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Abstract
Over the last 30 years the development of RNA secondary structure predic-

tion algorithms have been guided and inspired by corresponding combinatorial studies

where the RNA molecules are modeled as certain kind of planar graphs. The other way

round, new algorithmic ideas gave rise to interesting combinatorial problems asking for

a deeper understanding of the structures processed. One such example is the notion

order of a secondary structure as introduced by Waterman (as a parameter on graphs)

in 1978, which reflects a structure’s overall complexity: Regarding so-called hairpin-

loops as the building blocks of a secondary structure, the order provides information on

the (balanced) nesting-depth of hairpin-loops and thus on the overall complexity of the

structure. In related prediction algorithms, one first searches for order 1 structures,

increasing the allowed order step by step and thus considering an improved structural

complexity in every iteration.

Subsequently, Zucker et al. and Clote introduced a more realistic combinatorial model

for RNA secondary structures, the so-called saturated secondary structures. Compared

to the traditional model of Waterman, unpaired nucleotides (vertices) which are in fa-

vorable position for a pairing do not exist, i.e. no base pair (edge) can be added without

violating at least one restriction for the graphs. That way, one major shortcoming of

the traditional model has been cleared. However, the resulting model gets much more

challenging from a mathematical point of view. As a consequence, so far only little is

known about the combinatorics of RNA saturated structures.

In this paper we show how it is possible to attack saturated structures and especially

how to analyze their order. This is of special interest since in the past it has been

proven to be one of the most demanding parameters to address (for the traditional

model it has been an open problem for more than 20 years to find asymptotic results

for the number of structures of given order and similar). We show the expected order

of RNA saturated secondary structures of size n is log4 n
(

1 +O
(

log
2
n

n

))

, if we select

the saturated secondary structure uniformly at random. Furthermore, the order of

saturated secondary structures is sharply concentrated around its mean. As a conse-

quence saturated structures and structures in the traditional model behave the same

with respect to the expected order. Thus we may conclude that the traditional model

has already drawn the right picture and conclusions inferred from it with respect to

the order (the overall shape) of a structure remain valid even if enforcing saturation

(at least in expectation).
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1. Introduction

The building blocks of RNA are four different nucleotides {a, c, g, u} = Σ
which are linked to each other in a linear fashion. Accordingly, the so-called
primary structure of RNA, i.e. the linear sequence of building blocks, is modeled
as string over Σ. In addition, non-neighboring nucleotides have a second means
of binding by which certain combinations of nucleotides (a−u, c− g and g−u)
may form pairs, i.e. stick to each other. This gives rise to a 3D folding of the
molecule which in many cases determines its biological function. Each such
pair reduces the so-called free energy of the molecule and the conformation of
minimal free energy is adopted in nature. Today, lab techniques to determine
the primary structure of RNA are cheap and efficient while determining the 3D
structure still is a time-consuming and expensive task. Accordingly one aims for
algorithms to predict the structure from the sequence. However, even if building
on rather simple models for the free energy, its minimization becomes an NP -
complete problem when allowing arbitrary foldings [10]. As a consequence, the
set of considered structures is constrained and so-called secondary structures
are considered as the first step towards understanding RNA biological function.
There, only non-crossing pairings of nucleotides are allowed such that – ignoring
types of nucleotides – the molecule can be represented as a planar graph [16]
(see Figure 1.1) or alternatively by strings over {., (, )} where a . represents
an unpaired nucleotide and a pair of corresponding brackets represents two
paired nucleotides (the left structure of Figure 1.1 is in correspondence with
((..(((......))).)) ). Even if computing a structure of minimum free energy (mfe)
becomes efficient for secondary structures (algorithms with cubic time-bounds
are well-known), the empiric thermodynamic data used are incomplete and
erroneous such that suboptimal solutions need to be taken into consideration
[11]. Computing the suboptimal structures is not difficult, however, the number
of potentially interesting suboptimal conformation grows exponentially with the
length of the nucleotide sequence. As one possible solution, Zucker and Sankoff
suggested to restrict secondary structure folding to structures whose stacking
regions (runs of consecutive brackets) extend maximally in both directions.
This led to the definition of saturated structures for which no base pair can be
added without violating the restrictions for secondary structures, see Figure 1.1.
Extending the runs of consecutive brackets clears one mayor shortcoming of
the traditional model, i.e. of secondary structures, which compared to native
molecules tends to have ways too short stacking regions. Furthermore, in light
of the asymptotic number of saturated structures determined by Clote et al.

