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Abstract

We present a novel distributed evolutionary algorithm, KaFFPaE, to solve the Graph Partitioning Problem,
which makes use of KaFFPa (Karlsruhe Fast Flow Partitioner). The use of our multilevel graph partitioner
KaFFPa provides new effective crossover and mutation operators. By combining these with a scalable commu-
nication protocol we obtain a system that is able to improve the best known partitioning results for many inputs
in a very short amount of time. For example, in Walshaw’s well known benchmark tables we are able to improve
or recompute 76% of entries for the tables with 1%, 3% and 5% imbalance.

1 Introduction

Problems of graph partitioning arise in various areas of computer science, engineering, and related fields. For
example in high performance computing [27], community detection in social networks [25] and route planning [4].
In particular the graph partitioning problem is very valuable for parallel computing. In this area, graph partitioning
is mostly used to partition the underlying graph model of computation and communication. Roughly speaking,
vertices in this graph represent computation units and edges denote communication. This graph needs to be parti-
tioned such that there are few edges between the blocks (pieces). In particular, if we want to use k processors we
want to partition the graph into k blocks of about equal size.

In this paper we focus on a version of the problem that constrains the maximum block size to (1 + ε) times the
average block size and tries to minimize the total cut size, i.e., the number of edges that run between blocks. It is
well known that this problem is NP-complete [7] and that there is no approximation algorithm with a constant ratio
factor for general graphs [7]. Therefore mostly heuristic algorithms are used in practice.

A successful heuristic for partitioning large graphs is the multilevel graph partitioning (MGP) approach de-
picted in Figure 1 where the graph is recursively contracted to achieve smaller graphs which should reflect the
same basic structure as the input graph. After applying an initial partitioning algorithm to the smallest graph, the
contraction is undone and, at each level, a local refinement method is used to improve the partitioning induced by
the coarser level.

The main focus of this paper is a technique which integrates an evolutionary search algorithm with our multi-
level graph partitioner KaFFPa and its scalable parallelization. We present novel mutation and combine operators
which in contrast to previous methods that use a graph partitioner [28, 11] do not need random perturbations of
edge weights. We show in Section 6 that the usage of edge weight perturbations decreases the overall quality of the
underlying graph partitioner. The new combine operators enable us to combine individuals of different kinds (see
Section 4 for more details). Due to the parallelization our system is able to compute partitions that have quality
comparable or better than previous entries in Walshaw’s well known partitioning benchmark within a few minutes
for graphs of moderate size. Previous methods of Soper et.al [28] required runtimes of up to one week for graphs
of that size. We therefore believe that in contrast to previous methods, our method is very valuable in the area of
high performance computing.

The paper is organized as follows. We begin in Section 2 by introducing basic concepts. After shortly pre-
senting Related Work in Section 3, we continue describing the main evolutionary components in Section 4 and its
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Figure 1: Multilevel graph partitioning.

parallelization in Section 5. A summary of extensive experiments
done to tune the algorithm and evaluate its performance is pre-
sented in Section 6. A brief outline of the techniques used in the
multilevel graph partitioner KaFFPa is provided in Appendix A.
We have implemented these techniques in the graph partitioner
KaFFPaE (Karlsruhe Fast Flow Partitioner Evolutionary) which is
written in C++. Experiments reported in Section 6 indicate that
KaFFPaE is able to compute partitions of very high quality and
scales well to large networks and machines.

2 Preliminaries

2.1 Basic concepts

Consider an undirected graph G = (V,E, c, ω) with edge weights ω : E → R>0, node weights c : V → R≥0,
n = |V |, and m = |E|. We extend c and ω to sets, i.e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e).

Γ(v) := {u : {v, u} ∈ E} denotes the neighbors of v. We are looking for blocks of nodes V1,. . . ,Vk that partition
V , i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j. The balancing constraint demands that ∀i ∈ {1..k} :
c(Vi) ≤ Lmax := (1 + ε)c(V )/k + maxv∈V c(v) for some parameter ε. The last term in this equation arises
because each node is atomic and therefore a deviation of the heaviest node has to be allowed. The objective is to
minimize the total cut

∑
i<j w(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. A clustering is also a partition

of the nodes, however k is usually not given in advance and the balance constraint is removed. A vertex v ∈ Vi
that has a neighbor w ∈ Vj , i 6= j, is a boundary vertex. An abstract view of the partitioned graph is the so called
quotient graph, where vertices represent blocks and edges are induced by connectivity between blocks. Given
two clusterings C1 and C2 the overlay clustering is the clustering where each block corresponds to a connected
component of the graph GE = (V,E\E) where E is the union of the cut edges of C1 and C2, i.e. all edges that run
between blocks in either C1 or C2. By default, our initial inputs will have unit edge and node weights. However,
even those will be translated into weighted problems in the course of the algorithm.

A matchingM ⊆ E is a set of edges that do not share any common nodes, i.e., the graph (V,M) has maximum
degree one. Contracting an edge {u, v} means to replace the nodes u and v by a new node x connected to the
former neighbors of u and v. We set c(x) = c(u) + c(v) so the weight of a node at each level is the number of
nodes it is representing in the original graph. If replacing edges of the form {u,w},{v, w} would generate two
parallel edges {x,w}, we insert a single edge with ω({x,w}) = ω({u,w}) + ω({v, w}). Uncontracting an edge
e undos its contraction. In order to avoid tedious notation, G will denote the current state of the graph before and
after a (un)contraction unless we explicitly want to refer to different states of the graph. The multilevel approach
to graph partitioning consists of three main phases. In the contraction (coarsening) phase, we iteratively identify
matchings M ⊆ E and contract the edges in M . Contraction should quickly reduce the size of the input and each
computed level should reflect the global structure of the input network. Contraction is stopped when the graph is
small enough to be directly partitioned using some expensive other algorithm. In the refinement (or uncoarsening)
phase, the matchings are iteratively uncontracted. After uncontracting a matching, a refinement algorithm moves
nodes between blocks in order to improve the cut size or balance.

KaFFPa, which we use as a base case partitioner, extended the concept of iterated multilevel algorithms which
was introduced by [29]. The main idea is to iterate the coarsening and uncoarsening phase. Once the graph is
partitioned, edges that are between two blocks are not contracted. An F-cycle works as follows: on each level we
perform at most two recursive calls using different random seeds during contraction and local search. A second
recursive call is only made the second time that the algorithm reaches a particular level. As soon as the graph is
partitioned, edges that are between blocks are not contracted. This ensures nondecreasing quality of the partition
since our refinement algorithms guarantee no worsening and break ties randomly. These so called global search
strategies are more effective than plain restarts of the algorithm. Extending this idea will yield the new combine
and mutation operators described in Section 4.
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Local search algorithms find good solutions in a very short amount of time but often get stuck in local optima.
In contrast to local search algorithms, genetic/evolutionary algorithms are good at searching the problem space
globally. However, genetic algorithms lack the ability of fine tuning a solution, so that local search algorithms can
help to improve the performance of a genetic algorithm. The combination of an evolutionary algorithm with a local
search algorithm is called hybrid or memetic evolutionary algorithm [20].

3 Related Work

There has been a huge amount of research on graph partitioning so that we refer the reader to [15, 31] for more
material on multilevel graph partitioning and to [20] for more material on genetic approaches for graph partitioning.
All general purpose methods that are able to obtain good partitions for large real world graphs are based on the mul-
tilevel principle outlined in Section 2. Well known software packages based on this approach include, Jostle [31],
Metis [19], and Scotch [24]. KaFFPa [17] is a MGP algorithm using local improvement algorithms that are based
on flows and more localized FM searches. It obtained the best results for many graphs in [28]. Since we use it as
a base case partitioner it is described in more detail in Appendix A. KaSPar [23] is a graph partitioner based on
the central idea to (un)contract only a single edge between two levels. KaPPa [17] is a "classical" matching based
MGP algorithm designed for scalable parallel execution.

