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Abstract. Clustering a graph means identifying internally dense sub-
graphs which are only sparsely interconnected. Formalizations of this
notion lead to measures that quantify the quality of a clustering and
to algorithms that actually find clusterings. Since, most generally, cor-
responding optimization problems are hard, heuristic clustering algo-
rithms are used in practice, or other approaches which are not based
on an objective function. In this work we conduct a comprehensive ex-
perimental evaluation of the qualitative behavior of greedy bottom-up
heuristics driven by cut-based objectives and constrained by intraclus-
ter density, using both real-world data and artificial instances. Our study
documents that a greedy strategy based on local movement is superior to
one based on merging. We further reveal that the former approach gen-
erally outperforms alternative setups and reference algorithms from the
literature in terms of its own objective, while a modularity-based algo-
rithm competes surprisingly well. Finally, we exhibit which combinations
of cut-based inter- and intracluster measures are suitable for identifying
a hidden reference clustering in synthetic random graphs.

1 Introduction

Graph clustering aims at finding subsets of vertices that are densely connected
with each other but sparsely connected with the remainder of the graph. In
the last decades, interest in graph clustering algorithms has grown rapidly, with
applications ranging from customer recommendation systems to the analysis
of networks describing social ties or protein-protein interaction. A variety of
measures have been proposed, which are used to assess and compare different
clusterings and to guide the design of algorithms. Traditional methods from
algorithmics often focus on sparse cuts with respect to measures like conductance
[18] or expansion [16], while, independent from that, a measure called modularity
[21] proved to yield meaningful clusterings on a wide range of application data.

Recently, we systematically assembled a range of self-evident intracluster den-
sity and intercluster sparsity measures for clusterings, where the latter are based
on conductance , expansion and density of the cuts induced by the clusters [14].
We further formally stated the problem Density-Constrained Clustering
(DCC), where the objective is to optimize intercluster sparsity with the con-
straint that the intracluster density must exceed a given threshold. As optimal
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polynomial-time algorithms for DCC are unknown, we investigated how different
combinations of intracluster sparsity and intercluster density measure influence
the efficiency of a greedy optimization strategy based on cluster merging. How-
ever, little is known about its qualitative behavior in practical scenarios, and an
experimental evaluation of DCC has yet been missing.

Our Contribution. We provide a comprehensive study of the practical be-
havior of greedy graph clustering heuristics driven by cut-based objectives and
constrained by intracluster density. We give evidence that, in general, greedy
algorithms based on local vertex moves lead to better quality than the corre-
sponding merge-based algorithm. We then compare the move-based algorithm
to a set of reference algorithms from the literature, both with respect to the ob-
jective of DCC and their ability to reconstruct planted partitions in a family of
synthetic graphs. We find that the greedy move algorithm compares favorably to
most reference algorithms in the context of DCC, while a comparison with the
modularity-based algorithm shows that optimizing modularity implicitly yields
good results for some variants of DCC. Experiments with planted partition
graphs suggest that certain combinations of inter- and intracluster measures are
effective in finding the hidden clustering, while others clearly fail. Together with
observations about the number of identified clusters, this yields valuable insights
about the behavior of the respective intra- and intercluster density measures.

Related Work. Related clustering algorithms are Iterative Conductance Cut-
ting [18], Markov-Clustering [10], Geometric MST Clustering [6] and a modularity-
based greedy algorithm based on vertex moves [22]; we use these as reference
algorithms. Kannan et al. propose to minimize the cut between, subject to
a guaranteed conductance within clusters [18], which is closely related to the
DCC. They further show that Iterative Conductance Cutting has polylogarith-
mic approximation guarantees on both of these measures. Brandes et al. conduct
an experimental study on the performance of Iterative Conductance Cutting,
Markov-Clustering and Geometric MST Clustering, both with respect to qual-
ity and running times [7]. A similar, but more recent study can be found in [19].
Flake et al. give a clustering algorithm with provable, but interdependent bounds
on both intra- and a variant of intercluster expansion. The notion of modularity
was introduced in [21], an extensive and recent overview of the research on it
can be found in [12]. Apart from these, there is a huge number of publications
on graph clustering, for an overview see [17,4].