[4], the run time of RNA prediction algorithm should be substantially reduced
if the search for suboptimal foldings is limited to saturated structures only, as
observed by Bompfünewerer et al. for so-called canonical structures [1].

Clote initiated the combinatorial study of saturated structures [3] which gets
much more challenging than that for secondary structures from a mathematical
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Figure 1.1. Secondary structure (left) and its saturated counterpart
(right) where three additional links have been added (highlighted in
red). The primary structure is given by the chain of vertices along the
solid, pairs of nucleotides are represented by dotted edges. Note that
3 and 4 cannot be paired since both are neighbored with respect to
primary structure.

point of view. He estimated the number of saturated structures by applying
implicit function theory to the functional equations of its generating function
S(z) [4], i.e.,

−S(z)3z4 − S(z)2z2(−2 + z2) + S(z)(−1 + z2) + z(1 + z) = 0,

whereas the functional equation for secondary structures is relatively simple
and given by

T (z) = z + zT (z) + z2T (z) + z2T (z)2,

for T (z) the generating function of secondary structures. Of course we observe
variations of local parameters of the structures like the length and number
of stacking regions or the length and number of loops (runs of symbols .).
However, it is not at all obvious whether saturation has an effect on the overall
shape of the structures. One parameter which allows to measure their overall
shape is the so-called order, originally introduced by Waterman in 1978 for
algorithmic purposes. A secondary structure s (saturated or not, represented
in dot-bracket form) has order p if we need exactly p iterations of deleting
all maximal substrings (k)k within φ(s) in parallel to find the empty string
ε. Here φ is the homomorphism implied by φ(() = (, φ()) =) and φ(.) = ε.
Accordingly, the order provides information on the (balanced) nesting-depth
of so-called hairpin-loops (substring with φ-image (n)n which e.g. holds for the
structures depicted in Figure 1.1) and thus on the overall complexity of the
structure (it was used by algorithms to increasingly consider more and more
complex foldings starting with a search space restricted to structures of order
1).

In this paper we show one way to approach the combinatorics of saturated
structures and especially how to analyze their order. This – besides the moti-
vating remarks from above – is of special interest since in the past it has been
proven to be one of the most demanding parameters to address (for secondary
structures it has been an open problem for more than 20 years to find asymp-
totic results for the number of structures of given order and similar). For that
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purpose we discuss the generating function of saturated structures having order
≥ p, denoted by Sp(z), from which we extract the information of the expected
order of a saturated structure of given size. We find that in expectation the or-
der behaves the same for secondary and saturated structures such that we may
conclude that the traditional model (secondary structures) has already drawn
the right picture and conclusions inferred from it with respect to the order (the
overall shape) of a structure remain valid even if enforcing saturation (at least
in expectation).

The paper is organized as follows. We first present our main results. Af-
terwards we describe a streamlined analysis with details delayed till the last
sections (or the appendix).

2. Main Results

Let S(n) be the number of saturated RNA secondary structures of size n
and Sp(n) be the number of saturated RNA secondary structures of size n and
having order ≥ p, then we set ξn to be the random variable having probability
distribution

P(ξn = p) =
Sp(n)− Sp+1(n)

S(n)
,

namely we select each saturated structure uniformly at random among the
family of saturated RNA secondary structures of size n. Our main results are
summarized as

Theorem 2.1. The expected order of a saturated RNA secondary structure of

size n is

Eξn = log4 n ·
(

1 +O

(

log2 n

n

))

.