Soper et al. [28] provided the first algorithm that combined an evolutionary search algorithm with a multilevel
graph partitioner. Here crossover and mutation operators have been used to compute edge biases, which yield
hints for the underlying multilevel graph partitioner. Benlic et al. [5] provided a multilevel memetic algorithm for
balanced graph partitioning. This approach is able to compute many entries in Walshaw’s Benchmark Archive [28]
for the case ε = 0. PROBE [8] is a meta-heuristic which can be viewed as a genetic algorithm without selection. It
outperforms other metaheuristics, but it is restricted to the case k = 2 and ε = 0.

Very recently an algorithm called PUNCH [11] has been introduced. This approach is not based on the multi-
level principle. However, it creates a coarse version of the graph based on the notion of natural cuts. Natural cuts
are relatively sparse cuts close to denser areas. They are discovered by finding minimum cuts between carefully
chosen regions of the graph. They introduced an evolutionary algorithm which is similar to Soper et al. [28], i.e.
using a combine operator that computes edge biases yielding hints for the underlying graph partitioner. Experi-
ments indicate that the algorithm computes very good partitions for road networks. For instances without a natural
structure such as road networks, natural cuts are not very helpful.

4 Evolutionary Components

The general idea behind evolutionary algorithms (EA) is to use mechanisms which are highly inspired by biological
evolution such as selection, mutation, recombination and survival of the fittest. An EA starts with a population of
individuals (in our case partitions of the graph) and evolves the population into different populations over several
rounds. In each round, the EA uses a selection rule based on the fitness of the individuals (in our case the edge
cut) of the population to select good individuals and combine them to obtain improved offspring [16]. Note that
we can use the cut as a fitness function since our partitioner almost always generates partitions that are within the
given balance constraint, i.e. there is no need to use a penalty function or something similar to ensure that the
final partitions generated by our algorithm are feasible. When an offspring is generated an eviction rule is used
to select a member of the population and replace it with the new offspring. In general one has to take both into
consideration, the fitness of an individual and the distance between individuals in the population [2]. Our algorithm
generates only one offspring per generation. Such an evolutionary algorithm is called steady-state [9]. A typical
structure of an evolutionary algorithm is depicted in Algorithm 1.

For an evolutionary algorithm it is of major importance to keep the diversity in the population high [2], i.e.
the individuals should not become too similar, in order to avoid a premature convergence of the algorithm. In
other words, to avoid getting stuck in local optima a procedure is needed that randomly perturbs the individuals.
In classical evolutionary algorithms, this is done using a mutation operator. It is also important to have operators
that introduce unexplored search space to the population. Through a new kind of crossover and mutation operators,
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introduced in Section 4.1, we introduce more elaborate diversification strategies which allow us to search the search
space more effectively.

Interestingly, Inayoshi et al. [18] noticed that good local solutions of the graph partitioning problem tend to be
close to one another. Boese et al. [6] showed that the quality of the local optima overall decreases as the distance
from the global optimum increases. We will see in the following that our combine operators can exchange good
parts of solutions quite effectively especially if they have a small distance.

Algorithm 1 A classic general steady-state evolutionary algorithm.
procedure steady-state-EA

create initial population P
while stopping criterion not fulfilled

select parents p1, p2 from P
combine p1 with p2 to create offspring o
mutate offspring o
evict individual in population using o

return the fittest individual that occurred

4.1 Combine Operators

We now describe the general combine operator framework. This is followed by three instantiations of this frame-
work. In contrast to previous methods that use a multilevel framework our combine operators do not need pertur-
bations of edge weights since we integrate the operators into our partitioner and do not use it as a complete black
box.

Furthermore all of our combine operators assure that the offspring has a partition quality at least as good as the
best of both parents. Roughly speaking, the combine operator framework combines an individual/partition P =
V P1 , ..., V

P
k (which has to fulfill a balance constraint) with a clustering C = V C1 , ..., V

C
k′ . Note that

match

contract

Figure 2: On the top a graphGwith two
partitions, the dark and the light line,
are shown. Cut edges are not eligible
for the matching algorithm. Contraction
is done until no matchable edge is left.
The best of the two given partitions is
used as initial partition.

the clustering does not necessarily has to fulfill a balance constraint and
k′ is not necessarily given in advance. All instantiations of this frame-
work use a different kind of clustering or partition. The partition and
the clustering are both used as input for our multi-level graph partitioner
KaFFPa in the following sense. Let E be the set of edges that are cut
edges, i.e. edges that run between two blocks, in either P or C. All edges
in E are blocked during the coarsening phase, i.e. they are not contracted
during the coarsening phase. In other words these edges are not eligible
for the matching algorithm used during the coarsening phase and there-
fore are not part of any matching computed. An illustration of this can
be found in Figure 2.

The stopping criterion for the multi-level partitioner is modified such
that it stops when no contractable edge is left. Note that the coarsest
graph is now exactly the same as the quotient graph Q′ of the overlay
clustering of P and C of G (see Figure 3). Hence vertices of the coarsest
graph correspond to the connected components of GE = (V,E\E) and
the weight of the edges between vertices corresponds to the sum of the
edge weights running between those connected components in G.

As soon as the coarsening phase is stopped, we apply the partition
P to the coarsest graph and use this as initial partitioning. This is pos-
sible since we did not contract any cut edge of P . Note that due to the
specialized coarsening phase and this specialized initial partitioning we
obtain a high quality initial solution on a very coarse graph which is usually not discovered by conventional parti-
tioning algorithms. Since our refinement algorithms guarantee no worsening of the input partition and use random
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Figure 3: A graph G and two bipartitions; the dotted and the dashed line (left). Curved lines represent a large
cut. The four vertices correspond to the coarsest graph in the multilevel procedure. Local search algorithms can
effectively exchange v2 or v4 to obtain the better partition depicted on the right hand side (dashed line).

tie breaking we can assure nondecreasing partition quality. Note that the refinement algorithms can effectively
exchange good parts of the solution on the coarse levels by moving only a few vertices. Figure 3 gives an example.

Also note that this combine operator can be extended to be a multi-point combine operator, i.e. the operator
would use p instead of two parents. However, during the course of the algorithm a sequence of two point combine
steps is executed which somehow "emulates" a multi-point combine step. Therefore, we restrict ourselves to the
case p = 2. When the offspring is generated we have to decide which solution should be evicted from the current
population. We evict the solution that is most similar to the offspring among those individuals in the population
that have a cut worse or equal than the offspring itself. The difference of two individuals is defined as the size of
the symmetric difference between their sets of cut edges. This ensures some diversity in the population and hence
makes the evolutionary algorithm more effective.

4.1.1 Classical Combine using Tournament Selection

This instantiation of the combine framework corresponds to a classical evolutionary combine operator C1. That
means it takes two individuals P1, P2 of the population and performs the combine step described above. In this
case P corresponds to the partition having the smaller cut and C corresponds to the partition having the larger cut.
Random tie breaking is used if both parents have the same cut. The selection process is based on the tournament
selection rule [22], i.e. P1 is the fittest out of two random individuals R1, R2 from the population. The same is
done to select P2. Note that in contrast to previous methods the generated offspring will have a cut smaller or equal
to the cut of P . Due to the fact that our multi-level algorithms are randomized, a combine operation performed
twice using the same parents can yield different offspring.

