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1 Introduction

A hypergraph H = (V,E) is a finite set of vertices V together with a family E of
distinct, nonempty subsets of vertices called edges. In this paper we consider k-
uniform hypergraphs (called also k-graphs) in which, for a fixed k ≥ 2, each edge
is of size k. A matching in a hypergraph is a set (possibly empty) of disjoint edges.
We will often identify a matching M with the hypergraph H [M ] = (V (M),M)
induced by M in H , where V (M) =

⋃

e∈M e. We denote by ∆(H) the maximum
vertex degree degH(v), that is, the maximum number of edges of H containing a
vertex v. A hypergraph is called linear (a.k.a. simple) when no two edges share
more than one vertex, that is, the maximum pair degree is one.

The intersection graph of a hypergraph H is the graph L := L(H) with
vertex set V (L) = E(H) and edge set E(L) consisting of all intersecting pairs
of edges of H . When H is a graph, the intersection graph L(H) is called the
line graph of H . Every graph G is the intersection graph of some hypergraph, in
fact, of the dual hypergraph G∗ of G (obtained by interchanging the roles of the
vertices and edges of G, equivalently, by taking the transpose of the incidence
matrix of G).

In a seminal paper [14], Jerrum and Sinclair constructed an FPRAS (see
Section 1.4 for the definition) for counting the number of matchings in a graph
(the monomer-dimer problem) based on an ingenious technique of canonical
paths. The method was extended later in [15] to solve the permanent problem.

Here we modify their method to address the corresponding problem for k-
graphs, k ≥ 3. It turns out that for k-graphs H , one can adopt the proof of
the graph case, whenever for every two matchings M,M ′ in H the intersection
graph L = L(M ∪M ′) between M and M ′ satisfies ∆(L) ≤ 2. This happens if
and only if H contains no 3-comb, a k-graph consisting of a matching {e1, e2, e3}
and one extra edge e4 such that |e4 ∩ ei| ≥ 1 for i = 1, 2, 3. Let us denote by Hk

0

the family of all k-graphs which do not contain a 3-comb, cf. [18]. In Section 3
we give a couple of examples of classes of k-graphs which belong to Hk

0 .
By substantially modifying the canonical path method we are able to con-

struct an FRPAS for a broader class Hk
s , s ≥ 0, defined as follows. Call an edge

e ∈ H wide if it intersects a matching in H of size at least three (so, every 3-comb
contains a wide edge). The class Hk

s consists of all k-graphs containing at most
s wide edges. Our main result is the following hypergraph generalization of the
Jerrum-Sinclair theorem. In fact, they, as well as many other contributors to the
field, considered the edge weighted case (with intensity λ), while we, for clarity,
assume that the hypergraphs are unweighted (λ = 1). However, the weighted
case can be handled in a similar manner. Our proof method depends on an ap-
plication of the Euler tour technique for the canonical paths of the underlying
Markov chains.

Theorem 1. For every k ≥ 3 and s ≥ 0 there exists an FPRAS for the problem
of counting all matchings in a k-graph H ∈ Hk

s .

The proof of Theorem 1 is outlined in Section 2. We can characterize family
Hk

s in terms of the intersection graph L(H). A claw in a graph G is an induced
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subgraph of G isomorphic to the star K1,3. The vertex of degree three in a claw
will be called the center of that claw. A k-graph H ∈ Hk

s if and only if the
intersection graph L(H) of H contains at most s centers of claws. In particular,
H ∈ Hk

0 if and only if L(H) is claw-free. Every 2-graph, i.e., every graph, is
in H2

0. For k ≥ 3, the requirement that H ∈ Hk
s is more restrictive and causes

the hypergraph to be rather sparse (of size O(nk−1)). Nevertheless, as can be
seen in the next subsection, the problem of (exactly) counting matchings in
k-graphs belonging to Hk

0 remains computationally hard.

1.1 Approximation Hardness

In this section we demonstrate that the problem of counting matchings in k-
graphs belonging to the family Hk

0 is still #P-complete, as well as that it is
NP-hard to approximate the number of matchings already for 2-regular, linear
6-graphs if no restriction on the number of 3-combs is imposed.

Proposition 2 The problem of counting matchings in a k-graph H ∈ Hk
0 is

#P-complete for every k ≥ 3.

Proof. We use a reduction from the problem of counting all matchings in bipar-
tite graphs G = (V,E) of maximum degree at most four, which, by a result of
Vadhan [22] is #P-complete. For a given bipartite graph G = (V,E) of maxi-
mum degree at most four with a bipartition V = V1 ∪V2 we construct a k-graph
H = (V ′, E′) from the family Hk

0 as follows. For every edge e ∈ E we add to V
additional k − 2 vertices, so V ′ = V ∪

⋃

e∈E{v
e
1, v

e
2, . . . , v

e
k−2}. Now, every edge

e = (u, v) ∈ E is replaced by the corresponding k-tuple (v, ve1, v
e
2, . . . , v

e
k−2, u).

Thus |V ′| = |V |+(k− 2)|E|, |E| = |E′| and the resulting k-graph H ′ = (V ′, E′)
is linear, k-partite, has maximum vertex degree at most four and, more im-
portantly, does not contain a 3-comb. Moreover, there is a natural one-to-one
correspondence between the matchings in G and the matchings in H. ⊓⊔

Proposition 3 For every k ≥ 6, unless NP=RP there is no FPRAS for the
number of matchings in a 2-regular, linear k-graph.