2 Preliminaries

Notation. Let G = (V,E) be an undirected, unweighted, and simple graph,
i.e. G is loopless and has not parallel edges. In the following, n will always
denote the number of vertices and m the number of edges in G. For two subsets
A and B of V , mA,B := |

{
{u, v} ∈ E | u ∈ A, v ∈ B

}
| is the number of edges

between A and B, nA := |A| is the number of vertices in A, mA := |E(A)| is its
number of intracluster edges and xA := mA,V \A the number of intercluster edges
incident to A. Further, the volume vA of A is defined as vA :=

∑
v∈A deg(v).



Table 1: Density measures

intracluster density

global gid
∑

C∈C mC∑
C∈C (nC

2 )

minimum mid min
C∈C

mC

(nC
2 )

average aid 1
|C|

∑
C∈C

mC

(nC
2 )

intercluster density

global gxd
∑

A6=B∈C mA,B∑
A6=B∈C nAnB

maximum mixd max
C∈C

xC
nCnV \C

average aixd 1
|C|

∑
C∈C

xC
nCnV \C

intercluster conductance

maximum mixc max
C∈C

mC,V \C
min{vC ,vV \C}

average aixc 1
|C|

∑
C∈C

mC,V \C
min{vC ,vV \C}

intercluster expansion

maximum mixe max
C∈C

mC,V \C
min{nC ,nV \C}

average aixe 1
|C|

∑
C∈C

mC,V \C
min{nC ,nV \C}

intercluster edges

global nxe
∑

A 6=B∈C mA,B

modularity

global mod
∑

C∈C mC

m
−

∑
C∈C v2

C

4m2

The conductance of a cut (S, T )
measures the bottleneck between S
and T , defined as

mS,T

min{vS ,vT } ; expan-

sion substitutes volume by cardinal-
ity:

mS,T

min{nS ,nT } . The density (or spar-

sity) of a cut is
mS,T

nSnT
, which equals

the uniform minimum-ratio cut. We
restrict ourselves to disjoint clusters
in this work, this means, if C =
{C1, . . . , Ck} is a partition of V , we
call C a clustering of G and the sets Ci
clusters. The cluster containing ver-
tex v is C(v) and the clustering that
results from moving vertex v to clus-
ter D, i.e.

(
C \ {C(v), D}

)
∪ {C(v) \

v,D ∪ {v}}, is abbreviated by Cv→D.
A clustering is trivial if either k = 1
(all-clustering), or each cluster con-
tains only one element (singletons).
We identify a cluster C with the set
of nodes it constitutes and with its
vertex-induced subgraph of G. Then
E(C) :=

⋃
C∈C E(C) are called intra-

cluster edges and E \ E(C) interclus-
ter edges. A clustering measure is a
function that maps clusterings to real
numbers, thereby assessing the quality of a clustering. We define high quality
to correspond to high (low) values of intracluster (intercluster) measures and
will always denote intracluster density measures with i and intercluster density
measures with x, unless otherwise stated.

Intracluster Density and Intercluster Sparsity Measures. All interclus-
ter measures we use are based on cuts or k-way cuts. Separating a single cluster
from the remaining vertices induces a cut, whose sparsity can be evaluated using
density, conductance or expansion. This defines a set of sparsity values for the
whole clustering, from which we can either compute the average or the max-
imum, yielding maximum/average intercluster density/conductance/expansion
(mixd, aixd, mixc, aixc, mixe and aixe)1. Another point of view is to evaluate
the clustering as a whole, i.e. to assess the sparsity of the induced k-way cut
directly. We do this by either counting the number of intercluster edges (nxe) or
by dividing the number of intercluster edges by the maximum possible number,
i.e. the number of intercluster pairs (gxd). It is possible to use similar, cut-based
measures for intracluster density. However, even evaluating these measures for a
given clustering is NP -hard, such that clustering algorithms usually work with

1 Note that we keep the i in the abbreviations, although in contrast to [14], we do not
distinguish between pairwise and isolated measures



approximations or bounds [18,11,7]. As we intend to use intracluster density
measures as constraints in greedy bottom-up algorithms, it is crucial to be able
to evaluate them efficiently. We therefore use a more practical approach and de-
fine intracluster density as the ratio of the number of intracluster edges and the
number of intracluster pairs. Evaluating this globally leads to global intracluster
density (gid), whereas the average and minimum of all clusters yields average
and minimum intracluster density (aid and mid).

