most ǫi. Since by our

induction hypothesis these penalty reaches are upper bounds on the reaches of the corresponding

arcs in G′
t, and G′

t = G′
t+1 (no shortcuts are added in this step), we establish the first part of the

induction hypothesis for G′
t+1.

Partial tree step, second part. To prove the second part of the induction hypothesis, consider

a canonical path P in Gt that goes through (v, w). Let P− be the maximal subpath of P in Gt+1

that contains (v, w). We claim that the penalty reach of (v, w) in Gt+1 with respect to P− is

at least as large as the penalty reach of (v, w) in Gt with respect to P . The second part of the

induction hypothesis holds for G′
t+1 because of this claim and because it holds for G′

t. Let x be

the first vertex on P− and let y be the last vertex on P−. The correctness of the claim follows

from the following observations.

1. The in-penalty of x in Gt+1 is at least as large as the in-penalty of x in Gt, and at least as

large as the penalty reach in Gt of every incoming arc into x that has been eliminated in

step t.

2. The out-penalty of y in Gt+1 is at least as large as the out-penalty of y in Gt and at least

as large as the penalty reach in Gt of every arc outgoing from y that has been eliminated

in step t.

3. Suppose x is not the first vertex of P and let x′ be the predecessor of x on P . Then (i) the

arc (x′, x) has been eliminated in step t, and (ii) the penalty reach of (x′, x) in Gt plus the

length of the subpath of P from x to w is at least as large as the penalty reach of (v, w)

in Gt. Therefore from item 1 above we obtain that in-penalty(x) plus the length of the

subpath of P from x to w is at least as large as the penalty reach of (v, w) in Gt.

4. Suppose y is not the last vertex of P and let y′ be the successor of y on P . Then (i) the

arc (y, y′) has been eliminated in step t, and (ii) the penalty reach of (y, y′) in Gt plus the
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length of the subpath of P from v to y is at least as large as the penalty reach of (v, w)

in Gt. Therefore from item 2 above we obtain that out-penalty(y) plus the length of the

subpath of P from v to y is at least as large as the penalty reach of (v, w) in Gt.

Shortcut step, first part. Next we establish the first part of the induction claim for the case

where step t is an addition of a shortcut (u, w) bypassing a vertex v. Assume that (u, w) is a

one-way shortcut (the proof for a two-way shortcut is analogous). In this case G′
t+1 is obtained

from G′
t by adding (u, w). Consider an arc (x, y) eliminated before step t and let P ′ be a canonical

path in G′
t+1 through (x, y). Then either P ′ is a canonical path in G′

t or P ′ contains (u, w). In

the latter case, the path obtained from P ′ by replacing (u, w) by the concatenation of (u, v) and

(v, w) is a canonical path in G′
t. Therefore the reach of (x, y) in G′

t+1 is no greater than its reach

in G′
t, and the upper bound remains valid.

To completely establish the first part of the induction hypothesis we also have to prove that

the upper bounds on the reaches of the bypassed (and eliminated) arcs, (u, v) and (v, w), are

correct in G′
t+1. Consider one such arc, say (v, w). (The proof for (u, v) is analogous.) Every

canonical path P ′ going through (v, w) in G′
t+1 does not go through (u, w), and therefore P ′ is

also a canonical path in G′
t. (Note that P ′ cannot contain (u, v) either.) Let P be the maximal

subpath of P ′ in Gt containing (v, w). By the induction hypothesis the penalty reach of (v, w)

with respect to P in Gt upper bounds the reach of (v, w) with respect to P ′ in G′
t. Since (u, v)

is the only incoming arc into v in Gt, and P ′ does not contain (u, v), the penalty reach of (v, w)

with respect to P in Gt is bounded by in-penalty(v)+ℓ(v, w).

Shortcut step, second part. To prove the second part of the induction hypothesis, consider a

shortcut (u, w) added at step t, an arc (g, h) in Gt+1, and a canonical path P ′ in G′
t+1 containing

(g, h). If P ′ does not contain (u, w), (u, v), or (v, w), then P ′ is also a canonical path in G′
t.

Furthermore, the maximal subpath P of P ′ that contains (g, h) in Gt+1 is the same as the

maximal subpath containing (g, h) in Gt. The penalty reach of (g, h) with respect to P is also the

same in Gt and in Gt+1. So the penalty reach of (g, h) with respect to P in Gt+1 upper bounds

the reach of (g, h) with respect to P ′ in G′
t+1 by the induction hypothesis.

Suppose that P ′ contains (v, w). (The proof in the case that P ′ contains (u, v) is analogous.)

Then P ′ cannot contain (u, w) or (u, v). The subpath P of P ′ containing (g, h) in Gt starts at v,

and the subpath P of P ′ containing (g, h) in Gt+1 starts at w. Our upper bound on the reach of

(v, w) plus the length of the subpath of P from w to h is at least as large as the penalty reach of

(g, h) with respect to P in Gt. Since the in-penalty of w in Gt+1 is not smaller than our upper

bound on the reach of (v, w), the induction statement holds with respect to P ′ and (g, h) in G′
t+1.

Now suppose that P ′ contains (u, w). Such a path was not a canonical path in G′
t. However

there was a canonical path P
′
in G′

t identical to P ′ except that it had the arcs (u, v) and (v, w) in

place of the arc (u, w) in P ′. Let P be the maximal subpath of P ′ containing (g, h) in Gt+1 and
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let P be maximal subpath of P
′
containing (g, h) in Gt. Again P and P are identical except that

if P contains (u, w) then P contains (u, v) and (v, w) instead. If (g, h) 6= (u, w), then the reach

of (g, h) in G′
t+1 with respect to P ′ is the same as the reach of (g, h) in G′

t with respect to P
′
.

Similarly the penalty reach of (g, h) in Gt+1 with respect to P is the same as the penalty reach of

(g, h) in Gt with respect to P , and the inductive claim for P ′ and P follows from the induction

hypothesis applied to P
′
and P .

The last case to consider is when (g, h) = (u, w). Assume that the reach of (u, w) with respect

to P ′ is the length of the suffix of P ′ from u. (The other case is analogous.) Then the reach of

(v, w) with respect to P
′
in G′

t is the length of the suffix of P
′
from v. Since by the induction

hypothesis the penalty reach of (v, w) with respect to P in Gt is as large as the reach of (v, w)

with respect to P
′
in G′

t, we have

1. The length of the suffix of P from v plus the out-penalty of the last vertex on P is at least

as large as the length of the suffix of P
′
from v.

2. The length of the prefix of P until w plus the in-penalty of the first vertex on P is at least

as large as the length of the the suffix of P
′
from v.

It is easy to see that these two facts imply that the reach of (u, w) with respect to P ′ in G′
t+1

is upper bounded by the penalty reach of (u, w) with respect to P in Gt+1.

To complete the proof we argue that the procedure that converts arc reaches into vertex

reaches is correct and that the refinement algorithm is correct. The former is straight-forward to

verify. One can prove the latter by showing that penalty reaches of the vertices in the graph to

which we apply the refinement step are upper bounds on their reaches in G′. �

We stress that the preprocessing phase of the algorithm is completely independent of the query

phase: the only information passed from the former to the latter is the graph with shortcuts

and the reach values. For example, the preprocessing algorithm does not pass on perturbations

introduced to make shortest paths unique. Correctness of our query algorithm follows from

Theorem 5.1.

