
ar
X

iv
:1

01
0.

10
86

v1
  [

m
at

h.
P

R
]  

6 
O

ct
 2

01
0

Stochastic Flips on Two-letter Words

Olivier Bodini1, Thomas Fernique2, and Damien Regnault2

1 LIP6, CNRS & Univ. Paris 6,
4 place Jussieu 75005 Paris - France,

olivier.bodini@lip6.fr
2 LIF, CNRS & Univ. de Provence

39 rue Joliot-Curie 13453 Marseille – France
{thomas.fernique,damien.regnault}@lif.univ-mrs.fr

Abstract. This paper introduces a simple Markov process inspired by
the problem of quasicrystal growth. It acts over two-letter words by ran-
domly performing flips, a local transformation which exchanges two con-
secutive different letters. More precisely, only the flips which do not in-
crease the number of pairs of consecutive identical letters are allowed.
Fixed-points of such a process thus perfectly alternate different letters.
We show that the expected number of flips to converge towards a fixed-
point is bounded by O(n3) in the worst-case and by O(n5/2 lnn) in the
average-case, where n denotes the length of the initial word.

Introduction

Tilings are often used as a toy model for quasicrystals, with minimal energy
tilings being characterized by local properties called matching rules. In this con-
text, a challenging problem is to provide a theory for quasicrystals growth. One
of the proposed theories relies on a relaxation process ([4] p. 356): a tiling with
many mismatches is progressively corrected by local transformations called flips.
Ideally, the tiling eventually satisfies all the matching rules and thus shows a qua-
sicrystalline structure. It is compatible with experiments, where quasicrystals are
obtained from a hot melt by a slow cooling during which flips really occur. It
is however unclear whether only flips can explain successful coolings or if other
mechanisms should also be taken into account. This question is deeply related
with the convergence rate of such a flip-correcting process.

A relaxation process which aims to be physically realist is described in [1].
It considers general cut and project tilings of any dimension and codimension,
and performs each flip which modifies by ∆E the energy of the tiling with a
probability depending not only on ∆E but also on a temperature parameter T
such that the stationary distribution (at fixed T ) is the Boltzmann distribution.
In this paper, we focus on a very rough version of this general process. First,
we consider only tilings of dimension and codimension one, which correspond to
two-letter words. Second, the flips with a corresponding ∆E being above a fixed
threshold are equiprobably performed, while the other flips are simply forbidden.

http://arxiv.org/abs/1010.1086v1
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The paper is organized as follows. In Sec. 1, we clearly and formally state
the definition of the stochastic process we consider, as well as the main question
we are interested in, that is its convergence time. In Sec. 2, we state and prove
the main result of this paper, which shows that the expected number of flips
performed by the process to converge is cubic in the length of the initial word
(Theorem 1). The proof mainly relies on a well-chosen function, called variant,
whose expected value strictly decreases. This result is then extended in Sec. 3 to
the case where the initial words are randomly chosen according to some partic-
ular distribution which aims to be physically realist (Theorem 2). We conclude
the paper by a short section discussing perspectives.

1 Settings

A configuration of length n is a word w = w1 . . . wn over {1, 2} with |w|1 = |w|2,
i.e., with as many occurrences of the letter 1 as of the letter 2. Such an object
is also sometimes called a grand Dyck path, or a bridge. We denote by Wn the
set of configurations of length n.

It is convenient to represent a configuration w as the broken line of the Eu-
clidean plane linking the points (k, |w1 · · ·wk|1−|w1 · · ·wk|2)k=0...,|w| (see Fig. 1).

Fig. 1. The configuration 11211121222112212222211222112111211212.

A flip at position 1 ≤ i < n on a configuration w ∈ Wn is the local transfor-
mation which exchanges wi and wi+1, provided that these letters are different.
The height of such a flip is the integer |w1 · · ·wi−1|1 − |w1 · · ·wi−1|2. Geome-
trically, performing a flip on a configuration corresponds to move upwards or
downwards by 2 a point of the broken line which represents the configuration.

Flip thus acts over configurations, and it is not hard to check that any two
configurations with the same length are connected by a sequence of flips.