Table 1 summarizes the formalizations of all measures considered. Note that,
in contrast to the set of measures used in [14], we omit the notions of pairwise
densities as they turned out to be very prone to local minima if used with greedy
bottom-up algorithms. Although it does not quite fit into this classification,
Table 1 also includes the objective used by one of the reference algorithms,
modularity, which simultaneously assesses intracluster density and intercluster
sparsity by subtracting from the fraction of intracluster edges the expectation
of this value in a random graph (high modularity corresponds to high quality).

Density-Constrained Clustering. Density-Constrained Clustering is the prob-
lem of optimizing intercluster density while retaining guarantees on the intra-
cluster density. Considering each combination of intracluster and intercluster
measure listed in Table 1 leads to a family of optimization problems. Slightly
abusing the notation, we consider modularity as an intercluster density objective
in this context.
Problem 1 (Density-Constrained Clustering(DCC)). Given a graph G =
(V,E), among all clusterings with an intracluster density of no less than α, find
a clustering C with optimum intercluster quality.

3 Greedy Algorithms for Density-Constrained Clustering

The following generic greedy algorithms heuristically minimize(maximize) the
objective function of DCC for all density measures considered.

Greedy Merge (GM). Starting from singletons, the algorithm greedily merges
pairs of clusters. In each step, among all pairs of clusters whose merge does not
violate the constraint on the intracluster density, the merge with the largest
benefit to the intercluster density is performed. We recently proposed this algo-
rithm in the context of DCC [14] and classified combinations of intercluster and
intracluster density with respect to the question how efficiently this algorithm
can be implemented. Algorithms of these kind are common in the context of
clustering point sets in d-dimensional space, where a basic constraint is that the
number of clusters must not fall below a certain threshold. In the field of graph
clustering, this algorithm is used to optimize modularity [8].

Greedy Vertex Moving (GVM). The key ingredient of GVM (Algo. 1) is
a subprocedure that tries to greedily improve the objective function by letting
vertices move to neighboring clusters (Algo. 2). This subprocedure repeatedly
iterates through the vertex set and, for each vertex, performs the most improv-
ing move (subject to the constraint), potentially isolating a vertex, or leaving it
where it was, until a local optimum is reached. Starting with singletons, GVM



Algo. 1: Greedy Vertex Moving

Input : graph G, inter, intra, α
Output: clustering C0 of G
G0 ← G, h← 0
repeat

Ch ← Singletons(Gh)

Ch ← LM(Gh, Ch, intra, inter, α)

Gh+1 ← contract(Gh, Ch)
h← h+ 1

until no more real contractions
while h ≥ 0 do

h← h− 1

Ch ← project(Ch+1, Gh)

Ch ← LM(Gh, Ch, inter, intra, α)

end
return C0

Algo. 2: Local Moving (LM)

Input : graph G, clustering Cinit of
G, inter, intra, α

Output: clustering C of G
C ← Cinit
repeat

forall the v ∈ V do
A ← {C ∈ C | intra(Cv→C) ≥ α

and |E(v, C)| > 0}
N ← arg min

C∈A∪{}
{inter(Cv→C)}

if inter(Cv→N ) < inter(C) then
move(v,N)

end

end

until no more changes
return C

first calls this subprocedure and contracts the resulting preliminary clustering
into a super-graph, i.e. each cluster becomes a vertex weighted with the number
of vertices it represents, and edges are summarized such that edge weights reflect
the number of edges in the original graph. This whole process is iterated until
local moving does not yield any further improvement, and results in a hierarchy
of graphs with increasing coarseness. In the second phase (refinement), the hi-
erarchy is unfurled step by step by projecting the clustering of the i+ 1-th level
of the hierarchy to level i, i.e. the clusters in level i are merged according to the
clustering in level i+ 1. After each step, LM is called again on the current level
of the hierarchy to potentially improve the objective function further, until a
clustering for the finest level, i.e. the original graph, is obtained.

GVM is closely related to algorithms in the context of graph partitioning
and has previously been used for modularity-based clustering without constraints
[5,22]. Neither approximation guarantees nor subexponential bounds on the run-
ning time are known, but experimentally it has been shown to outperform the
corresponding greedy merge algorithm with respect to both quality and effi-
ciency. For modularity, it can easily be shown that moving a vertex to a cluster
it is not linked with is never the best choice, therefore it suffices to consider
neighboring clusters. Together with the observation that the change in modu-
larity can be determined in constant time for each move if some information
about the clustering is maintained, this yields a running time in O(m) for each
round in LM. This latter observation on running time also holds for all intraclus-
ter density and intercluster sparsity measures except for mixd, mixc and mixe,
whose values are expensive to maintain.