4.1.2 Cross Combine / (Transduction)

In this instantiation of the combine framework C2, the clustering C corresponds to a partition of G. But instead
of choosing an individual from the population we create a new individual in the following way. We choose k′

uniformly at random in [k/4, 4k] and ε′ uniformly at random in [ε, 4ε]. We then use KaFFPa to create a k′-partition
of G fulfilling the balance constraint max c(Vi) ≤ (1 + ε′)c(V )/k′. In general larger imbalances reduce the cut of
a partition which then yields good clusterings for our crossover. To the best of our knowledge there has been no
genetic algorithm that performs combine operations combining individuals from different search spaces.

4.1.3 Natural Cuts

Delling et al. [11] introduced the notion of natural cuts as a preprocessing technique for the partitioning of
road networks. The preprocessing technique is able to find relatively sparse cuts close to denser areas. We use
the computation of natural cuts to provide another combine operator, i.e. combining a k-partition with a clus-
tering generated by the computation of natural cuts. We closely follow their description: The computation of
natural cuts works in rounds. Each round picks a center vertex v and grows a breadth-first search (BFS) tree.
The BFS is stopped as soon as the weight of the tree, i.e. the sum of the vertex weights of the tree, reaches
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v

Figure 4: On the top we see the
computation of a natural cut. A
BFS Tree which starts from v is
grown. The gray area is the core.
The dashed line is the natural cut.
It is the minimum cut between
the contracted versions of the core
and the ring (shown as the solid
line). During the computation sev-
eral natural cuts are detected in the
input graph (bottom).

αU , for some parameters α and U . The set of the neighbors of T in V \T is
called the ring of v. The core of v is the union of all vertices added to T before
its size reached αU/f where f > 1 is another parameter.

The core is then temporarily contracted to a single vertex s and the ring
into a single vertex t to compute the minimum s-t-cut between them using the
given edge weights as capacities.

To assure that every vertex eventually belongs to at least one core, and
therefore is inside at least one cut, the vertices v are picked uniformly at ran-
dom among all vertices that have not yet been part of any core in any round.
The process is stopped when there are no such vertices left.

In the original work [11] each connected component of the graph GC =
(V,E\C), where C is the union of all edges cut by the process above, is con-
tracted to a single vertex. Since we do not use natural cuts as a preprocessing
technique at this place we don’t contract these components. Instead we build
a clustering C of G such that each connected component of GC is a block.

This technique yields the third instantiation of the combine framework C3

which is divided into two stages, i.e. the clustering used for this combine step
is dependent on the stage we are currently in. In both stages the partition P
used for the combine step is selected from the population using tournament
selection. During the first stage we choose f uniformly at random in [5, 20],
α uniformly at random in [0.75, 1.25] and we set U = |V |/3k. Using these
parameters we obtain a clustering C of the graph which is then used in the
combine framework described above. This kind of clustering is used until we
reach an upper bound of ten calls to this combine step. When the upper bound
is reached we switch to the second stage. In this stage we use the clusterings computed during the first stage, i.e.
we extract elementary natural cuts and use them to quickly compute new clusterings. An elementary natural cut
(ENC) consists of a set of cut edges and the set of nodes in its core. Moreover, for each node v in the graph, we store
the set of of ENCs N(v) that contain v in their core. With these data structures its easy to pick a new clustering C
(see Algorithm 2) which is then used in the combine framework described above.

Algorithm 2 computeNaturalCutClustering (second stage)
1: unmarked all nodes in V
2: for each v ∈ V in random order do
3: if v is not marked then
4: pick a random ENC C in N(v)
5: output C
6: mark all nodes in C’s core

4.2 Mutation Operators

We define two mutation operators, an ordinary and a modified F-cycle. Both mutation operators use a random
individual from the current population. The main idea is to iterate coarsening and refinement several times using
different seeds for random tie breaking. The first mutation operator M1 can assure that the quality of the input
partition does not decrease. It is basically an ordinary F-cycle which is an algorithm used in KaFFPa. Edges
between blocks are not contracted. The given partition is then used as initial partition of the coarsest graph. In
contrast to KaFFPa, we now can use the partition as input to the partition in the very beginning. This ensures
nondecreasing quality since our refinement algorithms guarantee no worsening. The second mutation operator M2

works quite similar with the small difference that the input partition is not used as initial partition of the coarsest
graph. That means we obtain very good coarse graphs but we can not assure that the final individual has a higher
quality than the input individual. In both cases the resulting offspring is inserted into the population using the
eviction strategy described in Section 4.1.
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5 Putting Things Together and Parallelization

We now explain the parallelization and describe how everything is put together. Each processing element (PE)
basically performs the same operations using different random seeds (see Algorithm 3). First we estimate the
population size S: each PE performs a partitioning step and measures the time t spend for partitioning. We then
choose S such that the time for creating S partitions is approximately ttotal/f where the fraction f is a tuning
parameter and ttotal is the total running time that the algorithm is given to produce a partition of the graph. Each PE
then builds its own population, i.e. KaFFPa is called several times to create S individuals/partitions. Afterwards
the algorithm proceeds in rounds as long as time is left. With corresponding probabilities, mutation or combine
operations are performed and the new offspring is inserted into the population.

We choose a parallelization/communication protocol that is quite similar to randomized rumor spreading [12].
Let p denote the number of PEs used. A communication step is organized in rounds. In each round, a PE chooses
a communication partner and sends her the currently best partition P of the local population. The selection of the
communication partner is done uniformly at random among those PEs to which P not already has been send to.
Afterwards, a PE checks if there are incoming individuals and if so inserts them into the local population using the
eviction strategy described above. If P is improved, all PEs are again eligible. This is repeated log p times. Note
that the algorithm is implemented completely asynchronously, i.e. there is no need for a global synchronisation.
The process of creating individuals is parallelized as follows: Each PE makes s′ = |S|/p calls to KaFFPa using
different seeds to create s′ individuals. Afterwards we do the following S − s′ times: The root PE computes a
random cyclic permutation of all PEs and broadcasts it to all PEs. Each PE then sends a random individual to its
successor in the cyclic permutation and receives a individual from its predecessor in the cyclic permutation. We
call this particular part of the algorithm quick start.

The ratio c
10 : 10−c

10 of mutation to crossover operations yields a tuning parameter c. As we will see in Section 6
the ratio 1 : 9 is a good choice. After some experiments we fixed the ratio of the mutation operators M1 : M2 to
4 : 1 and the ratio of the combine operators C1 : C2 : C3 to 3 : 1 : 1.

Note that the communication step in the last line of the algorithm could also be performed only every x-
iterations (where x is a tuning parameter) to save communication time. Since the communication network of our
test system is very fast (see Section 6), we perform the communication step in each iteration.