A configuration w is said to have a mismatch at position i if wi = wi+1. For
example, the configuration on Fig. 1 has 18 mismatches, while configurations on
Fig. 2 both have 4 mismatches. The total number of mismatches of w is denoted
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Fig. 2. A flip of height 2 performed at position 5 (leftwards). On the representation,
the height and the position of a flip are the abscissa and the ordinate of the center
between the two positions of the moved vertex (that is, the middle of the arrow).

by E(w). One easily checks that it ranges from 0 for configurations (12)n and
(21)n to 2(n − 1) for configurations 1n2n and 2n1n. Physically, E(w) can be
though as the energy of the configuration w, with the configurations (12)n and
(21)n thus being ground states.

We now define a Markov chain on Wn that we call cooling process. It starts
from w0 ∈ Wn and produces a sequence (wt)t=1,2,... defined by:

wt+1 =

{
wt if E(wt) = 0,
w′ otherwise,

where w′ is obtained by performing on wt a flip uniformly chosen among the
flips which do not increase the number of mismatches3. Note that a flip modifies
the number of mismatches by at most 2. Flips which decrease the number of
mismatches are said to be irreversible (they cannot be performed back) while
the ones which do not modify the number of mismatches are said to be reversible.

Fig. 3. Flips can increase the number of mismatches (red arrows), let it unchanged (blue
arrows) or decrease it (green arrows). The two last are respectively called reversible
and irreversible flips: they are the only ones performed during the cooling process.

Since the number E(wt) of mismatches is non-increasing, it is natural to ask
whether it reaches zero or not, and at which rate. We therefore introduce the
convergence time of this process, which is the random variable T counting the

3 In other words, the ∆E threshold discussed into the introduction is equal to zero.
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number of steps required to transform the initial configuration w0 into one of
the two stable configurations without any mismatch, that is

T := min{t ≥ 0 | E(wt) = 0}.

Then, the worst expected convergence time is defined by

T̂ (n) := max
w∈Wn

E(T |w0 = w).

We are not only interested in the worst case, but also in the average case. Given
a distribution µ over Wn, we define the µ-averaged expected convergence time by

Tµ(n) :=
∑

w∈Wn

µ(w)E(T |w0 = w).

2 Bounding the worst expected convergence time

In this section, we prove the main result of this paper:

Theorem 1. The worst expected convergence time is cubic:

T̂ (n) = O(n3).

We will rely on the following proposition (proven, e.g., in [2]) which bounds
from above the expected convergence time of so-called variants :

Proposition 1. Consider a Markov chain (xt)t≥0 over a space Ω and a positive

real map φ : Ω → [a, b], called variant. Assume that there is ε > 0 such that

whenever φ(xt) > a, E[φ(xt+1)−φ(xt)|xt] ≤ −ε. Then, the expected value of the

random variable T := min{t|φ(xt) = a} satisfies

E(T ) ≤ E(φ(x0))

ε
.

Variants are thus sort of “strict” supermartingales, and we need to define a
suitable one in order to bound the expected convergence time towards mismatch-
free configurations. Since the number E of mismatches is non-increasing by def-
inition of the cooling process, we are naturally tempted to use it as a variant.
However, there are configurations having only reversible flips, whose expected
variation of mismatches is thus equal to zero (as, for example, w = 1211212212).
In order to refine, we introduce the notion of Dyck factors (see Fig. 4):

Definition 1. Consider a configuration w = p· v· s. The factor v = v1 · · · vk is

said to be a positive Dyck factor of length k and height |p|1 − |p|2 if:

|v|1 = |v|2, ∀i ∈ {1, . . . , k}, |v1 · · · vi|1 ≥ |v1 · · · vi|2, |p|1 − |p|2 ≥ 0.

Exchanging letters 1 and 2 in the above conditions defines a negative Dyck factor.
A Dyck factor is maximal if no Dyck factor with the same height contains it.
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Fig. 4. A positive maximal Dyck factor of height 2 and length 6 (in blue), and a
negative maximal Dyck factor of height −1 and length 12 (in red).

Let us stress that Dyck factors are either positive or negative, i.e., their
representations do not cross the y = 0 axis. In particular, any configuration can
be decomposed in its maximal Dyck factors of height zero, with signs alternating.

We use Dyck factors to define our variant, which depends on a parameter α:

Definition 2. For α ∈ (0, 1), let φα be defined on a configuration w by:

φα(w) =
∑

v∈DF(w)

(1 + |v|1)α,

where DF(w) denotes the set of maximal Dyck factors of w.