Ensuring Strict Improvements. Another issue with a direct application of
GVM to maximum-based measures is that iteratively traversing the whole vertex
set is inefficient if only very few vertex moves potentially decrease the cut of the



cluster with the currently worst value. Even worse, if this cluster is not unique, it
is likely that the search is stuck in a local minimum, as vertex moves generally can
only improve the value for one of these cluster, not for all of them simultaneously.
If we try to prevent this by allowing vertex moves that are not strictly improving,
we somehow have to ensure that the algorithm terminates after a finite number
of operations. We do this in a similar way as proposed in [14] for GM by greedily
optimizing the lexicographical order of the intercluster sparsity values of all the
clusters. Let L(C) :=

(
f(C1), . . . , f(Ck)

)
, Ci ∈ C, be the sequence of these values

with decreasing intercluster density, i.e. (f(Ci) ≥ f(Ci+1) for i ∈ {1, . . . , k− 1}.
Then a clustering C is L-better than C′ if L(C) is lexicographically less than L(C′).
We now determine for each vertex the set of clusterings that can be reached by
moving it. If one of these clusterings is L-better than the current clustering, the
move that results in the L-best sequence is performed. As we strictly improve
the lexicographical order in each step, termination is guaranteed. This means,
we greedily optimize the maximum value but are also allowed to improve the
intercluster sparsity of clusters more locally, yielding better efficiency and the
possibility to escape local minima.

Determining the Best Move in O(deg(v)) Time. It holds that any two
clusterings resulting from leaving vertex v untouched or from moving v to a
different (or new) cluster can be L-compared in constant time (see App. A).
Furthermore, it is immediate that moving a vertex to a cluster it is not linked
to can never decrease the number of intercluster edges (nxe). This does not
hold for gxd, however, it is not hard to see that GVM never has to consider
non-neighboring clusters for gxd (see App. A). For all other intercluster density

●

●●●

●●●

●●

●

●

●
●

●
●

●●●

●●●

●●
●●●

●
●●

●
●

●
●

●
●●

●

●

●
●

●
●

●●●

●
●

●
●

●●●●●

●
●●●●

●
●●

●

●
●

●

●●
●●●

●

●●●●
●

●●
●●

50

60

70

80

90

100

110

120

130

alpha (per intercluster measure)

f(
G

V
M

)/
f(

G
M

) 
(in

 %
)

0.
2

0.
5

0.
8

0.
2

0.
5

0.
8

0.
2

0.
5

0.
8

0.
2

0.
5

0.
8

0.
2

0.
5

0.
8

0.
2

0.
5

0.
8

0.
2

0.
5

0.
8

0.
2

0.
5

0.
8

0.
2

0.
5

0.
8

NXE GXD MIXD AIXD MIXC AIXC MIXE AIXE MOD

● GID
MID
AID

Fig. 1: Qualitative comparison of GVM and GM.

measures this does not hold as can be seen in the examples in Fig. 4 in App. A.
As configurations like these are only expected in degenerate cases, the impact on
efficiency is large on sparse graphs, and unconnected clusters are not desirable
in the context of graph clustering, we chose to restrict the set of feasible moves
to neighboring clusters. Together with the possibility to compare different moves



in constant time, we get a time complexity of O(m) for each round of the local
move procedure for each of the combinations considered.

4 Experiments

Qualitative Comparison of Greedy Merge and Greedy Vertex Moving.
Our first experiments address the question which flavor of greedy algorithm is
better suited for DCC. As test instances, we used all graphs listed in Table 2 with
less than 1000 vertices, these are real-world networks taken from the websites of
Mark Newman [20] and Alex Arenas [3] and are part of the clustering testbed of
the 10th DIMACS Implementation Challenge [1]. For all proposed combinations
of measures, Figure 1 shows the ratio of the intercluster density obtained by using
GVM and GM, averaged over all graphs. For modularity, this ratio is always
greater than one, confirming that local moving yields better results, regardless
of the choice and strength of the constraint. In combination with gid and mid,
this similarly holds for all other objectives except for nxe, note that, in contrast
to modularity, we aim to minimize these measures and therefore a value below
one means that GVM attains better results. For nxe, the outcome depends on
the value of α chosen. In combination with aid, the outcome is less clear, the
results for nxe are out of bounds as the ratio for some configurations exceeds 300
percents. This can be explained by the observation that aid happily allows (and
thereby encourages) unbalanced clusterings, as bad intracluster density values
of large clusters can easily be compensated by a set of small and dense clusters,
and GM is known to have a tendency to produce unbalanced partitions. As
this most often leads to unintuitive clusterings, we deem aid less suitable in the
context of graph clustering. Disregarding aid for these reasons, in a vast majority
of configurations, GVM outperforms GM. For tackling DCC, we thus solely use
GVM, putting aside the algorithm based on greedy merging.