5.6 Parameters

Choosing ǫ1. Our goal in choosing ǫ1 is to make the first iteration take roughly as much time as

the iterations that follow. A large value will make the first iteration comparatively slow and will

not give the algorithm the chance to add shortcuts when needed. On the other hand, a very small

ǫ1 will introduce penalties too early, which will make reaches computed in subsequent iterations

more inaccurate.

The choice of ǫ1 is made as follows. Pick k vertices at random, for some parameter k. For each

vertex, grow a partial shortest path tree with exactly ⌊n/k⌋ scanned vertices and take note of its

radius (given by the distance label of the last scanned vertex). Set ǫ1 to be twice the minimum

of all k radii. We used k = min{500, ⌊⌈√n⌉/3⌋}.
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Note that the density of road networks tends to vary a lot: a ball with radius R in New York

City will have many more vertices than one in rural North Dakota. The above heuristic identifies

dense regions of the graph and chooses ǫ1 so that growing partial shortest path trees in dense

areas is not too expensive.

Choosing α. Once we pick the appropriate value of ǫ1, we also have to choose a multiplier α

to determine the thresholds to be used in the remaining iterations (recall that ǫi = αi−1ǫ1). The

choice of α is related to three important aspects of the algorithm. First, it affects the running

time: the smaller α is, the more iterations will be performed by the algorithm; on the other hand,

if α is too large, iterations will typically take longer (since vertices are eliminated less frequently).

Second, the choice of α helps determine how many shortcuts are added: if α is relatively small, the

algorithm will have a better chance of shortcutting vertices before they are eliminated. Finally,

and most importantly, the choice of α determines how good the upper bounds will be. The error

in an arc reach estimated during iteration i depends on the penalties, which in turn depend on

the maximum reaches of arcs eliminated in previous iterations. The larger α is, the smaller the

summation
∑

j<i ǫj will be with respect to ǫi.

Empirically, we have determined that using α = 3.0 provides a good balance between these

conflicting factors. However, as soon as we reach an iteration in the main phase where the number

of vertices is smaller than δ (the parameter defined in Section 5.4), we reduce the multiplier from

3.0 to 1.5. This gives the algorithm the opportunity to add more shortcuts. Although this

increases the running time, it does so by a small factor (assuming δ ≪ n). Note that the reaches

obtained during the main phase for the last δ vertices may not be as good as if the multiplier were

higher; since those reaches will be recomputed during the refinement phase, this is not a problem.

6 Reach and the ALT Algorithm

6.1 A
∗ Search and alt Algorithms

Suppose we need to find shortest paths on a graph G with distance function ℓ. A potential

function is a function from vertices to reals. Given a potential function π, the reduced cost of an

arc is defined as ℓπ(v, w) = ℓ(v, w) − π(v) + π(w). Suppose we replace ℓ by ℓπ. Then for any

two vertices x and y, the length of every x-y path (including the shortest) changes by the same

amount, π(y)−π(x). Thus the problem of finding shortest paths in G is equivalent to the problem

of finding shortest paths in the transformed graph.

Now suppose we are interested in finding the shortest path from s to t. Let πf be a (perhaps

domain-specific) potential function such that πf (v) gives an estimate on the distance from v to

t. In the context of this paper, A∗ search [6, 17] is an algorithm that works like Dijkstra’s

algorithm, except that at each step it selects a labeled vertex v with the smallest key, defined as

kf (v) = df (v) + πf (v), to scan next. It is easy to see that A∗ search is equivalent to Dijkstra’s
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algorithm on the graph with length function ℓπf
. If πf is such that ℓπ is nonnegative for all arcs

(i.e., if πf is feasible), the algorithm will find the correct shortest paths. We refer to the class of

A∗ search algorithms that use a feasible function πf with πf (t) = 0 as lower-bounding algorithms.

Intuitively, better estimates lead to fewer vertices being scanned. More precisely, consider

an instance of the P2P problem and let πf and π′
f be two feasible potential functions such that

πf (t) = π′
f (t) = 0 and, for any vertex v, π′

f (v) ≥ πf (v) (i.e., π′
f dominates πf ). If ties are broken

consistently when selecting the next vertex to scan, the following holds.

Theorem 6.1 [13] The set of vertices scanned by A∗ search using π′
f is contained in the set of

vertices scanned by A∗ search using πf .

Note that the theorem implies that any lower-bounding algorithm with a nonnegative po-

tential function visits no more vertices than Dijkstra’s algorithm, which is equivalent to the

lower-bounding algorithm with the zero potential function.

We combine A∗ search and bidirectional search as follows. Let πf be the potential function

used in the forward search and let πr be the one used in the reverse search. Since the latter works

in the reverse graph, each original arc (v, w) appears as (w, v), and its reduced cost w.r.t. πr is

ℓπr(w, v) = ℓ(v, w) − πr(w) + πr(v), where ℓ(v, w) is in the original graph. We say that πf and

πr are consistent if, for all arcs (v, w), ℓπf
(v, w) in the original graph is equal to ℓπr(w, v) in the

reverse graph. This is equivalent to πf + πr = const.

If πf and πr are not consistent, the forward and reverse searches use different length functions.

When the searches meet, we have no guarantee that the shortest path has been found. Assume

πf and πr give lower bounds to the sink and from the source, respectively. We use the average

function suggested by Ikeda et al. [18], defined as pf (v) =
πf (v)−πr(v)

2 for the forward computation

and pr(v) =
πr(v)−πf (v)

2 = −pf (v) for the reverse one. Although pf and pr usually do not give

lower bounds as good as the original ones, they are feasible and consistent.

The alt algorithm is an A∗-based algorithm that uses landmarks and triangle inequality to

compute feasible lower bounds We select a small subset of vertices as landmarks and, for each

vertex in the graph, precompute distances to and from every landmark. Consider a landmark L:

if d(·) is the distance to L, then, by the triangle inequality, d(v) − d(w) ≤ dist(v, w); if d(·) is

the distance from L, d(w) − d(v) ≤ dist(v, w). To get the tightest lower bound, one can take the

maximum of these bounds, over all landmarks. Intuitively, the best lower bounds on dist(v, w) are

given by landmarks that appear “before” v or “after” w. The version of alt algorithm that we

use balances the work of the forward search and the reverse search (see Section 2). This version

had better performance than other variants.

Finding good landmarks is important for the overall performance of alt algorithms. Our

implementation uses the maxcover heuristic discussed in [15]. In our tests, we always picked 16

landmarks in total, unless mentioned otherwise.

For a given s-t pair, some of the landmarks give good lower bounds on distances while others
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do not. Our alt implementation uses dynamic selection of active landmarks, i.e., it picks a only

a subset of the landmarks to be used during each specific s-t search (initially two, but up to six

if necessary). See [15] for details.