Theorem 2.1 indicates that although the saturation of secondary structures
increases the expected number of paired bases (and therefore increases the num-
ber of hairpin-loops possible) and scales down the search space, the complexity
of the folding algorithm for saturated structures as given by the order stays
almost the same. We may conclude that the traditional secondary structure
model has already drawn the right picture and conclusions inferred from it
with respect to the order of a structure (its overall shape) remain valid even if
enforcing saturation (at least in expectation).

Theorem 2.2 below proves ξn is highly concentrated around the expected
order Eξn.

Theorem 2.2. Assume we choose 0 ≤ x ≤ (12 − β) log4 n for arbitrary β > 0,
then we have

P(|ξn − Eξn| ≥ x) = O(2−x).

3. Road Map of the Proof

In this section, we shall address the mayor steps and difficulties of analyzing
the expected order of saturated structures by tools from analytic combinatorics
[5, 6]. We start by deriving the key recursions for saturated structures of order
p.
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Let S(z) (resp. S) be the generating function (resp. the family) of saturated
RNA structures and R(z) (resp. R) be the generating function (resp. the fam-
ily) of saturated structures having the first and the last position paired, i.e.,
R = (S) where the parenthesis represents the paired bases and R(z) = z2S(z).
Furthermore, let Sp(z) and Rp(z) represent the corresponding generating func-
tion assuming order ≥ p, p ≥ 1. By decomposing the saturated structure into
independent R-type structures, we obtain the functional equation for S(z)

(3.1) S(z) =
∞
∑

i=0

(

1 + (i+ 1)(z + z2)
)

R(z)i−1 =
z2S(z)

1− z2S(z)
+

z + z2

(1− z2S(z))2
.

Now, taking the order into account (omitting variable z for the ease of notation),
we find the following recurrences for Sp and Rp+1, p ≥ 1,

Sp =
∑

i≥1

(1 + (i+ 1)(z + z2))(Ri − (R−Rp)
i)

=
Rp[1 + 2z2 + 2z − 2R − 2Rz − 2Rz2 +R2 + (1 + z + z2 −R)Rp]

(R− 1)2(R−Rp − 1)2
,(3.2)

Rp+1 = R− z2

[

∞
∑

i=1

(1 + (i+ 1)(z + z2))
(

(R−Rp)
i + (Rp −Rp+1)i

×(R−Rp)
i−1
)

+ z + z2
]

(3.3)

=
(−R− z2)R3

p + (−3R+ 3R2 + 3Rz2 − z2)R2
p

−R3
p + (3R − 3)R2

p + (6R− 3− 3R2 + z2)Rp + (R− 1)PR

,(3.4)

where P = R3 + (z2 − 2)R2 + (1 − z2)R − z3 − z4 and PR = ∂P/∂R = 3R2 +
2(z2 − 2)R+ (1− z2) and the initial conditions are R1 = R and S0 = S.

Unlike for secondary structures3, due to the non-local dependencies imposed
for saturation neither the appropriate symbolic substitution nor the closed form
solution of recurrence (3.2) could possibly exist, for which we have to decode the
information of expected order from the recurrence itself other than attempting
to solve it. Therefore, the proof for the expected order of saturated structures
consists of locating the dominant singularities of Sp(z) for p ≥ 0, verifying
the analytic continuation of Sp(z) for some ∆-domain, which guarantees the
validness of integration along Hankel contour, see Figure 3.1, and finding the
singular expansion of Sp(z) within the intersection of ∆-domain and a small
neighborhood of the dominant singularity. Finally we apply a transfer theorem
on the singular expansions of Sp(z) and S(z) to extract the n-th coefficient of
∑

p≥1 Sp(z) and S(z), and conclude the expected order Eξn via

Eξn =
[zn]

∑

p≥1 Sp(z)

[zn]S(z)
.