Effectiveness of Different Objective Functions. The next question we pose
is, if each of the intercluster density measures is effective in optimizing itself
when used as inter in GVM. To answer this question, we conducted the following
experiment on the set of graphs listed in Table 2. In the following, let GVMi,α,x

denote GVM incorporating the constraint i(C) ≥ α and the objective x(C).
For each setup of DCC, i.e. intracluster measure i, intercluster measure x and
α ∈ {0.0, 0.1, . . . , 1.0}, we ranked the clusterings obtained by GVMi,α,y by their
performance with respect to x, using all possible objectives y for GVM. Figure
2 shows the distribution of these ranks over all configurations involving gid,
grouped by x. The outcome of this experiment is less clear than what might
be expected—none of the intercluster measures, not even modularity, scores the
best quality with respect to itself in all configurations. Nonetheless, in general,
except for nxe which is clearly dominated by gxd, each objective optimizes itself
quite well. This also holds for mid, while for aid, the outcome is even less clear,
as can be seen in Figures 5, 6 in App. B.

Reference Algorithms. For a more comprehensive assessment of GVM as a
means to address DCC, we use the following reference algorithms:



graph n m graph n m

karate(N) 34 78 netscience(N) 1589 2742
dolphins(N) 62 159 power(N) 4941 6594
lesmis(N) 77 254 hep-th(N) 8361 15751
polbooks(N) 105 441 PGPgiantcompo(A) 10680 24316
adjnoun(N) 112 425 astro-ph(N) 16706 121251
football(N) 115 616 cond-mat(N) 16726 47594
jazz(A) 198 2742 as-22july06(N) 22963 48436
celegansneural(N) 297 2148 cond-mat-2003(N) 31163 120029
celegans metabolic(A) 453 2039 cond-mat-2005(N) 40421 175693
polblogs(N) 1490 16718

Table 2: List of the real world test instances ordered by increasing number of vertices.
These are taken from the webpages of Arenas(A) [3] and Newman(N) [20] and are often
used to compare clustering algorithms. All graphs are part of the clustering testbed of
the 10th DIMACS Implementation Challenge [1].

– Iterative Conductance Cutting (ICC) [18]: This top-down algorithm itera-
tively splits the input graph into two subgraphs based on a cut with low
conductance. The process stops when the conductance of the cut exceeds a
given threshold, which we set to 0.4 in our experiments.

– Markov-Clustering (MCL) [10]: Emulating a random walk, the matrix of
transition probabilities is alternately taken to to the power of e and renor-
malized after taking each entry to the power of r, where e and r are input
parameters. In our experiments, we set r and e to 2.

– Geometric MST Clustering (GMC) [6]: First, a spectral embedding of the
graph in d-dimensional space is built. Then the algorithm constructs a Eu-
clidean minimum spanning tree and successively deletes the heaviest edge.
This defines a sequence of forests whose connected components induce a set
of clusterings. Among these clusterings, the one with the best value according
to some given objective function is chosen.

– Multi-Level Modularity (MOD) [22]: This is the GVM-algorithm based solely
on modularity without using any constraint. This algorithm has been shown
to perform very well in the context of Modularity optimization [22].

Comparison Based on Intracluster Density Found by Reference Algo-
rithms. ICC, MCL and MOD do not incorporate constraints on the intracluster
density of the resulting clustering. Nonetheless, it is still possible to evaluate
them with respect to those variants of DCC, where α is set to the intracluster
density found by these algorithms. In other words, given the same constraint a
reference algorithm A implicitly adheres to, how well does GVM compare to A
wrt. DCC?