6.2 Reach and A
∗ search

Reach-based pruning can be easily combined with A∗ search. Gutman [16] noticed this in the

context of unidirectional search. The general approach is to run A∗ search and prune vertices (or

arcs) based on reach conditions. Specifically, when A∗ is about to scan a vertex v we extract the

length of the shortest path from the source to v from the key of v (recall that for the unidirectional

algorithm, kf (v) = df (v)+pf (v)). Furthermore, πf (v) is a lower bound on the distance from v to

the destination. If the reach of v is smaller than both df (v) and πf (v), we prune the search at v.

The reason why reach-based pruning works is that, although A∗ search uses transformed

lengths, the shortest paths remain invariant. This applies to bidirectional search as well. In this

case, we use df (v) and πf (v) to prune in the forward direction, and dr(v) and πr(v) to prune

in the reverse direction. Using pruning by reach does not affect the stopping condition of the

algorithm. We still use the usual condition for A∗ search, which is similar to that of the standard

bidirectional Dijkstra, but with respect to reduced costs (see [15]). We call our implementation of

the bidirectional A∗ search algorithm with landmarks and reach-based pruning real. As for alt,

we used a version of real that balances the work of the forward search and the reverse search.

Note that we cannot use implicit bounds with A∗ search. The implicit bound based on the

radius of the ball searched in the opposite direction does not apply because the ball is in the

transformed space. The self-bounding algorithm cannot be combined with A∗ search in a useful

way, because it assumes that the two searches will process balls of radius equal to half of the

s-t distance. However, processing these balls defeats the purpose of A∗ search, which aims at

processing a smaller set.

The main gain in the performance of A∗ search comes from the fact that it directs the two

searches towards their goals, reducing the search space. Reach-based pruning sparsifies search

regions, and this sparsification is effective for regions searched by both Dijkstra’s algorithm and

A∗ search.

Note that real has two preprocessing algorithms: the one used by re (which computes

shortcuts and reaches) and the one used by alt (which chooses landmarks and computes distances

from all vertices to it). These two procedures are independent from each other: since shortcuts

do not change distances, landmarks can be generated regardless of what shortcuts are added.

Furthermore, the query is still independent of the preprocessing algorithm: the query only takes

as input the graph with shortcuts, the reach values, and the distances to and from landmarks.
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6.3 Further Optimizations

Our implementation of real uses early pruning: when scanning an arc (v, w), we try to prune

w by reach before actually inserting it into the queue (see Section 4.2). Note that the test will

require a lower bound L(w) on the distance from w to the destination. Since obtaining this value

is relatively expensive (it requires retrieving several distances to and from landmarks), we first

use L(v) − ℓ(v, w) as the lower bound. More precisely, we test if (1) d(v) + ℓ(v, w) > r(w) and

(2) L(v) − ℓ(v, w) > r(w). If so, we prune. This test is weaker, but cheaper (since at this point

we know L(v)). We compute L(w) only if the test fails to prune the vertex.

Our implementation also uses arc sorting. However, we must use a more sophisticated (and

somewhat weaker) version of the algorithm presented in Section 4.2. Instead of sorting the

outgoing arcs of (v, w) by r(w), we sort by r(w) + ℓ(v, w) (in non-increasing order). Suppose

that, while scanning v, we find an arc (v, w) such that (1′) r(w) + ℓ(v, w) < d(v) and (2′)

r(w) + ℓ(v, w) < L(v). This implies that conditions (1) and (2) above are true for w, and

therefore (v, w)—and all arcs that succeed it—can be pruned. Note that conditions (2) and (2′)

are equivalent, but condition (1) may succeed while (1′) fails. In this case we still prune the arc,

but keep traversing the adjacency list.

We also try to prune a vertex after we remove it from the heap (and before scanning it). This

is still useful because the lower bound on the distance to the target may have changed since the

vertex was inserted, due to the possibility of new landmarks being activated.

7 Alternative Reach Definitions and Related Work

7.1 Gutman’s Algorithm

In [16] Gutman computes shortest routes with respect to travel times. However, his algorithm,

which is unidirectional, uses Euclidean bounds on travel distances, not times. This requires a more

general definition of reach, which involves, in addition to the metric induced by graph distances

(native metric), another metric M , which can be different. To define reach, one considers native

shortest paths, but takes subpath lengths and computes reach values for M -distances. It is easy

to see how these reaches can be used for pruning. Note that Gutman’s algorithm can benefit from

shortcuts, although he does not use them. All our algorithms have natural distance bounds for

the native metric, so we use this metric as M .

Other major differences between re and Gutman’s algorithm are as follows. First, re is bidi-

rectional, and bidirectional shortest path algorithms tend to scan fewer vertices than unidirec-

tional ones. Second, re uses implicit lower bounds and thus does not need the vertex coordinates

required by Gutman’s algorithm. Finally, re preprocessing creates shortcuts, which Gutman’s

algorithm does not. There are also minor differences in the preprocessing algorithm, which have

less effect on performance. In particular, we do not grow partial trees from eliminated vertices,

which requires a slightly different interpretation of penalties.
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A variant of Gutman’s algorithm uses A∗ search with Euclidean lower bounds. In addition to

the differences mentioned in the previous paragraph, real differs in using tighter landmark-based

lower bounds.

7.2 Cardinality Reach and Highway Hierarchies

We now discuss the relationship between our reach-based algorithm (re) and the hh algorithm

of Sanders and Schultes. Although the hh algorithm is stated in terms of arc pruning, we outline

a vertex-pruning variant, which is simpler, and refer the reader to [29] for the original version.

Since hh is described for undirected graphs, we restrict the discussion to them. Most of what we

say applies to the directed case as well.

We introduce the variant of reach, c-reach (cardinality reach). Given a vertex v on a shortest

path P , grow equal-cardinality balls centered at its endpoints until v belongs to one of the balls.

Let cP be the cardinality of each of the balls. The c-reach of v, c(v), is the maximum, over all

shortest paths P , of cP . Note that if we replace cardinality with radius, we get the definition of

reach.

To use c-reach for pruning the search, we need the following values. For a vertex v and a

nonnegative integer i, let ρ(v, i) be the radius of the smallest ball centered at v that contains i

vertices. Consider a search for the shortest path from s to t and a vertex v. We do not need to

scan v if ρ(s, c(v)) < dist(s, v) and ρ(t, c(v)) < dist(v, t). Intuitively, if v has low c-reach, it must

be visited very early in any s-t search; if the search grows past a certain radius and v has not been

visited yet, we know for sure v will not be on the shortest path. Implementation of this pruning

method would require maintaining n − 1 values of ρ for every vertex.

The main idea behind hh preprocessing is to use the partial-trees algorithm for c-reaches

instead of reaches. Given a threshold h, the algorithm identifies vertices that have c-reach below

h (local vertices). The remaining ones are highway vertices. Consider a bidirectional search.

During the search from s, once the search radius advances past ρ(s, h), one can prune local

vertices in this search. One can do similar pruning for the reverse search. In other words, after

an initial local search, we can restrict ourselves to the subgraph induced by the highway vertices.