Algorithm 3 All PEs perform basically the same operations using different random seeds.
procedure locallyEvolve

estimate population size S
while time left

if elapsed time < ttotal/f then create individual and insert into local population
else

flip coin c with corresponding probabilities
if c shows head then

perform a mutation operation
else

perform a combine operation
insert offspring into population if possible

communicate according to communication protocol

6 Experiments

Implementation. We have implemented the algorithm described above using C++. Overall, our program (in-
cluding KaFFPa) consists of about 22 500 lines of code. We use two base case partitioners, KaFFPaStrong and
KaFFPaEco. KaFFPaEco is a good tradeoff between quality and speed, and KaFFPaStrong is focused on quality.
For the following comparisons we used Scotch 5.1.9., and kMetis 5.0 (pre2).
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System. Experiments have been done on two machines. Machine A is a cluster with 200 nodes where each node
is equipped with two Quad-core Intel Xeon processors (X5355) which run at a clock speed of 2.667 GHz. Each
node has 2x4 MB of level 2 cache each and run Suse Linux Enterprise 10 SP 1. All nodes are attached to an
InfiniBand 4X DDR interconnect which is characterized by its very low latency of below 2 microseconds and a
point to point bandwidth between two nodes of more than 1300 MB/s. Machine B has two Intel Xeon X5550,
48GB RAM, running Ubuntu 10.04. Each CPU has 4 cores (8 cores when hyperthreading is active) running at
2.67 GHz. Experiments in Sections 6.1, 6.2, 6.3 and 6.5 have been conducted on machine A, and experiments in
Sections 6.4 and 6.6 have been conducted on machine B. All programs were compiled using GCC Version 4.4.3
and optimization level 3 using OpenMPI 1.5.3. Henceforth, a PE is one core.

Instances. We report experiments on three suites of instances (small, medium sized and road networks) summa-
rized in Appendix C. rggX is a random geometric graph with 2X nodes where nodes represent random points in the
unit square and edges connect nodes whose Euclidean distance is below 0.55

√
lnn/n. This threshold was chosen

in order to ensure that the graph is almost connected. DelaunayX is the Delaunay triangulation of 2X random
points in the unit square. Graphs uk ,3elt ..fe_body and t60k ..memplus come from Walshaw’s benchmark archive
[30]. Graphs deu and eur , bel and nld are undirected versions of the road networks, used in [10]. luxemburg is a
road network taken from [3]. Our default number of partitions k are 2, 4, 8, 16, 32, 64 since they are the default
values in [30] and in some cases we additionally use 128 and 256. Our default value for the allowed imbalance is
3% since this is one of the values used in [30] and the default value in Metis. Our default number of PEs is 16.

Methodology. We mostly present two kinds of data: average values and plots that show the evolution of solution
quality (convergence plots). In both cases we perform multiple repetitions. The number of repetitions is dependent
on the test that we perform. Average values over multiple instances are obtained as follows: for each instance
(graph, k), we compute the geometric mean of the average edge cut values for each instance. We now explain how
we compute the convergence plots. We start explaining how we compute them for a single instance I: whenever a
PE creates a partition it reports a pair (t, cut), where the timestamp t is the currently elapsed time on the particular
PE and cut refers to the cut of the partition that has been created. When performing multiple repetitions we report
average values (t, avgcut) instead. After the completion of KaFFPaE we are left with P sequences of pairs (t, cut)
which we now merge into one sequence. The merged sequence is sorted by the timestamp t. The resulting sequence
is called T I . Since we are interested in the evolution of the solution quality, we compute another sequence T I

min.
For each entry (in sorted order) in T I we insert the entry (t,mint′≤t cut(t′)) into T I

min. Here mint′≤t cut(t′) is the
minimum cut that occurred until time t. N I

min refers to the normalized sequence, i.e. each entry (t, cut) in T I
min is

replaced by (tn, cut) where tn = t/tI and tI is the average time that KaFFPa needs to compute a partition for the
instance I . To obtain average values over multiple instances we do the following: for each instance we label all
entries in N I

min, i.e. (tn, cut) is replaced by (tn, cut, I). We then merge all sequences N I
min and sort by tn. The

resulting sequence is called S. The final sequence Sg presents event based geometric averages values. We start
by computing the geometric mean cut value G using the first value of all N I

min (over I). To obtain Sg we basically
sweep through S: for each entry (in sorted order) (tn, c, I) in S we update G, i.e. the cut value of I that took part
in the computation of G is replaced by the new value c, and insert (tn,G) into Sg. Note that c can be only smaller
or equal to the old cut value of I .

6.1 Parameter Tuning

We now tune the fraction parameter f and the ratio between mutation and crossover operations. For the parameter
tuning we choose our small testset because runtimes for a single graph partitioner call are not too large. To save
runtime we focus on k = 64 for tuning the parameters. For each instance we gave KaFFPaE ten minutes time and
16 PEs to compute a partition. During this test the quick start option is disabled.

For this test the flip coin parameter c is set to one. In Figure 5 we can see that the algorithm is not too sensitive
about the exact choice of this parameter. However, larger values of f speed up the convergence rate and improve
the result achieved in the end. Since f = 10 and f = 50 are the best parameter in the end, we choose f = 10 as
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Figure 5: Conv. plots for the fraction f using c = 1 (left) and the flip coin c using f = 10 (right).

our default value. For tuning the ratio c
10 : 10−c

10 of mutation and crossover operations, we set f to ten. We can see
that for smaller values of c the algorithm is not too sensitive about the exact choice of the parameter. However, if
the c exceeds 8 the convergence speed slows down which yields worse average results in the end. We choose c = 1
because it has a slight advantage in the end. The parameter tuning uses KaFFPaStrong as a partitioner. We also
performed the parameter tuning using KaFFPaEco as a partitioner (see Appendix B.1).

6.2 Scalability

In this Section we study the scalability of our algorithm. We do the following to obtain a fair comparison: basically
each configuration has the same amount of time, i.e. when doubling the number of PEs used, we divide the time
that KaFFPaE has to compute a partition per instance by two. To be more precise, when we use one PE KaFFPaE
has t1 = 15360s to compute a partition of an instance. When KaFFPaE uses p PEs, then it gets time tp = t1/p to
compute a partition of an instance. For all the following tests the quick start option is enabled. To save runtime we
use our small sized testset and fix k to 64. Here we perform five repetitions per instance. We can see in Figure 6
that using more processors speeds up the convergence speed and up to p = 128 also improves the quality in the end
(in these cases the speedups are optimal in the end). This might be due to island effects [1]. For p = 256 results are
worse compared to p = 1. This is because the algorithm is barely able to perform combine and mutation steps, due
to the very small amount of time given to KaFFPaE (60 seconds). On the largest graph of the testset (delaunay16)
we need about 20 seconds to create a partition into k = 64 blocks.

We now define pseudo speedup Sp(tn) which is a measure for speedup at a particular normalized time tn
of the configuration using one PE. Let cp(tn) be the mean minimum cut that KaFFPaE has computed using p
PEs until normalized time tn. The pseudo speedup is then defined as Sp(tn) = c′1(tn)/c′p(tn) where c′i(tn) =
minci(t′)≤c1(tn) t

′. If c′p(t) > c′1(tn) for all t we set Sp(tn) = 0 (in this case the parallel algorithm is not able to
compute the result computed by the sequential algorithm at normalized time tn; this is only the case for p = 256).
We can see in Figure 6 that after a short amount of time we reach super linear pseudo speedups in most cases.
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Figure 7: Convergence plots for the comparison of KaFFPaE with repeated executions of KaFFPa.

6.3 Comparison with KaFFPa and other Systems
k/Algo. Reps. KaFFPaE

Avg. impr. %
2 569 0.2%
4 1 229 1.0%
8 2 206 1.5%

16 3 568 2.7%
32 5 481 3.4%
64 8 141 3.3%

128 11 937 3.9%
256 17 262 3.7%

overall 3 872 2.5%

Table 1: Different algorithms after
two hours of time on 16 PEs.