Contrary to the number E of mismatches, φα can be increased by some flips.
However, the concavity of x → xα, which gives to small Dyck factors a weight
proportionally bigger than the weight given to long Dyck factors, will ensure
that the average variation over all the flips of a configuration is always negative.
More precisely:

Lemma 1. Let w ∈ W2n. If E(wt) > 0, then the variant φα satisfies

E(φα(wt+1)− φα(wt)|wt) ≤ −α(1− α)

2
nα−2.

Proof. Consider a configuration w = w1 · · ·w2n, with E(w) > 0. This ensures
that at least one flip (reversible or irreversible) can be performed on w.

Let us first assume that only reversible flips can be performed on w, that is,
neither 1122 nor 2211 are factors of w. This is equivalent to say that maximal
Dyck factors contain at least four letters. We will group these reversible flips by
pairs and prove that the average variation of φα over each pair is bounded from

above by α(1−α)
2 nα−2.

Each flip of positive height which transforms 21 into 12 (it increases φα) is
between two positive flips which transform 12 into 21 (they decrease φα). Re-
versibility ensures that one of these two flips has the same high as the central
flip, while the other one is higher; we group the central flip and its higher neigh-
bor. We proceed symetrically for flips of negative height. Fig. 5 illustrates this.
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Fig. 5. Each flip which increases φα (red arrows) can be paired (light green boxes)
with a flip which decreases φα (blue arrows), such that the average variation of φα over
the two flips is negative. Isolated flips can only decrease φα.

Consider two paired reversible flips, say of positive height (the negative height
case is symmetric). Performing the lowest flip increases by 1 the number p of 1’s
in the maximal positive Dyck factor of w starting at the first letter between the
pair of flips, while performing the highest flip decreases by 1 the number q of 1’s
in some other maximal positive Dyck factor of w; one moreover has p ≥ q since
the latter Dyck factor is higher than the former one (see Fig. 6).

q

p

q−1

p+1
p

q

Fig. 6. Consider two paired flips (central configuration): the maximal Dyck factor
extended by the flip increasing φα (red arrow, performed leftwards) is greater than the
one shortened by the flip decreasing φα (blue arrow, performed rightwards), i.e., p ≥ q.

Thus, the average variation of φα is

∆ :=
1

2
((p+ 2)α − (p+ 1)α + qα − (q + 1)α) .

Since x → xα is concave for α ∈ (0, 1), p ≥ q yields

∆ ≤ ∆′ :=
1

2
((p+ 2)α − (p+ 1)α + pα − (p+ 1)α) .

For k ≥ 1, let uk = α(α−1)...(α−k+1)
k! . Note that u2k < 0. One computes:

2∆′

(p+ 1)α
=

(
1 +

1

p+ 1

)α

+

(
1− 1

p+ 1

)α

− 2

= 1 +
∑

k≥1

uk

(p+ 1)k
+ 1 +

∑

k≥1

(−1)k
uk

(p+ 1)k
− 2

=
∑

k≥1

2
u2k

(p+ 1)2k
≤ 2

u2

(p+ 1)2
=

α(α− 1)

(p+ 1)2
.
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With p < n, this yields the claimed bound for the pair:

∆ ≤ ∆′ ≤ (p+ 1)α

2
× α(α − 1)

(p+ 1)2
= −α(1 − α)

2
(p+ 1)α−1 ≤ −α(1− α)

2
nα−2.

Last, note that there are some flips which have not been paired, namely the ones
which are immediatly after or before a crossing of the y = 0 axis. They however
do not cause trouble, because each of them decreases a maximal Dyck factor of
length at most n, hence decreases φα by at least

(n− 1)α − nα ≤ −αnα−1 ≤ −α(1 − α)

2
nα−2.

Let us now consider the general case, i.e., when there are also irreversible flips.
We will show that an irreversible flip increases φα lesser than (resp. decreases φα

more than) two reversible flips do. Hence, the average variation of φα can only
be smaller than in the previous case (which is already negative). Intuitively, it
is as if each irreversible flip is splitted into two reversible flips before performing
the above pairing process.
Let us be more precise. Consider, first, the case of a positive flip which transforms
21 into 12. It replaces two maximal Dyck factors, say with respectively p and q
letters 1, by one with p+ q + 1 letters 1 (see Fig. 7). Thus, on the one hand:

∆ = (p+ q + 2)α − (p+ 1)α − (q + 1)α.