This idea is applied recursively to the graph with low-reach vertices deleted. This gives a

hierarchy of vertices, in which each vertex needs to store a ρ-value for each level of the hierarchy

it is present at. The hh algorithm preprocessing phase also shortcuts lines and uses other heuristics

to reduce the graph size at each iteration. On road networks, the graph shrinks substantially at

each level, and the total number of levels is very small.

An important property of the hh query algorithm, which makes it similar to the self-bounding

algorithm discussed in Section 4.1, is that the search in a given direction never goes to a lower

level of the hierarchy. The intuition is that if the actual shortest path does go through the lower

level, the remaining portion of the path will be found by the search in the opposite direction.

Our partial description of hh brings out its similarity to the reach-based algorithms. We have
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omitted the details of hh which have no equivalent in re, which has a simpler query algorithm.

For example, if a search from s advances to the level of hierarchy where s is not present, then

at this level ρ(s, h) is not defined. The query algorithm needs to deal with such cases, making it

more complex. See [27, 29] for details.

Note that, like the self-bounding algorithm, hh cannot be combined with A∗ search in the

usual way.

The biggest difference between hh and our approach is the use of c-reach instead of reach.

This requires hh to use ρ values. An efficient way to maintain these values is implicitly, with

the help of the highway hierarchy. A potential advantage of c-reaches is that the size of a ball

to be searched before advancing to the next level of the hierarchy is explicitly bounded. The

disadvantage is the added complexity and the loss of flexibility, which in particular prevents a

natural combination with A∗ search.

8 Experimental Results

Our computational experiments have several goals. First, we study the relative performance of

two previous algorithms (alt and b) and our new algorithms (re and real) in the context of

road networks. Note that b, the bidirectional Dijkstra’s algorithm, is a natural candidate for

comparison as it is simple to implement and the most robust algorithm for general graphs with

no preprocessing. This comparison also shows how much A∗ search and landmarks improve the

performance of re. We also make a comparison with hh, the best previous algorithm.

Then we study how much shortcuts help improve the performance of both preprocessing and

queries, and also how the use of upper bounds on reaches (instead of exact values) affects the

algorithms. Next, we assess how the number of landmarks affects the performance of real.

Finally, we briefly study how the algorithms fare on grid graphs, which have no natural hierarchy.

8.1 Experimental Setup

We implemented our algorithms in C++ and compiled them with Microsoft Visual C++ 7.0.

All tests were performed on an AMD Opteron with 16 GB of RAM running Microsoft Windows

Server 2003 at 2.4 GHz.

We conduct most of our tests on road networks. We test our algorithm on the 13 graphs

described in Table 1. The first graph in the table, North America (NA), was extracted from

Mappoint.NET data and represents Canada, the United States (including Alaska), and the main

roads of Mexico. The other 12 instances are representative subgraphs of NA. All graphs are

directed and biconnected. For each of these graphs, we use one of two types of length function:

travel times and travel distances.

For a direct comparison with hh, we use the graph of the United States built by Sanders

and Schultes [27] based on Tiger-Line data [35]. Because our implementations of alt and real
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Table 1: Road Networks

name description vertices arcs latitude (N) longitude (W)

NA North America 29 883 886 70 297 895 [−∞, +∞] [−∞, +∞]
CTR Central USA 16 797 663 39 499 505 [25.0; 50.0] [79.0; 100.0]
W Western USA 8 434 514 19 730 764 [27.0; 50.0] [100.0; 130.0]
E Eastern USA 4 256 990 10 088 732 [24.0; 50.0] [−∞; 79.0]

LKS Great Lakes 3 499 752 8 439 615 [41.0; 50.0] [74.0; 93.0]
CAL California and Nevada 2 134 828 5 031 072 [32.5; 42.0] [114.0; 125.0]
NW Northwest USA 1 649 045 3 778 225 [42.0; 50.0] [116.0; 126.0]
NE Northeast USA 1 575 447 3 841 303 [39.5, 43.0] [−∞; 76.0]
FLA Florida 1 228 116 2 999 092 [24.0; 31.0] [79; 87.5]
COL Colorado 585 950 1 396 345 [37.0; 41.0] [102.0; 109.0]
CAN Western Canada 513 914 1 288 194 [49.0; +∞] [39; +∞]
BAY Bay Area 330 024 793 681 [37.0; 39.0] [121; 123]
NYC New York City 277 863 697 641 [40.3; 41.3] [73.5; 74.5]

assume the graph to be connected,6 we only take the largest connected component of this graph,

which contains more than 98.6% of the vertices. The graph is undirected, and we replace each

edge {v, w} by arcs (v, w) and (w, v). Our version of the graph (which we call USA) has 23 947 347

vertices and 57 708 624 arcs.

We also do limited experiments with grid graphs. Vertices of an x × y grid graph correspond

to points on a two-dimensional grid with coordinates i, j for 0 ≤ i < x and 0 ≤ j < y. Each

vertex has arcs to the vertices to its left, right, up, and down neighbors, if present. Arc lengths

are integers chosen uniformly at random from [1, 1024]. We use square grids (i.e., x = y).

Choice of parameters. Unless otherwise noted, in each experiment we run the algorithms

with a fixed set of parameters.

For each graph, we generated one set of 16 maxcover landmarks (as described in [15]). The

same set was used both by alt and real. Upper bounds on reaches were generated with the

algorithm described in Section 5. The reaches thus obtained (alongside with the corresponding

shortcuts) were used by both re and real.

At query time, both alt and real use dynamic selection of active landmarks, with up to six

landmarks used in any particular search (again, as suggested in [15]). re and real use both early

pruning and arc sorting.

6We assume the graphs are connected only to simplify implementation.
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8.2 Random Queries on Road Networks

Table 2 presents the results obtained by our algorithms when applied to the Mappoint.NET graphs

with the travel-time metric. For each graph and each algorithm, we show performance information

related to preprocessing and to random queries.

First, we show the total time (in minutes) required by the preprocessing procedure; for alt,

this corresponds to landmark generation; for re, reach computation; and for real, both.

Then we present the total space required by the preprocessed data (in megabytes). That

includes the graph itself (for all three algorithms), the reach information (for re and real),

and the landmark information (for alt and real). Recall that alt uses the original graph,

whereas the other algorithms use a version of the graph containing shortcuts, which is larger.

The total space also accounts for the size of the translation map used to convert shortcuts into

their constituent arcs. As in [27], our query times do not include the time to actually perform

this conversion, since this step may not be necessary in some applications.

The last six columns present query data. For each graph, we picked 1000 pairs of vertices

uniformly at random and ran each algorithm on them. We show the average number of vertices

scanned, the maximum number of vertices scanned (among the 1000 searches), and the average

running time per search. In all cases, we show both the absolute values (times are in millisec-

onds) and the speedup with respect to our implementation of the standard bidirectional Dijkstra’s

algorithm (b). The speedup is the ratio between the result for b and the result for the algorithm

being tested.

Comparing our algorithms with b is important to provide a baseline and because b is relatively

stable: on these graphs, b visits between 31% and 43% of the vertices on average, and between

69% and 96% in the worst case. The lower bounds in both ranges are achieved on NYC, and the

upper bounds on LKS.