3For secondary structures the expected order has been analyzed by making use of well-
known closed form representations of multivariate generating function for binary trees having
Horton-Strahler number p. By the use of appropriate symbolic substitutions for the different
variables the binary trees with Horton-Strahler number p were expanded into the secondary
structures of order p and a closed form for the corresponding generating function followed [12].
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The results on the deviation to the expected order follows similarly.
Before we proceed, we present the Transfer Theorem by Flajolet and Odlyzko
[6]. The central point of this theorem is to use of Cauchy’s formula by inte-
grating along the Hankel contour depicted in Figure 3.1, which is guaranteed
by the analytic continuation within a ∆-domain. We set

∆z0(M,φ) = {z | |z| < M, z 6= z0, | arg(z − z0)| > φ}
where M > z0 and 0 < φ < π

2 . Let Uz0(r, φ) be the intersection of ∆z0(M,φ)
and the neighborhood of z0, i.e.,

Uz0(r, φ) = {z | 0 < |z − z0| < r, | arg(z − z0)| > φ},
then we have:

Theorem 3.1. (Transfer Theorem)[6] Assume that f(z) is analytic within

∆1(M,φ), and for z ∈ U1(r, φ), f(z) satisfies

f(z) = O

(√
1− z · log2

(

1

1− z

))

.

Then we have [zn]f(z) = O(n−
3
2 · log2 n).

Theorem 3.1 assumes the dominant singularity is z = 1. However, the case
of a dominant singularity at z = z0 6= 1, can always be boiled down to the case
where z = 1 is the dominant singularity according to

[zn]f(z) = zn0 · [zn]f
(

z

z0

)

.

In what follows we detail the steps that are needed for the singularity analysis

1
2

3

4

x

y

z=1

Figure 3.1. ∆1-domain (yellow) and Hankel contour (green):
Transfer theorem applies Cauchy’s formula by integrating along the
Hankel contour, colored in green. The inner incomplete circle 3, to-
gether with two rectilinear lines 2 and 4 mainly contribute to the
integral. Here we assume the dominant singularity is at z = 1.

of
∑

p≥1 Sp(z).

Step 1: Locate dominant singularities: We first observe that the domi-
nant singularity of S(z) is unique since [zn]S(z) 6= 0 holds for arbitrary n and
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therefore S(z) is aperiodic [6]. Assume z0 is the unique dominant singularity of
S(z), then z0 is also the unique dominant singularity of Sp(z) for p ≥ 0. Indeed,
consider the field extension of the rational function field Q(z) induced by alge-
braic functions Sp(z), we can inductively prove that [Q(Sp(z)) : Q(z)] = 3 based
on its tower relation [Q(Sp(z)) : Q(z)] = [Q(Sp(z)) : Q(Sp−1(z))][Q(Sp−1(z)) :
Q(z)] = [Q(Sp−1(z)) : Q(z)]. In other words, Sp(z) is an algebraic function of
degree 3 over the field Q(z). Let S≤p(z) be the generating function of saturated
structures having order ≤ p, similarly we can prove S≤p(z) is rational and in
view of Sp(z) = S(z) − S≤p−1(z), we can claim that Sp(z) (p ≥ 0) have the
same unique dominant singularity as S(z). Otherwise, suppose z = γ < z0 is
the dominant singularity of Sp(z) and therefore Sp(γ) < Sp(z0) < S(z0) < ∞,
which contradicts to the fact that Sp(γ) = S(γ)−S≤p−1(γ) = ∞ since S≤p−1(z)
is a rational function and z = γ must be one of the poles of S≤p−1(z). Further-
more, z = z0 is the unique dominant singularity of Sp(z) since [zn]Sp(z) 6= 0
and Sp(z) is aperiodic.

Lemma 3.1. Let z0 be the unique dominant singularity of Sp(z) (p ≥ 0), then
z0 ≈ 0.424687.

We apply the implicit function theorem on eq. (3.1) to extract the unique
dominant singularity of S(z), which is also the unique dominant singularity of
Sp(z).

Step 2: Establish the analytic continuation in some ∆z0-domain: Since
Sp(z) is an algebraic function of degree 3 over the rational function field Q(z),
Sp(z) must be D-finite, which allows for analytic continuation in any ∆z0-
domain containing zero [14].