On the other hand, the variation that would result of two reversible flips is:

∆′ = (p+ 2)α − (p+ 1)α + (q + 2)α − (q + 1)α.

One thus has ∆ ≤ ∆′, since for 0 < α < 1:

(p+ 2)α + (q + 2)α ≥ ((p+ 2) + (q + 2))α = (p+ q + 4)α ≥ (p+ q + 2)α.

qp

p+q+1

Fig. 7. An irreversible flip which replaces two maximal Dyck factors with respectively
p and q letters 1 by a single maximal Dyck factor with p+ q + 1 letters 1.

We then consider the case of a positive irreversible flip which transforms 12
into 21. This just removes a maximal Dyck factor with one letter 1 (see Fig. 8).
Thus, on the one hand:

∆ = −2α.
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Fig. 8. An irreversible flip which removes a maximal Dyck factor with one letter 1.

On the other hand, each of the two neighbor flips of this flip (one on the left,
the other on the right, both transforming 21 into 12) either decreases the variant
if it is negative, or increases it by:

∆′ = (p+ 2)α − (p+ 1)α ≤ 3α − 2α.

The average variation of φα is thus bounded from above by:

2∆′ +∆

3
≤ 2(3α − 2α)− 2α

3
.

A computation shows that, for n ≥ 2, this quantity is lesser than −α(1−α)
2 nα−2

for any α ∈ (0, 1), with equality for α = 1. The case of a negative irreversible
flip is symmetric. This concludes the proof. ⊓⊔

This lemma thus provides a suitable ε (depending on α and n) for Prop. 1. Let
us now bound φα and show that it is minimal for mismatch-free configurations:

Lemma 2. For any configuration w ∈ W2n, one has

(1 + n)α ≤ φα(w) ≤ (2n)α+1,

with the lower bound beeing reached if and only if E(w) = 0.

Proof. Let us first focus on the upper bound. We prove by induction on |v| that,
for any positive configuration v,

φα(v) ≤ (1 + |v|1)α+1.

The inequality is satisfied for n = 2 since one has φα(12) = 2α. Let us now
consider a configuration v of length n, and assume that the result holds for any
shorter positive configuration. Let u1, . . . , up be the maximal (positive) Dyck
factors of v of height 1. One thus has

φα(v) = (1 + |v|1)α +

p∑

i=1

φα(ui) ≤ (1 + |v|1)α +

p∑

i=1

(1 + |ui|1)α+1.

We then use the convexity of x → xα+1 and compute

φα(v) ≤ (1 + |v|1)α +

(
p∑

i=1

1 + |ui|1
)α+1

= (1+ |v|1)α + |v|α+1
1 ≤ (1 + |v|1)α+1.
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The claimed result follows by induction. It also holds for negative configurations.
Let us now consider the case of a general configuration w. Let v1, . . . , vq be
its maximal Dyck factors of height 0. Since they are alternatively positive and
negative configurations, one relies one the previous result to compute

φα(w) =

q∑

i=1

φα(vi) ≤
q∑

i=1

(1 + |vi|1)α+1 ≤
(

q∑

i=1

1 + |vi|1
)α+1

= (q + |w|1)α+1.

Since q ≤ |w|2, this yields φα(w) ≤ |w|α+1 = (2n)α+1, hence the upper bound.

Let us now focus on the lower bound. Let w be a configuration and v1, . . . , vq
be its maximal Dyck factors of height 0. By relying on the concavity of x → xα,
one computes

φα(w) =

q∑

i=1

φα(vi) =

q∑

i=1

(1 + |v|1)α ≥
(

q∑

i=1

1 + |v|1
)α

= (q + |w|1)α.

Since |w|1 = n and q ≥ 1, this proves the claimed lower bound. Moreover, if this
bound is reached, then q = 1, that is, w is either positive or negative. In both
cases, w has a maximal Dyck factor with n letters 1, which has weight (1+n)α.
This ensures that there is no other maximal Dyck factors. Hence, w is one of the
configuration (12)n or (21)n, which are exactly the mismatch-free ones and are
both mapped onto (1 + n)α by φα. This proves the claimed result. ⊓⊔

This bound is optimal up to a factor 2α+1 since one computes φα(1
n2n) = nα+1.