We first ran ICC, MCL and MOD on all test instances in Table 2 and recorded
the intracluster density values of the resulting clusterings. Then, for each ref-
erence algorithm A, i, recorded corresponding intracluster density α and x, we
compare the clustering obtained by GVMi,α,x to the clustering of A with respect
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Fig. 2: Ranks for different intercluster density measures as objectives in the GVM-
algorithm using gid as constraint, evaluated by the intercluster density of the resulting
clustering.

to x. For GMC the experiments slightly differ as GMC requires an objective
function. We filled this degree of freedom by choosing f(C) = i(C)− x(C) as the
objective function for the experiments using i as intracluster and x as interclus-
ter density measure. This seemed to be the fairest way of comparison and in
almost all cases led to non-trivial clusterings.

Table 3 and Table 4 show the percentage of graphs where the greedy al-
gorithm for x compares favorably and the arithmetic mean of the ratio of x
obtained with GVM and with the reference algorithm. As we aim to minimize
intercluster density, a value below 1 indicates that the greedy algorithm succeeds
in beating the reference algorithm and vice versa. Compared to ICC and MCL,
GVM clearly yields better results. The same holds for GMC, except if used in
combination with aid, where GMC sometimes produces far better results. This
can be explained by the fact that aid does not punish unbalancedness and GMC



naturally leads to very unbalanced clusterings in most instances. The outcome
of the comparison with the modularity-based algorithm is less clear. For aid,
GVM performs better, which is not surprising as modularity strongly discour-
ages unbalanced clusterings. For mid, GVM still beats MOD in the majority of
configurations, while for gid, this only holds for slightly less than half of the con-
figurations. Furthermore, it is worth mentioning that especially for aixd and aixe
there are instances where modularity minimizes these functions far better than
the respective greedy algorithms. Altogether, the comparison with ICC, MCL
and GMC suggests that GVM effectively addresses DCC, while the comparison
with MOD shows that optimizing modularity is similarly effective in minimizing
cut-based intercluster sparsity measures.

Recovering Planted Partitions. To compare the different objective functions
qualitatively, we evaluated how well the corresponding GVM-algorithms are able
to reconstruct planted partitions in random graphs. As a comparison, we also give

gid mid aid
ICC MCL MOD GMC ICC MCL MOD GMC ICC MCL MOD GMC

nxe 84 95 16 63 89 95 63 74 95 100 100 63
gxd 84 100 42 100 95 100 84 100 95 100 100 84
aixd 84 100 42 100 89 100 37 95 95 100 100 84
aixc 84 100 21 53 95 100 79 42 95 95 100 63
aixe 84 95 42 89 89 95 42 95 95 95 95 95
mixd 84 95 53 84 89 100 74 89 89 95 89 74
mixc 89 95 42 37 89 95 63 37 89 95 84 21
mixe 89 95 58 89 84 95 47 79 95 95 89 63

Table 3: Comparison of GVM and reference algorithms. Entries represents the percent-
age of graphs GVM compares favorably.

gid mid aid
ICC MCL MOD GMC ICC MCL MOD GMC ICC MCL MOD GMC

nxe 0.67 0.52 1.17 1.26 0.42 0.08 0.97 0.88 0.03 0.06 0.05 8.07
gxd 0.64 0.50 1.07 0.11 0.40 0.09 0.89 0.10 0.07 0.10 0.13 0.76
aixd 0.47 0.32 5.30 0.25 0.34 0.06 5.08 0.23 0.18 0.12 0.22 0.61
aixc 0.57 0.29 2.17 0.28 0.39 0.05 0.81 0.27 0.41 0.27 0.37 7.87
aixe 0.49 0.39 5.55 0.31 0.36 0.14 5.22 0.31 0.19 0.13 0.24 1.45
mixd 0.45 0.34 0.96 0.41 0.39 0.07 1.27 0.30 0.21 0.18 0.32 3.17
mixc 0.69 0.58 1.15 0.34 0.47 0.15 1.09 0.30 0.44 0.39 0.46 1.60
mixe 0.48 0.26 1.25 0.57 0.39 0.14 1.28 0.63 0.13 0.16 0.28 3.02

Table 4: Comparison of GVM and reference algorithms. Entries represent the mean ra-
tio of the respective intercluster measure x obtained by GVM and reference algorithm.



the results obtained by MOD. Due to higher running times and large numbers
of experiments, we omit a comparison with ICC, MCL and GMC.