Step 3: Singular expansion: We shall show the singular expansion of Sp(z)
within Uz0(ǫ, φ) for sufficiently small ǫ > 0 and 0 < φ < π

2 . Our strategy is to
transform the fractional form of the recursion for Rp(z) (eq. (3.4)) into “linear”
form, based on the contributions of individual terms to the behavior of Rp(z)
for different p.

Case 1: p ≤ pM = max
{

p : |PR(R− 1)| ≤
∣

∣

a2
4 ·Rp

∣

∣

}

for a2 = −3R + 3R2 +

3Rz2 − z2.

Lemma 3.2. Assume that z ∈ Uz0(ǫ, φ) and a2 = −3R+3R2+3Rz2−z2, then

Sp+1(z) = sp(z0) 2
−p − 1

z20
· PR(R − 1)

2a2

+O

(

p

2p

∣

∣

∣

∣

PR(R − 1)

a2

∣

∣

∣

∣

)

+O

(

2p
∣

∣

∣

∣

PR(R− 1)

a2

∣

∣

∣

∣

2
)

.

holds for p ≤ pM and sp(z0) = s+O(2−p) where s > 0 is constant.

Case 2: p > pM . We continue analyzing the recurrence relations for Sp(z) and

Rp(z) for p > pM . Let A′
p = −R+z2

a2
· R3

p and B′
p = − 1

a2
R3

p +
3R−3
a2

R2
p −

3PRRp

a2
.

Note that A′
p → 0 and B′

p → 0 as p → ∞ and z ∈ Uz0(ǫ, φ). Then we simply
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have

Rp+1(z) =
R2

p +A′
p

PR(R−1)
a2

+ 2Rp +B′
p

.(3.5)

We observe that B′
p and A′

p converge to 0 faster than Rp as p → ∞, and it

only remains to determine the major contribution between Rp and PR(R−1)
a2

from the denominator to the behavior of Rp for different p. Here we all re-

duce the recursions to the function h(x, µ, ν) = x2+µ
1+2x+ν

, from which we can

prove h(x, µ, ν) = h(x, 0, 0) + O(max{|µ|, |ν|}) holds uniformly for x 6= 1
2 as

max{|µ|, |ν|} → 0. In order to asymptotically solve eq. (3.5), we need to avoid

Rp = 1
2
PR(R−1)

a2
, which may occur when p is sufficiently large. To this aim, we

select λ1 > 0 and λ2 > 0 such that for p ≤ pM + λ2,
∣

∣

∣

PR(R−1)
a2

∣

∣

∣
≤ |Rp| and for

p ≥ pM − λ1, |Rp| ≥ 8
∣

∣

∣

PR(R−1)
a2

∣

∣

∣
. Lemma 3.3 below shows the “continuity” of

the phase transition around p = pM .

Lemma 3.3. Assume z ∈ Uz0(ǫ, φ) and p0 = pM − λ1, then for arbitrary but

fixed δ ≤ λ2, we have uniformly for z and for 0 ≤ k ≤ λ1 + δ that,

Sp0+k =
1

z20

PR(R−1)
a2

(

PR(R−1)

a2
Rp0

+ 1

)2k

− 1

+O

(

∣

∣

∣

∣

PR(R− 1)

a2

∣

∣

∣

∣

2
)

,

where a2 = −3R + 3R2 + 3Rz2 − z2.

Lemma 3.4. Assume that z ∈ Uz0(ǫ, φ), there exists κ0 ≥ λ2 such that for

p > pM + κ0,

Sp+1(z) = O

(
∣

∣

∣

∣

PR(R− 1)

a2

∣

∣

∣

∣

exp(− ln 2 · 2p)
)

.

Step 5: Transfer to coefficients: It only remains to translate the singular
expansion of the function into an asymptotic estimate of its coefficients.

Theorem 3.2. The expected order of a saturated secondary structures of size

n is

Eξn = log4 n ·
(

1 +O

(

log2 n

n

))

.