Th. 1 then follows from Prop. 1 with ε = α(1−α)
2 nα−2 and f0 = φα(w0) ≤ nα+1:

E(T̂ (n)) ≤ nα+1 × 2n2−α

α(1 − α)
=

2

α(1 − α)
n3.

Here, the best value for α is 1
2 . Other values are useful only in the next section.

3 Bounding the weighted expected convergence time

Given a distribution µ over Wn, one deduces from Prop. 1 a bound on the

µ-weighted expected convergence time, with ε = α(1−α)
2 nα−2 (Lem. 1):

Tµ(n) ≤
1

ε

∑

w∈Wn

µ(w)φα(w).

Thus, to bound Tµ(n), we just need to compute the µ-weighted value of φα. It
is however generally easier to compute the µ-weighted value of the volume. The
volume V (w) of a configuration w is the area between its representation and the
horizontal axis (for example, Fig. 2, both configurations have volume 15). One
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can then deduce bound on the µ-weighted value of φα from the simple following
inequality, which holds for any α ∈ (0, 1) and for any configuration w:

φα(w) ≤ V (w).

For the uniform distribution υ over Wn, the υ-weighted value of the volume

is known to be equivalent to
√
2π
8 n

√
n (see, e.g., [3], p. 533). This allows to prove:

Theorem 2. The uniformly-weighted expected convergence time Tυ satisfies

Tυ(n) = O(n5/2 lnn).

Proof. For any α ∈ (0, 1), one has

Tυ(n) ≤
2n2−α

α(1 − α)
×
∑

w∈Wn

υ(w)V (w) =

√
2π

4α(1 − α)
n7/2−α.

One checks that this upper bound, seen as a function of α, is minimal in 1− 1
lnn .

For such an α, one has n7/2−α = n1/ lnnn5/2 = en5/2. This yields

Tυ(n) ≤
√
2π

4(1− 1
lnn )

1
lnn

en5/2 =

√
2πe

4(1− 1
lnn )

n5/2 lnn = O(n5/2 lnn).

This shows the claimed result. ⊓⊔

However, recall from the introduction that the context of this problem is
the cooling of a quasicrystal from melt at very high temperature. In particu-
lar, the natural distributions over initial configurations should be the one of the
melt. In the melt, the very high temperature imposes a very low threshold for
∆E, so that all the flips are equiproblable, with no flip being any more forbidden.

Hence, we define the natural distribution ν over Wn as the stationary dis-
tribution of the process which, at each step, performs uniformly at random one
of the possible flips, without any restriction (contrarily to the cooling process
described in Sec. 1). It is a classical result of random walks on graph that this
stationary distribution gives to each configuration a weight proportional to the
number of flips which can be performed onto. In particular, the configurations
of maximal weight are (12)n and (21)n, i.e., the stable configurations of the
cooling process, while the configurations of minimal weight are 1n2n and 2n1n,
i.e., the worst configurations of the cooling process. One can thus hope that the
naturally-weighted expected convergence time Tν is lower than the uniformly-
weighted one. But we only get a similar bound, because the naturally-weighted
value of the volume has the same growth order as its uniformly-weighted value:

Proposition 2. The naturally-weighted value of the volume satisfies

∑

w∈Wn

ν(w)V (w) ∼
√
2π

8
n
√
n.
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Proof. We first introduce a combinatorial enumerative series f describing only
the positive configurations. Let an,p,q denotes the number of positive configura-
tions of size 2n, volume q and onto which p flips can be performed. We set:

f(z, u, v) =
∑

(n,p,q)∈N3

an,p,qz
nupvq.

Let us find a functional equation for f . Each positive configuration w can be
written w = 1u2v, where both u and v are positive configurations, possibly
empty. The volume satisfies V (w) = V (u) + |u| + 1 + V (v). The number F of
flips satisfies either F (w) = F (u) if |v| = 0, or F (w) = F (u)+1+F (v) otherwise.
This leads, using symbolic methods described in [3], to the functional equation

f(z, u, v) = (zuv + zvf(zv, u, v))(1 + uf(z, u, v)). (1)

We now introduce a similar combinatorial enumerative series g describing all the
configurations. Each configuration w can be written w = v1 · · · vp, where the vi’s
are alternating positive or negative configurations, hence described by f . Once
again, symbolic methods described in [3] thus lead to the functional equation

g(z, u, v) =
2z(vf(zv, u, v) + uv)

1− (zuv + zu2v + zvf(zv, u, v) + zuv)
. (2)

The naturally-weighted value of the volume can then be derived from g as follows:

∑

w∈W2n

ν(w)V (w) =
[zn] ∂2

∂v∂ug (z, u, v) |u=1,v=1

[zn] ∂
∂ug (z, u, v) |u=1,v=1

,

where [zn]h denotes the coefficient of zn in the series h. Let us compute this.