We start the analysis of the results by considering the average behavior of our query algorithms,

in terms of both running time and number of vertices scanned. The table suggests that alt has

worse asymptotic performance than the other algorithms. Although competitive with re on

smaller graphs, alt is roughly 20 times worse on the largest one according to both measures.

In [15], it was observed that, on road networks, alt visits a constant fraction of the vertices on

average, regardless of graph size. This is indeed what we observe here: roughly 1% of the vertices

are visited in all cases. Since the performance of b is largely independent of graph size, so is the

speedup.

Contrast this with re: the average fraction of vertices it scans tends to decrease with graph

size. On the largest graph, re scans about 6% as many vertices as alt. real is consistently

faster than re on average, but the two algorithms seem to be asymptotically very close to each

other: on all graphs, re scanned 5 to 7 times as many vertices as real, and the average time it

takes is larger by a factor of 3 to 4 on most graphs. This indicates that real does more work per

vertex than re.
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Table 2: Algorithm performance on road networks with travel times as arc lengths: total preprocessing
time, total space in disk required by the preprocessed data (in megabytes), average number of vertices
scanned per query (over 1000 random queries), maximum number of vertices scanned (over the same
queries), and average running times. Query data shown as both absolute values and as speedups with
respect to the bidirectional Dijkstra algorithm.

prep. disk query
time space avg scans max scans avg time

graph method (min) (MB) count spd count spd msec spd
NYC alt 0.7 22 2 557 32 28 279 7 2.77 14

re 6.3 16 2 588 32 4 977 39 2.03 19
real 7.0 34 316 263 1 411 136 0.48 82

BAY alt 0.7 26 4 052 29 54 818 5 3.39 16
re 3.2 19 1 590 74 3 438 85 1.17 48

real 3.9 40 290 404 1 691 172 0.45 123
CAN alt 1.3 42 5 975 36 61 367 8 4.28 21

re 4.8 32 2 457 88 6 306 74 1.91 47
real 6.1 64 281 768 1 850 253 0.50 177

COL alt 1.6 47 7 373 26 85 246 6 5.84 15
re 5.2 36 2 181 88 5 074 103 1.80 49

real 6.9 73 306 624 1 612 324 0.59 149
FLA alt 3.4 99 15 565 30 200 818 6 15.52 16

re 11.0 73 2 158 215 4 389 253 1.81 134
real 14.4 151 392 1 183 2 207 504 0.72 337

NE alt 4.2 127 14 699 39 158 867 9 17.39 20
re 32.9 95 5 372 108 10 610 135 4.80 71

real 37.1 193 648 895 3 735 384 1.20 283
NW alt 3.9 132 14 178 36 144 082 8 12.52 21

re 17.5 100 2 804 184 5 877 203 2.39 112
real 21.4 204 367 1 408 1 513 789 0.73 365

CAL alt 5.2 171 24 603 34 307 596 6 24.19 20
re 23.3 129 3 159 268 6 960 283 3.03 158

real 28.5 263 518 1 632 3 677 536 0.83 577
LKS alt 10.9 282 46 130 33 551 193 6 52.74 14

re 61.1 217 5 991 252 9 714 346 5.83 130
real 72.0 437 791 1 911 3 800 885 1.52 501

E alt 15.2 342 35 044 42 487 194 8 44.47 18
re 84.7 255 6 925 212 13 857 277 7.06 116

real 99.9 523 795 1 843 4 543 844 1.61 510
W alt 26.7 677 97 073 31 1 196 364 6 111.27 15

re 124.7 526 6 222 480 12 112 586 6.75 252
real 151.5 1 058 915 3 262 5 382 1 318 1.84 922

CTR alt 55.5 1 346 147 040 37 2 376 017 5 224.65 16
re 400.9 1 038 11 721 464 20 319 630 13.27 274

real 456.4 2 094 1 275 4 263 6 594 1 940 2.84 1 276
NA alt 95.3 2 398 250 381 41 3 584 377 8 393.41 19

re 678.8 1 844 14 684 698 24 618 1 104 17.38 439
real 774.2 3 726 1 595 6 430 7 450 3 647 3.67 2 080
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Indeed, if one takes the ratio between the speedup in terms of number of vertices scanned and

the time speedup, one gets an estimate on the relative work the algorithm performs per vertex

scan (compared to b). For re, the work is between 1.5 and 2.0 times greater than for b. For alt,

the ratio is usually greater than 2.0. For real, it is closer to 3.0.

When comparing the maximum number of vertices scanned, re and real exhibit a consistent

behavior, with real being 2 to 3 times better on all graphs. Note that this difference is smaller

than in the average case. alt is significantly worse—it is the only algorithm where the worst case

grows linearly with graph size: bad cases make alt visit 10% to 15% of the vertices. The other

algorithms are strongly sublinear in this measure: a bad case on NA is only five times worse than

a bad case on NYC, a graph 100 times smaller.

Although query times generally increase with graph size, it is not a perfect predictor of how

well each algorithm will fare, particularly for re. Take NE and NW, for instance. Both graphs

have roughly 1.6 million vertices, but re is almost twice as fast on NW; alt and real are also

faster on NW, but by a smaller margin. We conjecture the difference is due to the fact that NW

has a more natural highway hierarchy than NE. Similarly, NYC, the smallest graph in our test

set, is harder for re than any of the next four graphs—including FLA, which has more than four

times as many vertices.

In terms of preprocessing, we note that computing landmarks is significantly faster than finding

good upper bounds on reaches. However, landmark data (with a reasonable number of landmarks)

takes up more space than reach data; compare the space usage of re and alt. In fact, the reaches

themselves are a minor part (less than 20%) of the total space required by re. The rest of the

space is used up by the graph with shortcuts (typically, the number of arcs increases by 35% to

55%) and by the shortcut translation map.

Travel distances. Table 3 is similar to Table 2, but with travel distances (as opposed to travel

times) as arc lengths. The most obvious difference in the query results is that alt, re, and

real have worse performance in this case, on all measures. All these algorithms benefit from the

existence of a natural hierarchy in the underlying network, and such a hierarchy is much more

pronounced when travel times are used: if one considers distances only, a local road will look just

as good as the major freeway it runs parallel to.

However, not all algorithms are hit equally hard by the change in metric. For large graphs,

the average performance of alt (measured by both running time and vertices scanned) becomes

roughly 20% worse, and the worst-case performance is not much affected at all. On the other

hand, it is not uncommon for re to become more than twice as slow when travel distances are

used. real falls somewhere in between.