Random Graphs Generated. We use an adapted Erdős-Rényi-model, where,
starting from a given reference partition, the probability that vertices in the same
set (in different sets) are connected equals pin (pout). The number of vertices (n)
and clusters (k) as well as the skewness of the distribution of cluster sizes (β)
of the planted partition are input parameters. Setting β to 1.0 corresponds to
uniform cluster sizes, values below and above 1 cause this distribution to be
skewed, for more details see [15]. As configurations, we fixed n to 10000 and
chose pin and pout such that the average number of intracluster (intercluster)
edges a vertex is incident to equals 5 (3). To determine the reference partition,
we used all combinations of k ∈ {10, 100, 300} and β ∈ {0.3, 1.0, 2.0}. For each
configuration, we generated 100 instances and always averaged obtained values.

Distance Measures. To compare the clusterings obtained with the different al-
gorithms with the reference clustering, we use the following graph-based distance
measures taken from [9]:

– Graph-based Rand Index (Rg): Let C1 and C2 be clusterings and e11 (e00)
the number of edges which are intracluster (intercluster) wrt. both C1 and
C2. Then, Rg(C1, C2) = 1− (e11 + e00)/m.

– Editing Set Difference (ESD): For a clustering C, its editing set FC is the
set of edges requiring insertion or removal such that the clusters in C form
disjoint cliques. Then, for clusterings C1 and C2, their editing set difference
is defined as ESD(C1, C2) = 1− |FC1

∩ FC2
|/|FC1

∪ FC2
|.

Parameters and Evaluation. As an exhaustive parameter search for all con-
figurations would be far too expensive, we always set α to 75 percent of the
expected global intracluster density pin. We deemed taking the actual value of
pin too strict, as, especially for mid, even the reference clustering of the generator
most likely does not meet this constraint. The previous experiments indicate that
there are configurations where particular objective functions used in GVM do
not score the best results with respect to themselves. As our goal is to compare
good clusterings with respect to different combinations of i and x, independent
of artifacts of GVM, we chose the following approach: For a combination i, α,
x, we evaluated the clustering that, among all results obtained with GVM using
i ≥ α as constraint, is best with respect to x (as opposed to simply evaluating
GVMi,α,x). Furthermore, preliminary experiments confirmed that constraining
aid leads to very unintuitive and unbalanced clusterings, which is mirrored by
the fact that the corresponding versions of DCC are far less effective in finding
the hidden clustering. We hence excluded aid in the discussion of the results.

Results on Planted Partition Graphs. Figure 3 shows the results for selected
configurations, the results for the whole set of experiments can be found in
App. C. In the first plot it can be seen that, in general, the clusterings that are
ranked best with respect to mod, nxe and gxd are most similar to the reference.

Constraining modularity by mid improves its results. This especially holds for
the experiments with high skewness (β = 2) and k = 300. In these experiments,
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Fig. 3: Distance to reference clustering (boxplots, left-hand y-axis) and number of clus-
ters discovered in planted partition graphs (green ×-marks, right-hand y-axis), different
configurations



modularity finds far less clusters than expected, partially due to its known res-
olution limit [13], which can be circumvented by steering the coarseness of the
clustering by constraining the intracluster density. Another interesting fact is
that ESD punishes these coarse clusterings far more than Rg.

Fine reference clusterings disbalance maximum objectives. Compared to the
above, especially mixc in combination with gid yields worse similarity values.
This, and the slightly increased cluster count can be explained by a tendency of
mixc to favor unbalanced clusterings if the expected number of clusters is high
(k = 300), which also explains why this effect does not happen in combination
with mid that does not allow very unbalanced clusterings. To a smaller extent,
the same observation also holds for the other maximum measures, as can be seen
for k = 300 and β = 1.0.

aixe and especially aixd identify many clusters. Another striking observation
is that the average number of clusters in clusterings found by aixd and aixe,
indicated by the green ×-marks, is much higher than the average number of
clusters in the reference. This especially stems from the experiments with few
clusters. In the configuration with β = 1 and k = 10, it can also be seen that
these measures differ the more, the coarser the expected clustering gets. This is
not unexpected, as the denominator of aixd grows more slowly with the number
of vertices in the cluster than the denominator of aixe, meaning that aixd is less
eager to produce very large clusters. Additionally, in [14] it was proven that
with the exception of aixd, all intercluster measures considered here can always
be ameliorated by merging two existing clusters (unboundedness), which is also a
hint that aixd is less likely to produce coarse clusterings than the other measures.