We first consider the denominator. The differentiation of (2) with respect to
u yields for ∂g

∂u (z, u, v) a huge formula where appear f(zv, u, v) and ∂
∂uf(zv, u, v).

On the one hand, f(z, 1, 1) is simply the usual series describing Dyck paths:

f(z, 1, 1) =
1−

√
1− 4z

2z
.

On the other hand, the differentiation of (1) with respect to u yields

∂f

∂u
(z, u, v) =

(
zv + vz

∂f

∂u
(zv, u, v)

)
(1 + uf(z, u, v))

+ (zuv + zvf(zv, u, v))

(
f(z, u, v) + u

∂f

∂u
(z, u, v)

)
.

Since f(z, 1, 1) is known, this allows to compute

∂f

∂u
(z, u, v)|u=1,v=1 =

∂f

∂u
(zv, u, v)|u=1,v=1 =

1−
√
1− 4z − 2z

2z
√
1− 4z

.
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Working this out in the equation for ∂g
∂u (z, u, v), one gets

D(z) :=
∂g

∂u
(z, u, v)|u=1,v=1 =

2z

(1 − 4z)3/2
.

For the numerator, a similar but even more tedious computation yields

N(z) :=
∂2g

∂u∂v
(z, u, v)|u=1,v=1 =

16z3 + 4z2 + 2z

(1− 4z)3
.

Both D(z) and N(z) are ∆-analytic at z = 1
4 . In this point, one computes

D(z) ∼ 1

2(1− 4z)3/2
and N(z) ∼ 1

(1− 4z)3
.

Asymptotics of the coefficient of zn in the series expansions of D and N can
then be deduced from the following result (see e.g.[3], Chap. VI), which holds
for α /∈ {−1,−2, . . .} and ρ ∈ C:

[zn]

(
1− z

ρ

)−α

∼ 1

Γ (α)
ρ−nnα−1.

Indeed, with ρ equals to 1
4 and α respectively equals to 3

2 and 3, this yields:

[zn]D(z) ∼ 1

2Γ (3/2)
4n

√
n and [zn]N(z) ∼ 1

Γ (3)
4nn2.

One thus finally computes

∑

w∈W2n

ν(w)V (w) =
[zn]N(z)

[zn]D(z)
∼ 2Γ (3/2)

Γ (3)
n
√
n =

√
π

2
n
√
n.

The claimed result follows by replacing 2n by n (the sum is taken over Wn) ⊓⊔

4 Perspectives

Th. 1 and 2 provide upper bounds on the expected convergence time of the cool-
ing process, respectively in the worst case and in the average case (uniform and
natural distributions). Experiments suggest, especially in the worst case, that
these bounds are tight (see Fig. 9 and 10). This remains to be rigorously proven.

Moreover, this paper focuses only on the expectation of the convergence time,
as the physically most significant moment. It would be worth to consider also
higher moments, in order to obtain the limit distribution of the convergence time.

Last but not least, two-letter words correspond to tilings of dimension one
and codimension one. But the physically interesting cases have dimension two or
three and codimension at least two. For example, the celebrated Penrose tiling

has dimension two and codimension three. The analysis of these cases seems
harder but rewarding: experiments show much faster convergence rates (see [1]).
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Fig. 9. The blue points represent the average over 10 simulations of the worst conver-
gence time (on the x-axis, the length n of configurations). The pink curve 0.17n3 fits
remarkably well with experimental values. The standard deviation of the worst conver-
gence time is experimentally very small, so that only 10 simulations already provide a
good approximation of its expectation.
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Fig. 10. The blue points represent the average over 1000 simulations of the uniformly-
weighted convergence time (on the x-axis, the length n of configurations). The pink
curve 0.24n5/2 lnn fits rather well with experimental values. The standard deviation
of the uniformly-weighted convergence time is experimentally much greater than for
the worst convergence time (indeed, each simulation starts from a configuration cho-
sen uniformly at random), so that the number of simulations needed to get a good
approximation is much greater too.
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