In this Section we compare ourselves with repeated executions of KaFFPa
and other systems. We switch to our middle sized testset to avoid the ef-
fect of overtuning our algorithm parameters to the instances used for calibra-
tion. We use 16 PEs and two hours of time per instance when we use KaFF-
PaE. We parallelized repeated executions of KaFFPa (embarrassingly parallel,
different seeds) and also gave 16 PEs and two hours to KaFFPa. We look
at k ∈ {2, 4, 8, 16, 32, 64, 128, 256} and performed three repetitions per in-
stance. Figure 7 show convergence plots for k ∈ {32, 64, 128, 256}. All
convergence plots can be found in the Appendix B.2. As expected the im-
provements of KaFFPaE relative to repeated executions of KaFFPa increase
with increasing k. The largest improvement is obtained for k = 128. Here
KaFFPaE produces partitions that have a 3.9% smaller cut value than plain
restarts of the algorithm. Note that using a weaker base case partitioner, e.g.
KaFFPaEco, increases this value. On the small sized testset we obtained an improvement of 5.9% for k = 64
compared to plain restarts of KaFFPaEco. Tables comparing KaFFPaE with the best results out of ten repetitions
of Scotch and Metis can be found in the Appendix Table 4. Overall, Scotch and Metis produce 19% and 28% larger
(best) cuts than KaFFPaE respectively. However, these methods are much faster than ours (Appendix Table 4).

6.4 Combine Operator Experiments
Algo. S3R K3R KC SC

k Avg. improvement %
2 591 2.4 1.6 0.2
4 1 304 3.4 4.0 0.2
8 2 336 3.7 3.6 0.2

16 3 723 2.9 2.0 0.2
32 5 720 2.7 3.3 0.0
64 8 463 2.8 3.0 −0.6

128 12 435 3.6 4.5 0.0
256 17 915 3.4 4.2 −0.1

Table 2: Comparison of quality of dif-
ferent algorithms relative to S3R.

We now look into the effectiveness of our combine operator C1. We
conduct the following experiment: we compare the best result of three
repeated executions of KaFFPa (K3R) against a combine step (KC), i.e.
after creating two partitions we report the result of the combine step
C1 combining both individuals. The same is done using the combine
operator of Soper et. al. [28] (SC), i.e. we create two individuals using
perturbed edge weights as in [28] and report the cut produced by the
combine step proposed there (the best out of the three individuals). We
also present best results out of three repetitions when using perturbed
edge weights as in Soper et. al. (S3R). Since our partitioner does not
support double type edge weights, we computed the perturbations and
scaled them by a factor of 10 000 (for S3R and SC). We performed ten

repetitions on the middle sized testset. Results are reported in Table 2. A table presenting absolute average values
and comparing the runtime of these algorithms can be found in Appendix Table 5. We can see that for large k
our new combine operator yields improved partition quality in compareable or less time (KC vs. K3R)). Most
importantly, we can see that edge biases decrease the solution quality (K3R vs. S3R). This is due to the fact that
edge biases make edge cuts optimial that are not close to optimial in the unbiased problem. For example on 2D
grid graphs, we have straight edge cuts that are optimal. Random edge biases make bended edge cuts optimal.
However, these cuts are are not close to optimal cuts of the original graph partitioning problem. Moreover, local
search algorithms (Flow-based, FM-based) work better if there are a lot of equally sized cuts.
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6.5 Walshaw Benchmark

We now apply KaFFPaE to Walshaw’s benchmark archive [28] using the rules used there, i.e., running time is
not an issue but we want to achieve minimal cut values for k ∈ {2, 4, 8, 16, 32, 64} and balance parameters ε ∈
{0, 0.01, 0.03, 0.05}. We focus on ε ∈ {1%, 3%, 5%} since KaFFPaE (more precisely KaFFPa) is not made for
the case ε = 0. We run KaFFPaE with a time limit of two hours using 16 PEs (two nodes of the cluster) per
graph, k and ε and report the best results obtained in the Appendix D. KaFFPaE computed 300 partitions which
are better than previous best partitions reported there: 91 for 1%, 103 for 3% and 106 for 5%. Moreover, it
reproduced equally sized cuts in 170 of the 312 remaining cases. When only considering the 15 largest graphs
and ε ∈ {1.03, 1.05} we are able to reproduce or improve the current result in 224 out of 240 cases. Overall our
systems (including KaPPa, KaSPar, KaFFPa, KaFFPaE) now improved or reproduced the entrys in 550 out of 612
cases (for ε ∈ {0.01, 0.03, 0.05}).

6.6 Comparison with PUNCH
grp, k algorithm/runtime t

ger. Pbest ttotal Bavg tavg Bbest

2 164 83 161 6 161
4 400 96 394 6 393
8 711 102 694 9 693

16 1 144 83 1 148 16 1 137
32 1 960 71 1 928 31 1 898
64 3 165 83 3 164 62 3 143

eur. Pbest ttotal Bavg tavg Bbest

2 129 423 149 39 129
4 309 358 313 39 310
8 634 293 693 47 659

16 1 293 252 1 261 73 1 238
32 2 289 217 2 259 130 2 240
64 3 828 241 3 856 248 3 825

Table 3: Results on road networks: best re-
sults of PUNCH (P) out of 100 repetitions and
total time [m] needed to compute these re-
sults; average and best cut results of Buffoon
(B) as well as average runtime [m] (including
preprocessing).

In this Section we focus on finding partitions for road networks.
We implemented a specialized algorithm, Buffoon, which is sim-
ilar to PUNCH [11] in the sense that it also uses natural cuts as
a preprocessing technique to obtain a coarser graph on which the
graph partitioning problem is solved. For more information on nat-
ural cuts, we refer the reader to [11]. Using our (shared memory)
parallelized version of natural cut preprocessing we obtain a coarse
version of the graph. Note that our preprocessing uses slightly dif-
ferent parameters than PUNCH (using the notation of [11], we use
C = 2, U = (1 + ε) n

2k , f = 10, α = 1). Since partitions of the
coarse graph correspond to partitions of the original graph, we use
KaFFPaE to partition the coarse version of the graph.

After preprocessing, we gave KaFFPaE teur,k = k × 3.75 min
on europe and tger,k = k × 0.9375 min on germany, to compute
a partition. In both cases we used all 16 cores (hyperthreading
active) of machine B for preprocessing and for KaFFPaE. The ex-
periments where repeated ten times. A summary of the results is
shown in Table 3. Interestingly, on germany already our average
values are smaller or equal to the best result out of 100 repetitions
obtained by PUNCH. Overall in 9 out of 12 cases we compute a
best cut that is better or equal to the best cut obtained by PUNCH.
Note that for obtaining the best cut values we invest significantly more time than PUNCH. However, their machine
is about a factor two faster (12 cores running at 3.33GHz compared to 8 cores running at 2.67GHz) and our algo-
rithm is not tuned for road networks. A table comparing the results on road networks against KaFFPa, KaSPar,
Scotch and Metis can be found in Appendix 6. These algorithms produce 9%, 12%, 93% and 288% larger cuts on
average respectively.

7 Conclusion and Future Work

KaFFPaE is an distributed evolutionary algorithm to tackle the graph partitioning problem. Due to new crossover
and mutation operators as well as its scalable parallelization it is able to compute the best known partitions for
many standard benchmark instances in only a few minutes. We therefore believe that KaFFPaE is still helpful in
the area of high performance computing.

Regarding future work, we want to integrate other partitioners if they implement the possibility to block edges
during the coarsening phase and use the given partitioning as initial solution. It would be interesting to try other
domain specific combine operators, e.g. on social networks it could be interesting to use a modularity clusterer to
compute a clustering for the combine operation.
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A Karlsruhe Fast Flow Partitioner

We now provide a brief overview over the techniques used in the underlying graph partitioner which is used a graph
partitioner later. KaFFPa [26] is a classical matching based multilevel graph partitioner. Recall that a multilevel
graph partitioner basically has three phases: coarsening, initial partitioning and uncoarsening.