In terms of preprocessing time, once again the algorithms have different behavior. While

landmark computation remains largely unaffected, reach computation becomes significantly worse:

up to 2.5 times slower on large graphs. The total space used does not change much in either case.
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Table 3: Algorithm performance on road networks with distances as arc lengths. For each graph and each
method, we first show the total time spent in preprocessing (in minutes) and the total size of the data
stored on disk after preprocessing (including the graph itself). Then we present the results for queries
on 1000 random graphs: average number of vertices scanned per query, the maximum number of vertices
scanned (over all queries ran), and the average running time. In each case, we show both the actual value
and the speedup (spd) with respect to b.

prep. disk query
time space avg scans max scans avg time

graph method (min) (MB) count spd count spd msec spd
NYC alt 0.8 23 2 959 29 27 070 7 3.25 14

re 12.5 17 4 945 17 9 317 21 3.72 12
real 13.3 35 454 189 2 382 82 0.80 58

BAY alt 0.8 27 3 383 35 42 192 7 3.25 18
re 4.6 19 2 761 43 6 313 45 2.05 28

real 5.4 41 335 356 2 717 105 0.45 128
CAN alt 1.5 44 7 841 25 89 602 5 5.89 15

re 8.1 32 3 566 55 9 216 52 2.86 30
real 9.6 67 390 505 2 685 180 0.73 117

COL alt 1.8 48 7 793 24 126 755 4 6.34 14
re 9.7 36 3 792 50 10 067 50 3.16 28

real 11.5 75 406 469 2 805 178 0.72 123
FLA alt 3.7 102 11 203 42 130 532 9 11.06 21

re 16.6 74 3 544 133 8 248 137 2.88 80
real 20.3 154 440 1 074 3 113 362 0.78 296

NE alt 4.3 132 14 334 41 114 846 13 17.08 21
re 60.8 96 10 460 57 22 561 64 9.28 38

real 65.1 199 819 726 4 496 322 1.22 289
NW alt 4.2 136 20 662 26 426 069 3 21.61 12

re 21.3 101 4 217 125 10 630 121 3.81 71
real 25.4 208 478 1 103 3 058 419 0.89 302

CAL alt 5.5 177 31 033 28 476 091 4 40.31 12
re 38.8 130 5 802 149 16 184 120 5.19 91

real 44.3 270 762 1 136 5 532 352 1.33 356
LKS alt 10.7 292 48 417 31 472 060 7 57.99 15

re 145.1 221 13 060 115 24 725 136 12.02 71
real 155.8 451 1 201 1 254 7 371 458 2.16 393

E alt 14.6 353 43 737 35 582 663 7 61.98 15
re 158.9 258 14 025 108 28 144 141 13.28 69

real 173.4 537 1 142 1 323 7 097 560 2.27 404
W alt 25.6 700 91 697 33 748 710 10 117.42 17

re 195.9 531 10 385 289 24 065 298 10.61 186
real 221.6 1 086 1 235 2 431 7 703 931 2.36 834

CTR alt 60.7 1 395 167 753 33 2 351 001 6 251.34 16
re 977.0 1 051 26 549 206 50 127 258 28.52 144

real 1 037.7 2 156 2 160 2 537 11 771 1 100 4.66 883
NA alt 97.2 2 511 292 777 36 3 588 684 8 476.86 17

re 1 623.0 1 866 30 962 336 56 794 485 34.92 231
real 1 720.2 3 860 2 653 3 922 17 527 1 570 5.97 1 351
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Figure 5: Average number of scanned vertices for local queries on NA with travel times (left) and travel
distances (right). The horizontal axis corresponds to ranges of ranks. Position i represents s-t pairs such
that s is chosen at random and t is the j-th farthest vertex from s, where j is selected uniformly at random
from the range (2i−1, 2i]. The vertical axis is in log scale.

8.3 Local Queries on Road Networks

So far, we have tested the algorithms only on random s-t pairs. In this distribution, source and

destination are on average very far from each other. In practice, it is reasonable to expect queries

to be more local in nature. To evaluate the behavior of the algorithms for local queries, we use

a slight modification of the “local” s-t pair generation process introduced in [27] and apply it to

the NA graph.

To describe the process, we need the following definition. Given a vertex s, sort all vertices

with respect to their distance from s, in non-decreasing order. Define ranks(v) to be the index

of v in the resulting sequence. For a parameter i, we generate 1000 s-t pairs by (1) picking s

uniformly at random, (2) picking j uniformly at random from (2i−1, 2i], and (3) selecting t so

that ranks(t) = j. We do this for i ∈ {9, 10, . . . , 25 = ⌈log2 n⌉}, where n is the number of vertices

in the NA graph. We then group the pairs thus generated into buckets: all pairs generated with

parameter i are assigned to bucket i.

Figure 5 shows the average number of vertices scanned when each query algorithm was run

on each bucket. The first plot uses travel times and the second uses travel distances. Note that

the vertical axis is in logarithmic scale. In both plots, the asymptotic behavior of alt is clearly

worse than that of re. For pairs of vertices that are far apart, alt scans around 100 times as

many vertices as re (slightly more than that with travel times, slightly less with travel distances).

Note, however, that alt scans fewer vertices than re when s and t are very close to each other.

The crossover point is larger with travel distances. Not surprisingly, real is better than both

algorithms for all sizes, and its advantage over re even increases as pairs get farther.

A comparison between these plots and Tables 2 and 3 shows that all three algorithms have
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average performance on the uniform distribution that is similar to that of bucket 24, which

confirms that the uniform distribution is indeed biased towards pairs of vertices that are far from

each other.

8.4 Comparison to Highway Hierarchies

To compare our algorithms with hh, we use the USA graph. Unlike the other graphs we tested,

USA is undirected. However, our algorithms do not exploit this fact explicitly: they simply

interpret each (undirected) edge as two arcs of equal length in opposite directions. We are

interested in the more general case of directed graphs, so we have not investigated how much

improvement one can get on undirected graphs.

The hh algorithm, however, does use the fact that the graph is undirected. This makes its

implementation simpler, and maybe more efficient. When discussing its performance, for both

preprocessing and query, we assume that the performance does not get much worse when the

algorithm is extended to directed graphs. We believe this is true, but this assumption has not

been verified.

For hh, we use the results reported in [27]. Averages for this algorithm are taken over 10 000

executions (we use 1000 for our methods). Running times for hh were obtained on a machine

slightly slower than ours: an AMD Opteron running at 2.2 GHz (ours is an AMD Opteron running

at 2.4 GHz). The machine used the Linux operating system (ours uses Windows).

Table 4 compares the performance of the algorithms when executing random queries on the

USA graph. The table shows data for both travel times and travel distances. Five measures

of performance are presented: preprocessing time, size of preprocessed data, average number of

vertices scanned, maximum number of vertices scanned, and average query time. All query values

are given in absolute terms and as a speedup relative to the bidirectional Dijkstra algorithm.

The maximum number of vertices scanned reported for hh is an upper bound obtained from

unidirectional queries; the actual worst pair from the sample was not reported in hh. The total

size of the preprocessed data was not reported in [27] either. We got the number from the

authors [28], who also mentioned that it can be improved to 1309 MB with little effect on query

times. The results for hh with travel distances are not presented in [27], and therefore are omitted

from the table.

First consider the results with the travel-time metric. In terms of average number of vertices

visited, re and hh have remarkably similar performance. The average running time for re is

lower, which we attribute to the fact that re is a simpler algorithm and its implementation has

smaller constants. The maximum number of vertices visited, on the other hand, is higher for re,

but not by much. The preprocessing time of hh is about 30% smaller than that of re, but the

total space usage is similar.