Proof. We first analyze the expectation function F (z) =
∑

p≥1 Sp(z) for z ∈
Uz0(ǫ, φ). According to Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have for
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p ≥ 1,

∑

p≤pM

Sp+1(z) =
∑

p≤pM

sp(z0) 2
−p − pM

z20
· PR(R− 1)

2a2
+O

(
∣

∣

∣

∣

PR(R− 1)

a2

∣

∣

∣

∣

)

=
∑

p≥1

sp(z0) 2
−p − pM

z20
· PR(R− 1)

2a2
+O

(∣

∣

∣

∣

PR(R− 1)

a2

∣

∣

∣

∣

)

.

∑

p>pM

Sp+1(z) =
∑

pM<p≤pM+κ0

Sp+1(z) +
∑

p>pM+κ0

Sp+1(z)

= O

(∣

∣

∣

∣

PR(R− 1)

a2

∣

∣

∣

∣

)

+
∑

p>pM+κ0

O

(∣

∣

∣

∣

PR(R − 1)

a2

∣

∣

∣

∣

exp(− ln 2 · 2p)
)

= O

(
∣

∣

∣

∣

PR(R− 1)

a2

∣

∣

∣

∣

)

.

In combination of the cases p ≤ pM and p > pM , we obtain

F (z) =
∑

p≤pM

Sp+1(z) +
∑

p>pM

Sp+1(z) + S1(z)

=
∑

p≥0

Sp+1(z0) +

(

S(z)− 1

1− z
− S1(z0)

)

− pM
z20

· PR(R− 1)

2a2

+O

(∣

∣

∣

∣

PR(R− 1)

a2

∣

∣

∣

∣

)

.

Recall that pM is given by

pM = max
{

p : |PR(R− 1)| ≤
∣

∣

∣

a2
4

·Rp

∣

∣

∣

}

and we need to find an appropriate representation for it. For z ∈ Uz0(ǫ, φ),

pM ≈ − log2

∣

∣

∣

PR(R−1)
a2

∣

∣

∣
. By setting F0 = F (z0) and S(z) = S(z0)− 1

z20

PR(R−1)
2a2

+

O(z − z0), we simplify F (z) into

F (z) = F0 −
1

z20

PR(R− 1)

2a2
− pM

z20

PR(R− 1)

2a2
+O

(√

1− z

z0

)

= F0 +
log2

∣

∣

∣

PR(R−1)
a2

∣

∣

∣

z20

PR(R − 1)

2a2
+O

(√

1− z

z0

)

= F0 +
1

z20

PR(R− 1)

2a2
log2

(

PR(R− 1)

a2

)

+O

(√

1− z

z0

)

= F0 −
√

Pz(z0)

2PRR(z0)z30

√

1− z

z0
log2

(

1

1− z
z0

)

+O

(√

1− z

z0

)

.
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According to Theorem 3.1 (Transfer Theorem), for n ≥ 1, the expected order
of a saturated secondary structure is thus given by

Eξn =
[zn]F (z)

[zn]S(z)
=

−n− 3
2

Γ(−1
2)

· log2 n · z−n
0 · z20

√

Pz(z0)

2PRR(z0)z30

√

2π PRR(z0)

z0 Pz(z0)
n

3
2 zn0

×
(

1 +O

(

log2 n

n

))

= log4 n ·
(

1 +O

(

log2 n

n

))

,

whence the proof is complete. �

Finally we discuss the large deviation of the random variable ξn.

Theorem 3.3. Assume we choose 0 ≤ x ≤ (12 − β) log4 n for arbitrary β > 0,
then we have

P(|ξn − E(ξn)| ≥ x) = O(2−x).

Proof. For p ≤ log4 n, Lemma 3.2 in combination with the Transfer Theorem
implies

P(ξn ≥ p) = 1 +O

(

2p√
n

)

+O
( p

2p

)

.

For p > log4 n, Lemma 3.3 indicates that

P(ξn ≥ p) = O

(

exp

(

−β′2p√
n

))

for β′ > 0.

Consequently the theorem follows. �
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