KaFFPa makes contraction more systematic by separating two issues: A rating function indicates how much
sense it makes to contract an edge based on local information. A matching algorithm tries to maximize the sum of
the ratings of the contracted edges looking at the global structure of the graph. While the rating functions allows
a flexible characterization of what a “good” contracted graph is, the simple, standard definition of the matching
problem allows to reuse previously developed algorithms for weighted matching. Matchings are contracted until
the graph is “small enough”. In [17] we have observed that the rating function expansion∗2({u, v}) := ω({u,v})2

c(u)c(v)
works best among other edge rating functions, so that this rating function is also used in KaFFPa.

We employed the Global Path Algorithm (GPA) as a matching algorithm. It was proposed in [21] as a synthesis
of the Greedy algorithm and the Path Growing Algorithm [13]. This algorithm achieves a half-approximation in the
worst case, but empirically, GPA gives considerably better results than Sorted Heavy Edge Matching and Greedy
(for more details see [17]). GPA scans the edges in order of decreasing weight but rather than immediately building
a matching, it first constructs a collection of paths and even cycles. Afterwards, optimal solutions are computed for
each of these paths and cycles using dynamic programming.

The contraction is stopped when the number of remaining nodes is below max (60k, n/(60k)). The graph is
then small enough to be partitioned by some initial partitioning algorithm. KaFFPa employs Scotch as an initial
partitioner since it empirically performs better than Metis.

Recall that the refinement phase iteratively uncontracts the matchings contracted during the contraction phase.
After a matching is uncontracted, local search based refinement algorithms move nodes between block boundaries
in order to reduce the cut while maintaining the balancing constraint. Local improvement algorithms are usually
variants of the FM-algorithm [14]. The algorithm is organized in rounds. In each round, a priority queue P is used
which is initialized with all vertices that are incident to more than one block, in a random order. The priority is
based on the gain g(v) = maxP gP (v) where gP (v) is the decrease in edge cut when moving v to block P . Ties
are broken randomly if there is more than one block that yields the maximum gain when moving v to it. Local
search then repeatedly looks for the highest gain node v. Each node is moved at most once within a round. After
a node is moved its unmoved neighbors become eligible, i.e. its unmoved neighbors are inserted into the priority
queue. When a stopping criterion is reached all movements to the best found cut that occurred within the balance
constraint are undone. This process is repeated several times until no improvement is found.

During the uncoarsening phase KaFFPa additionally uses more advanced refinement algorithms. The first
method is based on max-flow min-cut computations between pairs of blocks, i.e., a method to improve a given
bipartition. Roughly speaking, this improvement method is applied between all pairs of blocks that share a non-
empty boundary. The algorithm basically constructs a flow problem by growing an area around the given boundary
vertices of a pair of blocks such that each min cut in this area yields a feasible bipartition of the original graph
within the balance constraint. This yields a locally improved k-partition of the graph. The second method for
improving a given partition is called multi-try FM. Roughly speaking, a k-way local search initialized with a single
boundary node is repeatedly started. Previous methods are initialized with all boundary nodes.

KaFFPa extended the concept of iterated multilevel algorithms which was introduced by [29]. The main idea
is to iterate the coarsening and uncoarsening phase. Once the graph is partitioned, edges that are between two
blocks are not contracted. An F-cycle works as follows: on each level we perform at most two recursive calls using
different random seeds during contraction and local search. A second recursive call is only made the second time
that the algorithm reaches a particular level. As soon as the graph is partitioned, edges that are between blocks are
not contracted. This ensures nondecreasing quality of the partition since our refinement algorithms guarantee no
worsening and break ties randomly. These so called global search strategies are more effective than plain restarts
of the algorithm.
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B Additional Experimental Data

B.1 Further Parameter Tuning

In this Section we perform parameter tuning using KaFFPaEco (a faster but not so powerful as KaFFPaStrong) as
a base case partitioner. We start tuning the fraction parameter f . As before we set the flip coin parameter c to one.
In Figure 5 we can see that the algorithm is not too sensitive about the exact choice of this parameter. As before,
larger values of f speed up the convergence rate and improve the result achieved in the end. Since f = 50 is the
best parameter in the end, we choose it as our default value.

We now tune the ratio c
10 : 10−c

10 between mutation to crossover operations. For this test we set f = 50. The
results a similar to the results achieved when using KaFFPaStrong as a base case partitioner. Again we can see that
for smaller values of c the algorithm is not to sensitive about the exact choice of the parameter. When c = 10, i.e.
no crossover operation is performed the convergence speed slows down which yields worse average results in the
end. The results of c = 9 and c = 1 are comparable in the end. We choose c = 1 for consistency.
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Figure 8: Conv. plots for the fraction f using c = 1 (left) and the flip coin c using f = 50 (right). In both cases
KaFFPaEco is used as a base case partitioner.

B.2 Further Comparison Data

k/Algo. Reps. KaFFPaE Scotch Metis
Avg. Avg. Best. tavg[s] Best. tavg[s]

2 569 568 671 0.22 711 0.12
4 1 229 1 217 1 486 0.41 1 574 0.13
8 2 207 2 173 2 663 0.62 2 831 0.13

16 3 568 3 474 4 192 0.86 4 500 0.14
32 5 481 5 298 6 437 1.15 6 899 0.15
64 8 141 7 879 9 335 1.46 10 306 0.18

128 11 937 11 486 13 427 1.85 14 500 0.20
256 17 262 16 634 18 972 2.28 20 341 0.25

overall 3 872 3 779 4 507 0.87 4 835 0.16

Table 4: Averages of final values of different algorithms on the middlesized testset. KaFFPa (Reps) and KaFFPaE
was given after two hours of time on 16 PEs per repetitions and instance. Average values of Metis and Scotch are
average values of the best cut that occurred out of ten repetitions.
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Figure 9: Convergence plots for the comparison with repeated executions of KaFFPa.

Algo. S3R K3R KC SC
k avg. t[s] avg. t[s] avg. t[s] avg. t[s]
2 591 19 577 14 582 12 590 17
4 1 304 30 1 261 28 1 254 22 1 302 27
8 2 336 40 2 252 45 2 255 36 2 332 41

16 3 723 54 3 617 67 3 649 57 3 714 61
32 5 720 82 5 569 110 5 540 99 5 722 84
64 8 463 116 8 236 164 8 213 146 8 512 113

128 12 435 171 12 008 239 11 895 225 12 432 162
256 17 915 217 17 335 327 17 199 329 17 935 232

Table 5: Comparison of different combine operators. Average values of cuts and runtime.
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B.3 Larger Scalability Plots
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Figure 10: Scalability of our algorithm: (upper) a normal convergence plot, (middle) mean minimum cut relative
to best cut of KaFFPaE using one PE, (lower) pseudo speedup Sp(tn).
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B.4 Road Networks