As with the other road networks, real is better than re by over a factor of two for all

performance measures, and alt is significantly worse.
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Table 4: Results for the undirected USA graph: preprocessing time, preprocessing space, average number
of vertices scanned, maximum number of vertices scanned, and average query time (for the last three, we
present both absolute values and speedups with respect to b). Data for hh with travel distances is not
available; for travel times, maximum number of vertices scanned is an upper bound. Running times for hh
were obtained on a slightly slower machine.

prep. disk query
time space avg scans max scans avg time

metric method (min) (MB) count spd count spd ms spd

times alt 92.7 1 984 177 028 44 2 587 562 8 322.78 21
re 365.9 1 476 3 851 2 000 8 722 2 330 4.50 1 475

real 458.5 3 038 891 8 646 3 667 5 541 1.84 3 601
hh ≈ 258.0 1 457 3 912 1 969 ≤ 8 678 ≥ 2 341 ≈ 7.08 ≈ 937

dist. alt 99.9 1 959 256 507 33 2 674 150 8 392.84 15
re 981.5 1 503 22 377 376 44 130 500 25.59 236

real 1 081.4 3 040 2 119 3 973 11 163 1 977 4.89 1 235

We note that the USA graph with transit times appears to be much “easier” for re than the

graphs listed in Table 2. In terms of total number of vertices, this graph is half-way between CTR

and NA, the two largest graphs in that table. But the performance (in terms of vertices scanned

on the average and worst cases) is more similar to CAL or LKS, which are significantly smaller.

We conjecture that this difference is due mainly to the fact that the number of road categories in

the USA graph is very small: only four, as reported in [27]. In contrast, Mappoint.NET data has

more than 80 categories; although this does not mean there are 80 different speed limits, they are

certainly more numerous. As a result, the hierarchy in USA seems to be clearer than in other

graphs, which benefits re and hh.

With travel distances, re is almost six times slower than with travel times. This loss in

performance is much more pronounced than on the Mappoint.NET graphs (as shown in Tables 2

and 3). In fact, with travel distances the USA graph does not look any easier than other graphs

of comparable size. This supports our claim that USA with travel times is easy mainly because

of an artificially pronounced hierarchy. Our fastest algorithm, real, also becomes slower with

travel distances, but by a factor of only two. The time for alt also increases, but only slightly.

With travel distances, Sanders and Schultes [29] only present data for the road network of

Germany, which has 4.3 million vertices. For better performance, they tune some parameters

of their algorithm for travel distances differently from travel times, whereas we use the same

parameters for all graphs. Only the average query time is reported: 32 ms (compared to 5.2 ms

with travel time lengths). The ratio between the average query time for the distance lengths and

the average query time for the travel time lengths is about six, which is similar to our results for

re on USA. The preprocessing time for Germany with travel distances was roughly four times
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higher than with travel times (2.1 instead of 0.5 hours) [28]. It is not clear how well this would

scale for larger graphs.

8.5 Exact Reaches and Shortcuts

Recall that our preprocessing algorithm does not compute exact reaches, but upper bounds. This

inevitably leads to less efficient queries. To assess how much is actually lost, we took a relatively

small instance (BAY) and computed exact reaches on the original graph and on the version with

shortcuts for both metrics (travel times and travel distances). We also ran a modified version of

our preprocessing procedure that does not add shortcuts to the graph. Table 5 summarizes the

results we obtained when running re with those reaches. We also show the results obtained by

the approximate reach computation, already reported in Tables 2 and 3.

Table 5: Results for re with different reach values on BAY, both with and without shortcuts.

prep. query
time avg max time

metric shortcuts reaches (min) scans scans (ms)

times no approx. 52.8 13 369 28 420 6.44
exact 966.1 11 194 24 358 6.05

yes approx. 3.2 1 590 3 438 1.17
exact 980.7 1 383 3 056 0.97

distances no approx. 82.5 17 448 37 171 9.47
exact 956.9 13 986 30 788 7.61

yes approx. 4.6 2 761 6 313 2.05
exact 1 078.9 2 208 5 159 1.55

The table makes it clear that computing exact shortcuts is prohibitively expensive. Even

though the graph has only 330 024 vertices, the computation took more than 16 hours. On our

largest instance, a similar computation would take years (it has almost 100 times more vertices and

the procedure is quadratic). Fortunately, approximate reaches appear to be good enough for the

query algorithm. Even though having exact values does make the query more efficient (especially

for travel distances) it does so by only a small margin—less than 25% for all measurements.

The addition of shortcuts, on the other hand, has a much stronger effect on the algorithm.

Without them, the preprocessing procedure for approximate reaches becomes more than 15 times

slower on this graph. More importantly, the query algorithm gets at least five times worse on all

counts.

Although we could not generate exact reaches for larger graphs (because of the prohibitive

time), we did generate approximate reaches without shortcuts for on NW (which has 1.6 million

vertices) with travel times. The preprocessing time increased from 17.5 minutes (as reported in
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Table 2) to more than 18 hours—a factor of more than sixty. With random queries, re visited

53 888 vertices on average (in 30.6 ms) and 106 288 in the worst case. Each of these measures is

at least 10 times worse that the corresponding value for re in Table 2. In fact, the algorithm

becomes worse than alt on average.

The fact that exact reaches are not very helpful does not mean the reach-based algorithm has

little room for improvement. The reaches are exact, but the shortcuts were found by a heuristic,

and a significantly better set of shortcuts may exist.

8.6 Number of Landmarks

In this experiment, we study how the number of landmarks affects the performance of real.

We generate sets of 2, 4, 8, 16, and 32 landmarks and run real on NA with transit time metric,

with the same 1000 randomly selected pairs of vertices. The landmarks are generated with the

maxcover algorithm [15]. We also run re, which can be viewed as real with zero landmarks.

Table 6 summarizes the results.

Table 6: Results for real on NA with travel times when varying the number of landmarks. For each
number of landmarks, we show the time to generate landmarks, disk space used by landmarks, average
number of vertices scanned (over 1000 queries), maximum number of vertices scanned, and average query
time. Data for 0 landmarks refers to re.

gen. land. query
time space avg max time

land. (min) (MB) scans scans (ms)

0 — — 14 684 24 618 17.38
2 8.7 235.3 9 055 37 591 18.42
4 16.6 470.7 3 810 13 267 8.66
8 41.2 941.4 2 472 11 621 5.53

16 95.3 1 882.8 1 595 7 450 3.67
32 300.0 3 765.6 1 257 5 867 3.17

As shown in [15], increasing the number of landmarks improves the performance of alt. The

same holds for real, with one exception: the algorithm becomes slower when the number of

landmarks increases from zero to two. The decrease in the average number of nodes scanned is

not sufficient to pay for the overhead of computing distance lower bounds. The maximum number

of scanned vertices also increases in this case.

With four or more landmarks, the performance of real only improves as the of landmarks

increases. This is to be expected, since a larger number of landmarks can provide better bounds

for the A∗ search. However, as the table shows, after 16 landmarks, simply adding more is not

a particularly efficient way of improving the bounds. The decrease in the running time is small

compared to the increase in space. But the experiment does suggest that real may benefit from
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a way of generating landmarks that takes reaches into account. We discuss this in more detail in

Section 10.