Implementation and Running Times. The algorithms ICC, MCL, GMC
and GM are implemented in Java 1.6.0 22 using the graph library yFiles [23].
GVM (also incorporating MOD as a special case) is implemented in C++ using
version 1 42 of the Boost Graph Library [2] and compiled with gcc 4.5.2 with
optimization level 4. The focus of this evaluation is on the quality of the resulting
clusterings, not on running times. However, to get a rough impression about the
latter, clustering cond-mat-2005 on a 2.1 GHz AMD Opteron processor takes
about 6 hours with ICC, 1 hour and 50 minutes with MCL, 5 minutes with GMC
and 3 to 15 seconds with GVM, depending on the parameter setting. With our
prototype implementation (not including the improvements proposed in [14]) of
GM, clustering the much smaller celegans metabolic takes over 2 minutes.

5 Conclusion

This work is an experimental evaluation of algorithms for the optimization prob-
lem Density-Constrained Clustering (DCC). We first evaluated two greedy
heuristics, vertex moving and cluster merging, against each other and against
algorithms from the literature. Vertex moving proved reliably superior to clus-
ter merging and, in many cases, beats the results of the reference algorithms.
Our results also show that a well-known modularity-based algorithm implicitly



addresses DCC quite well, revealing similarities between cut-based intercluster
sparsity measures and modularity. In the second part, we addressed the question
whether different combinations of intracluster density and intercluster sparsity
measures are suitable to guide algorithms in recovering planted partitions in
random graphs. The results suggest that minimizing the average intercluster ex-
pansion or density of the clusters overestimates the number of clusters if the
expected clustering is coarse, while the maximum intercluster measures lead to
unbalanced clusters if the expected clustering is fine and the constraint on the
intracluster density does not force the clustering to be balanced. Additionally, it
can be seen that the known resolution limit for modularity can be circumvented
if the coarseness of the clustering is controlled by an additional constraint on
the intracluster density of the clustering.
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A Additional Examples and Explanations

Maximum Functions: Clusterings resulting from vertex moves can be
L-compared in constant time. For three distinct clusters C, A and B in C
and v ∈ C it holds that:

– Cv→A is L-better than C ⇔
{
C \ {v}, A ∪ {v}

}
is L-better than {C,A}

– Cv→A is L-better than Cv→B ⇔
{
A ∪ {v}, B

}
is L-better than

{
B ∪ {v}, A

}
If the volume, size and number of out-going edges of the clusters A, B

and C are maintained by the algorithm, the density/conductance/expansion of
C,A,B,C \{v}, A∪{v} and B∪{v} can be determined in constant time. Hence,
the conditions on the right-hand side can be evaluated in constant time, which
can be used to determine the best move for a vertex efficiently.

Connectedness of gxd. The following equation shows that GVM never has
to consider non-neighboring clusters for gxd, as isolating the respective vertex
is always more beneficial. Let v ∈ V , A := C(v) \ {v} and B ∈ C such that
m{v},B = 0, then:

gxd(Cv→{}) =

∑
Ci,Cj ,j>i

mCi,Cj
+m{v},A∑

Ci,Cj ,j>i
|Ci||Cj |+ |A|

<

∑
Ci,Cj ,j>i

mCi,Cj
+m{v},A −

=0︷ ︸︸ ︷
m{v},B∑

Ci,Cj ,j>i
|Ci||Cj |+ |A| − |B|︸︷︷︸

>0

=gxd(Cv→B)

C1

v

(a) mixd, mixe

C1

v

(b) mixc

C1

v

(c) aixc, aixe, aixd

Fig. 4: Examples illustrating that most measures considered do not enforce connected
moves. Given the clusterings indicated by the gray areas, among all moves involving
v, moving v to cluster C1 yields the largest decrease in the objective function.



B Effectiveness of Different Objective Functions:
Additional Plots
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Fig. 5: Ranks for different intercluster density measures as objectives in the GVM-
algorithm using mid as constraint, evaluated by the intercluster density of the resulting
clustering.
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Fig. 6: Ranks for different intercluster density measures as objectives in the GVM-
algorithm using aid as constraint, evaluated by the intercluster density of the resulting
clustering.



C Complete Experiments with Planted Partition Graphs
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