PUNCH Buffoon KaFFPa Strong KaSPar Strong Scotch Metis
graph k Best Avg. t[m] Best Avg. t[m] Best Avg. t[m] Best Avg. t[m] Best Avg. t[m] Best Avg. t[m]
deu 2 164 166 0.83 161 161 6.2 163 166 3.29 167 172 3.86 265 279 0.05 271 296 0.10
deu 4 400 410 0.96 393 394 6.8 395 403 5.25 419 426 4.07 608 648 0.10 592 710 0.10
deu 8 711 746 1.02 693 694 9.7 726 729 5.85 762 773 4.17 1 109 1 211 0.15 1 209 1 600 0.10
deu 16 1 144 1 188 0.83 1 137 1 148 16.8 1 263 1 278 7.05 1 308 1 333 4.64 1 957 2 061 0.20 2 052 2 191 0.10
deu 32 1 960 2 032 0.71 1 898 1 928 31.7 2 115 2 146 7.68 2 182 2 217 4.73 3 158 3 262 0.25 3 225 3 607 0.10
deu 64 3 165 3 253 0.83 3 143 3 164 61.1 3 432 3 440 8.55 3 610 3 631 4.89 4 799 4 937 0.30 4 985 5 320 0.10
eur 2 129 130 4.25 129 175 39.5 130 130 16.88 133 138 32.44 369 448 0.20 412 454 0.55
eur 4 309 309 3.58 310 317 39.1 412 430 30.40 355 375 36.13 727 851 0.40 902 1 698 0.54
eur 8 634 671 2.93 659 671 47.9 749 772 34.45 774 786 37.21 1 338 1 461 0.60 2 473 3 819 0.55
eur 16 1 293 1 353 2.52 1 238 1 257 73.5 1 454 1 493 39.01 1 401 1 440 42.56 2 478 2 563 0.81 3 314 8 554 0.56
eur 32 2 289 2 362 2.17 2 240 2 260 130.2 2 428 2 504 40.76 2 595 2 643 43.31 4 057 4 249 1.00 5 811 7 380 0.55
eur 64 3 828 3 984 2.41 3 825 3 862 248.9 4 240 4 264 42.23 4 502 4 526 42.23 6 518 6 739 1.23 10 264 13 947 0.55

overall 822 847 1.57 812 831 33.9 893.05 909 13.97 911 931 13.03 1 495 1 607 0.30 1 800 2 400 0.23

Table 6: Detailed per instance results for road networks. PUNCH was run 100 times, Buffoon 10 times and KaFFPa,
KaSPar, Scotch and Metis where run 5 times.

C Instances

small sized instances
graph n m

rgg15 215 160 240
rgg16 216 342 127
delaunay15 215 98 274
delaunay16 216 196 575
uk 4 824 6 837
luxemburg 114 599 119 666
3elt 4 720 13 722
4elt 15 606 45 878
fe_sphere 16 386 49 152
cti 16 840 48 232
fe_body 45 087 163 734

medium sized instances
graph n m

rgg17 217 728 753
rgg18 218 1 547 283
delaunay17 217 393 176
delaunay18 218 786 396
bel 463 514 591 882
nld 893 041 1 139 540
t60k 60 005 89 440
wing 62 032 121 544
fe_tooth 78 136 452 591
fe_rotor 99 617 662 431
memplus 17 758 54 196

road networks
graph n m

germany 4 378 446 5 483 587
europe 18 029 721 22 217 686

Table 7: Basic properties of our benchmark set.

D Detailed Walshaw Benchmark Results
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Graph/k 2 4 8 16 32 64
add20 642 594 1 194 1 159 1 727 1 696 2 107 2 062 2 512 2 687 3 188 3 108
data 188 188 377 378 656 659 1 142 1 135 1 933 1 858 2 966 2 885
3elt 89 89 199 199 340 341 568 569 967 968 1 553 1 553
uk 19 19 40 40 80 82 144 146 251 256 417 419
add32 10 10 33 33 66 66 117 117 212 212 486 493
bcsstk33 10 096 10 097 21 390 21 508 34 174 34 178 55 327 54 763 78 199 77 964 109 811 108 467
whitaker3 126 126 380 380 654 655 1 091 1 091 1 678 1 697 2 532 2 552
crack 183 183 362 362 676 677 1 098 1 089 1 697 1 687 2 581 2 555
wing_nodal 1 695 1 695 3 563 3 565 5 422 5 427 8 353 8 339 12 040 11 828 16 185 16 124
fe_4elt2 130 130 349 349 603 604 1 002 1 005 1 620 1 628 2 530 2 519
vibrobox 11 538 10 310 18 956 19 098 24 422 24 509 33 501 32 102 41 725 40 085 49 012 47 651
bcsstk29 2 818 2 818 8 029 8 029 13 904 13 950 22 618 21 768 35 654 34 841 57 712 57 031
4elt 138 138 320 320 532 533 932 934 1 551 1 547 2 574 2 579
fe_sphere 386 386 766 766 1 152 1 152 1 709 1 709 2 494 2 488 3 599 3 584
cti 318 318 944 944 1 749 1 752 2 804 2 837 4 117 4 129 5 820 5 818
memplus 5 491 5 484 9 448 9 500 11 807 11 776 13 250 13 001 15 187 14 107 17 183 16 543
cs4 366 366 925 934 1 436 1 448 2 087 2 105 2 910 2 938 4 032 4 051
bcsstk30 6 335 6 335 16 596 16 622 34 577 34 604 70 945 70 604 116 128 113 788 176 099 172 929
bcsstk31 2 699 2 699 7 282 7 287 13 201 13 230 23 761 23 807 37 995 37 652 59 318 58 076
fe_pwt 340 340 704 704 1 433 1 437 2 797 2 798 5 523 5 549 8 222 8 276
bcsstk32 4 667 4 667 9 195 9 208 20 204 20 323 35 936 36 399 61 533 60 776 94 523 91 863
fe_body 262 262 598 598 1 026 1 048 1 714 1 779 2 796 2 935 4 825 4 879
t60k 75 75 208 208 454 454 805 815 1 320 1 352 2 079 2 123
wing 784 784 1 610 1 613 2 479 2 505 3 857 3 880 5 584 5 626 7 680 7 656
brack2 708 708 3 013 3 013 7 040 7 099 11 636 11 649 17 508 17 398 26 226 25 913
finan512 162 162 324 324 648 648 1 296 1 296 2 592 2 592 10 560 10 560
fe_tooth 3 814 3 815 6 846 6 867 11 408 11 473 17 411 17 396 25 111 24 933 34 824 34 433
fe_rotor 2 031 2 031 7 180 7 292 12 726 12 813 20 555 20 438 31 428 31 233 46 372 45 911
598a 2 388 2 388 7 948 7 952 15 956 15 924 25 741 25 789 39 423 38 627 57 497 56 179
fe_ocean 387 387 1 816 1 824 4 091 4 134 7 846 7 771 12 711 12 811 20 301 19 989
144 6 478 6 478 15 152 15 140 25 273 25 279 37 896 38 212 56 550 56 868 79 198 80 406
wave 8 658 8 665 16 780 16 875 28 979 29 115 42 516 42 929 61 104 62 551 85 589 86 086
m14b 3 826 3 826 12 973 12 981 25 690 25 852 42 523 42 351 65 835 67 423 98 211 99 655
auto 9 949 9 954 26 614 26 649 45 557 45 470 77 097 77 005 121 032 121 608 172 167 174 482