8.7 Grids

Although road networks are our motivating application, we also tested our algorithms on grid

graphs. As for road networks, for each graph we generated 1000 pairs of vertices, each selected

uniformly at random. These graphs have no natural hierarchy of shortest paths, which results in

a large fraction of the vertices having high reach. For these tests, we used the same parameter

settings as for road networks. It is unclear how much one can increase performance by tuning

parameter values. As preprocessing for grids is fairly expensive, we limited the maximum grid

size to about half a million vertices. The results are shown in Table 7.

Table 7: Algorithm performance on grid graphs with random arc lengths. For each graph and each
method, the table shows the total time spent in preprocessing, the total size of the data stored on disk
after preprocessing, the average number of vertices scanned (over 1000 random queries), the maximum
number of vertices scanned, and the average running time. For the last three measures, we show both the
actual value and the speedup (spd) with respect to b.

prep. disk query
time space avg scans max scans avg time

vertices method (min) (MB) count spd count spd msec spd
65 536 alt 0.2 6.2 686 29.6 8 766 5.5 0.52 17.6

re 12.3 5.2 5 514 3.7 10 036 4.8 3.09 2.9
real 12.5 9.6 363 55.9 2 630 18.4 0.34 26.4

131 044 alt 0.6 12.4 1 307 32.6 14 400 7.2 1.42 13.9
re 44.7 10.4 9 369 4.6 16 247 6.4 5.94 3.3

real 45.3 19.3 551 77.4 3 174 32.6 0.77 25.8
262 144 alt 0.9 25.1 2 382 35.9 27 399 7.3 2.81 16.1

re 131.4 20.7 14 449 5.9 24 248 8.3 9.75 4.6
real 132.3 38.8 791 108.0 5 020 39.9 1.22 37.1

524 176 alt 1.9 50.2 4 416 38.8 40 568 9.9 5.25 17.5
re 232.1 41.4 23 201 7.4 39 433 10.2 17.47 5.3

real 234.1 77.7 1 172 146.3 7 702 52.3 1.61 57.2

As expected, re does not get nearly as much speedup on grids as it does on road networks

(see Tables 2 and 3). However, there is some speedup, and it does grow (albeit slowly) with grid

size. alt is significantly faster than re: in fact, its speedup on grids is comparable to that on

road networks. However, the speedup does not appear to change much with the grid size, and it

is likely that for very large grids re would be faster.

An interesting observation is that real remains the best algorithm in this test, and its speedup

grows with grid size. For our largest grid, queries for real improve on alt by about a factor of

four for all performance measures that we considered. The space penalty of real with respect to
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alt is a factor of about 1.5. real is over 50 times better than b. This shows that the combination

of reaches and landmarks is more robust than either alt or re individually.

The most important downside of the reach-based approach on grids is its large preprocessing

time. An interesting question is whether this can be improved. This would require a more

elaborate procedure for adding shortcuts to a graph (instead of just waiting for lines to appear).

Such an improvement may lead to a better preprocessing algorithm for road networks as well.

9 Potential Improvements

Below we mention several modifications of re and real aimed at improving performance and

reducing the memory overhead. We did not have a chance to implement these ideas, but they are

promising.

The number of high-reach vertices is small, but during a query these vertices are visited much

more often that other vertices. This observation can be used to improve the locality of the

algorithm. One approach is to reorder vertices (and their arcs) in non-increasing order of reaches.

This places high-reach vertex data in the same cache lines and memory pages. If the original

vertex ordering uses spatial locality, as is often the case with road networks, one can use a variant

of this idea. One can use an approximate sorting based on threshold values, and preserve vertex

ordering within groups of vertices between two threshold values.

We can reduce the space required to store r values by picking a constant γ, rounding r’s up to

the nearest integer power of γ, and storing the logarithms to the base γ of the r’s. Furthermore,

we can reorder vertices according to the values of these logarithms and store the positions in the

sorted list where the values increase. Then the rounded reach of a vertex can be computed from

the position of the vertex in the sorted list. If γ is sufficiently small, the rounding has small

effect on the precision of the bounds, and the number of vertices pruned during a query does not

decrease by much.

Another way to save space is to store landmark distances only for the fraction (e.g., 20%) of

vertices with reach greater than a threshold R. The query algorithm first searches balls of radius

R around s and t without using landmarks. If the shortest path is not found, the algorithm starts

using landmarks. Dynamic landmark selection allows for an easy implementation of this strategy.

There are two reasons why the relative time penalty of this method compared to real may be

small. First, both reaches and A∗ search are not very effective in pruning vertices close to s and t

and may already visit most vertices in the balls of radius R. Second, if R is small, the cardinality

of the balls is small and the modified algorithm scans a small number of extra vertices.

For road network applications, the graph, although directed, has a lot of symmetry: most

road segments are two-way and have the same length in each direction. One can take advantage

of this fact to obtain a more compact representation of the graph.

Our implementation of real uses the same landmarks as alt. However, it is possible that
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a selection strategy that is specific to real will work better. Bad queries for the re algorithm

are those where s or t are in or close to dense portions of the graph. Placing landmarks in the

densest areas may help to deal with such cases. Another way to tailor landmarks to high-reach

vertices is to generate landmarks on a subgraph induced by vertices with reach greater than a

certain threshold.

10 Concluding Remarks

The reach-based shortest path approach leads to simple query algorithms with efficient imple-

mentations. The shortcuts greatly improve performance of the reach-based algorithms on road

networks. We have shown that the algorithm re, based on these ideas, is competitive with the best

previous method. The reach-based approach combines naturally with A∗ search. The resulting

algorithm, real, has improved query time compared to re.

Goldberg and Harrelson [13] suggest efficiency as a machine- and implementation-independent

measure of performance, where efficiency of a shortest path computation is the number of arcs on

the shortest path divided by the number of vertices scanned. With no shortcuts, the algorithm

needs to scan all vertices on the shortest path except for the last one, so efficiency is at most

one. Efficiency of 0.5 means that the number of scans is within a factor of two from the lower

bound. With shortcuts, this is no longer the case. We can find a shortest path in the original

graph while scanning fewer vertices than the number of arcs on the path. Efficiency with respect

to the graph with shortcuts depends on the shortcuts, which makes in unusable for comparing

different implementations. However, this efficiency is small, indicating that there is room for

query algorithm improvement. For example, for NA with the travel-distance metric, the average

number of arcs on shortest paths for random queries is 109, and the average number of scanned

vertices is 2653.

Our query algorithm is independent of the preprocessing algorithm, allowing us to state natural

subproblems for the latter. One such question is that of optimal shortcut selection. What is a

good number of shortcuts to add? Where to add them? How to do so efficiently? Of course, the

number of shortcuts to add depends on the amount of memory and preprocessing time available.

Note that adding a shortcut for every pair of vertices reduces the reach of every vertex to zero

and allows queries to be answered in constant time, but is impractical for large road networks.

Another natural problem, raised in Gutman’s paper, is that of efficient reach computation.

Can one compute reaches in less than Θ(nm) time? What about provably good upper bound

on reaches? Our results add another dimension to this direction of research by allowing to add

shortcuts to improve performance.

Another interesting direction of research is to identify a wider class of graphs for which these

techniques work well, and to make the algorithms robust over this family.
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