Table 8: Computing partitions from scratch ε = 1%. In each k-column the results computed by KaFFPaE are on the left and the current Walshaw cuts are
presented on the right side.
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Graph/k 2 4 8 16 32 64
add20 623 576 1 180 1 158 1 696 1 689 2 075 2 062 2 422 2 387 2 963 3 021
data 185 185 369 369 638 638 1 111 1 118 1 815 1 801 2 905 2 809
3elt 87 87 198 198 334 335 561 562 950 950 1 537 1 532
uk 18 18 39 39 78 78 140 141 240 245 406 411
add32 10 10 33 33 66 66 117 117 212 212 486 490
bcsstk33 10 064 10 064 20 767 20 854 34 068 34 078 54 772 54 455 77 549 77 353 108 645 107 011
whitaker3 126 126 378 378 650 651 1 084 1 086 1 662 1 673 2 498 2 499
crack 182 182 360 360 671 673 1 077 1 077 1 676 1 666 2 534 2 529
wing_nodal 1 678 1 678 3 538 3 542 5 361 5 368 8 272 8 310 11 939 11 828 15 967 15 874
fe_4elt2 130 130 342 342 595 596 991 994 1 599 1 613 2 485 2 503
vibrobox 11 538 10 310 18 736 18 778 24 204 24 170 33 065 31 514 41 312 39 512 48 184 47 651
bcsstk29 2 818 2 818 7 971 7 983 13 717 13 816 22 000 21 410 34 535 34 400 55 544 55 302
4elt 137 137 319 319 522 523 906 908 1 523 1 524 2 543 2 565
fe_sphere 384 384 764 764 1 152 1 152 1 698 1 704 2 474 2 471 3 552 3 530
cti 318 318 916 916 1 714 1 714 2 746 2 758 3 994 4 011 5 579 5 675
memplus 5 353 5 353 9 375 9 362 11 662 11 624 13 088 13 001 14 617 14 107 16 997 16 259
cs4 360 360 917 926 1 424 1 434 2 055 2 087 2 892 2 925 4 016 4 051
bcsstk30 6 251 6 251 16 399 16 497 34 137 34 275 69 592 69 763 113 888 113 788 173 290 171 727
bcsstk31 2 676 2 676 7 150 7 150 12 985 13 003 23 299 23 232 37 109 37 228 58 143 57 953
fe_pwt 340 340 700 700 1 410 1 411 2 773 2 776 5 460 5 488 8 124 8 205
bcsstk32 4 667 4 667 8 725 8 733 19 956 19 962 35 140 35 486 59 716 58 966 91 544 91 715
fe_body 262 262 598 598 1 018 1 016 1 708 1 734 2 738 2 810 4 643 4 799
t60k 71 71 203 203 449 449 793 802 1 304 1 333 2 039 2 098
wing 773 773 1 593 1 602 2 451 2 463 3 807 3 852 5 559 5 626 7 561 7 656
brack2 684 684 2 834 2 834 6 800 6 861 11 402 11 444 17 167 17 194 25 658 25 913
finan512 162 162 324 324 648 648 1 296 1 296 2 592 2 592 10 560 10 560
fe_tooth 3 788 3 788 6 764 6 795 11 287 11 274 17 176 17 310 24 752 24 933 34 230 34 433
fe_rotor 1 959 1 959 7 118 7 126 12 445 12 472 20 076 20 112 30 664 31 233 45 053 45 911
598a 2 367 2 367 7 816 7 838 15 613 15 722 25 563 25 686 38 346 38 627 56 153 56 179
fe_ocean 311 311 1 693 1 696 3 920 3 921 7 657 7 631 12 437 12 539 19 521 19 989
144 6 434 6 438 15 203 15 078 25 092 25 109 37 730 37 762 55 941 56 356 78 636 78 559
wave 8 591 8 594 16 665 16 668 28 506 28 495 42 259 42 295 60 731 61 722 84 533 85 185
m14b 3 823 3 823 12 948 12 948 25 390 25 520 41 778 41 997 65 359 65 180 96 519 96 802
auto 9 673 9 683 25 789 25 836 44 785 44 832 75 719 75 778 119 157 120 086 170 989 171 535

Table 9: Computing partitions from scratch ε = 3%. In each k-column the results computed by KaFFPaE are on the left and the current Walshaw cuts are
presented on the right side.
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Graph/k 2 4 8 16 32 64
add20 598 546 1 169 1 149 1 689 1 675 2 061 2 062 2 411 2 387 2 963 3 021
data 182 181 363 363 628 628 1 088 1 084 1 786 1 776 2 832 2 798
3elt 87 87 197 197 329 330 557 558 944 942 1 509 1 519
uk 18 18 39 39 75 76 137 139 237 242 395 400
add32 10 10 33 33 63 63 117 117 212 212 483 486
bcsstk33 9 914 9 914 20 167 20 179 33 919 33 922 54 333 54 296 77 457 77 101 106 903 106 827
whitaker3 126 126 377 378 644 644 1 073 1 079 1 650 1 667 2 477 2 498
crack 182 182 360 360 666 667 1 065 1 076 1 661 1 655 2 505 2 516
wing_nodal 1 669 1 668 3 521 3 522 5 341 5 345 8 241 8 264 11 793 11 828 15 892 15 813
fe_4elt2 130 130 335 335 578 580 983 984 1 575 1 592 2 461 2 482
vibrobox 11 254 10 310 18 690 18 696 23 924 23 930 32 615 31 234 40 816 39 183 47 624 47 361
bcsstk29 2 818 2 818 7 925 7 936 13 540 13 575 21 459 20 924 33 851 33 817 55 029 54 895
4elt 137 137 315 315 515 515 888 895 1 504 1 516 2 514 2 546
fe_sphere 384 384 762 762 1 152 1 152 1 681 1 683 2 434 2 465 3 528 3 522
cti 318 318 889 889 1 684 1 684 2 719 2 721 3 927 3 920 5 512 5 594
memplus 5 281 5 267 9 292 9 297 11 624 11 543 13 095 13 001 14 537 14 107 16 650 16 044
cs4 353 353 909 912 1 420 1 431 2 043 2 079 2 866 2 919 3 973 4 012
bcsstk30 6 251 6 251 16 189 16 186 34 071 34 146 69 337 69 288 112 159 113 321 170 321 170 591
bcsstk31 2 669 2 670 7 086 7 088 12 853 12 865 22 871 23 104 36 502 37 228 57 502 56 674
fe_pwt 340 340 700 700 1 405 1 405 2 743 2 745 5 399 5 423 7 985 8 119
bcsstk32 4 622 4 622 8 441 8 441 19 411 19 601 34 481 35 014 58 395 58 966 90 586 89 897
fe_body 262 262 588 588 1 013 1 014 1 684 1 697 2 696 2 787 4 512 4 642
t60k 65 65 195 195 443 445 788 796 1 299 1 329 2 021 2 089
wing 770 770 1 590 1 593 2 440 2 452 3 775 3 832 5 538 5 564 7 567 7 611
brack2 660 660 2 731 2 731 6 592 6 611 11 193 11 232 16 919 17 112 25 598 25 805
finan512 162 162 324 324 648 648 1 296 1 296 2 592 2 592 10 560 10 560
fe_tooth 3 773 3 773 6 688 6 714 11 154 11 185 17 070 17 215 24 733 24 933 34 320 34 433
fe_rotor 1 940 1 940 6 899 6 940 12 309 12 347 19 680 19 932 30 356 30 974 45 131 45 911
598a 2 336 2 336 7 728 7 735 15 414 15 483 25 450 25 533 38 476 38 550 56 377 56 179
fe_ocean 311 311 1 686 1 686 3 893 3 902 7 385 7 412 12 211 12 362 19 400 19 727
144 6 357 6 359 15 004 14 982 25 030 24 767 37 419 37 122 55 460 55 984 77 430 78 069
wave 8 524 8 533 16 558 16 533 28 489 28 492 42 084 42 134 60 537 61 280 83 413 84 236
m14b 3 802 3 802 12 945 12 945 25 154 25 143 41 465 41 536 65 237 65 077 96 257 96 559
auto 9 450 9 450 25 271 25 301 44 206 44 346 74 636 74 561 119 294 119 111 169 835 171 329

Table 10: Computing partitions from scratch ε = 5%. In each k-column the results computed by KaFFPaE are on the left and the current Walshaw cuts are
presented on the right side.
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