Proof. We use a reduction from the problem of approximating the number of
independent sets in a k-regular graph, k ≥ 6, for which it has been recently
proved (see [20],[10], and [21]) that, unless NP=RP, there is no FPRAS. Any
k-regular graph G is the intersection graph of the dual hypergraphH = G∗, with
vertex set V (H) = E(G) and the edges ev ∈ H being the sets of edges incident
to the same vertex v ∈ V (G). Thus, the number of independent sets in G equals
the number of matchings in H . Moreover, observe that by construction, H is
k-uniform, 2-regular, and linear. ⊓⊔

The meaning of Proposition 3 is that for k ≥ 6 there is no hope for an
FPRAS for the number of matchings even if the degrees and co-degrees of H are
as small as they can get (1-regular k-graphs are matchings themselves and the
problems become trivial). Instead one has to impose some additional structural
restrictions. Inspired by the canonical method of Jerrum and Sinclair, we came
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up with the restriction on the number of 3-combs. In turn, Proposition 2 tells
us that even the assumption of no 3-combs at all preserves the computational
hardness, as the problem of exact counting of matchings remains #P-complete
in a quite narrow subclass of Hk

0 .

1.2 Motivation from Statistical Physics

In 1972 Heilmann and Lieb [12] studied monomer-dimer systems, which in the
graph theoretic language correspond to (weighted) matchings in graphs. In physi-
cal applications these graphs are typically some (infinite) regular lattices. Dimers
represent diatomic molecules which occupy disjoint pairs of adjacent vertices of
the lattice and monomers are the remaining vertices. Heilmann and Lieb proved
that the associated Gibbs measure is unique (in other words, there is no phase
transition). They did it by proving that the roots of the generating matching
polynomial of any graph are all real, equivalently that the roots of the hard
core partition function (independence polynomial) of any line graph are all real.
The latter result was later extended to all claw-free graphs by Chudnovsky and
Seymour [7]. The uniqueness of Gibbs measure on d-dimensional lattices was
reproved in a slightly stronger form and by a completely different method by
van den Berg [23].

Hypergraphs may be at hand when instead of diatomic molecules bigger
molecules (polymers) are considered which, again, can occupy “adjacent”, dis-
joint sets of vertices of a lattice. As long as the hypergraph lattice H belongs to
the family Hk

0 , the intersection graph L(H) is claw-free (because H contains no
3-comb) and, by the result of [7] combined with the proof from [12] there is no
phase transition either. However, it is possible to have a phase transition for a
monomer-trimer system (cf. [11]). Interestingly, the example given by Heilmann
(the decorated, or subdivided, square lattice with hyperedges corresponding to
the collinear triples with midpoints at the branching points of the original square
lattice) is a 3-uniform hypergraph containing 3-combs, and thus its intersection
graph is not claw-free.

1.3 Related Results

Recently, an alternative approach to constructing counting schemes for graphs
has been developed based on the concept of spatial correlation decay. This re-
sulted in deterministic fully polynomial time approximation schemes (FPTAS)
for counting independent sets in graphs with maximum degree at most five ([24]),
counting matchings in graphs of bounded degree ([2]), and, very recently, count-
ing independent sets in claw-free graphs of bounded degree ([9]). It is not clear
to what extent these methods can be applied to hypergraphs.

The above mentioned result of Weitz [24] has been recently complemented
by the hardness result for graphs with maximum degree at most six, used in
the proof of Proposition 3 above. It yields an FPTAS for counting matchings
in hypergraphs whose intersection graphs have degree at most five. This is the
case of the Heilmann lattice described in the previous subsection (the maximum
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degree of its intersection graph is three), which, by the way, undermines our
temptation to link the absence of phase transition for a hypergraph lattice with
the absence of a 3-comb, that is with the claw-freeness of the intersection graph of
the lattice. In turn, an FPTAS for counting independent sets in claw-free graphs
of bounded degree implies and FPTAS for counting matchings in hypergraphs

H ∈ H
(k)
0 with bounded degree.

As far as hypergraphs are concerned, the authors of [3] showed that, under
certain conditions, the Glauber dynamics for independent sets in a hypergraph,
as well as the Glauber dynamics for proper colorings of a hypergraph mix rapidly.
It is doubtful, however, if the path coupling technique applied there can be of any
use for the problem of counting matchings in hypergraphs. Nevertheless, paper
[3] marks a new line of research, as there have been only few results ([5], [6]) on
approximate counting in hypergraphs before. The only other paper devoted to
counting matchings in hypergraphs we are aware of is [1], where Barvinok and
Samorodnitsky compute the partition function for matchings in hypergraphs
under some restrictions on the weights of edges. In particular they are able to
distinguish in polynomial time between hypergraphs that have sufficiently many
perfect matchings from hypergraphs that do not have nearly perfect matchings.

1.4 Approximate Counting and Uniform Sampling

Given ǫ > 0 and δ > 0, we say that a random variable Y is an (ǫ, δ)-approximation
of a constant C if P (|Y − C| ≥ ǫC) ≤ δ. Let f be a function over a set of input
strings Σ∗.

Definition 4 A randomized algorithm is called a fully polynomial randomized
approximation scheme (FPRAS) for f if for every triple (ǫ, δ, x) with ǫ > 0, δ >
0, and x ∈ Σ∗, the algorithm returns an (ǫ, δ)-approximation Y of f(x) and runs
in time polynomial in 1/ǫ, log(1/δ), and |x|.

Consider a counting problem, that is, a problem of computing f(x) = |Ω(x)|,
where Ω(x) is a well defined finite set associated with x (think of the set of all
matchings in a hypergraph). As it turns out (see below), to construct an FPRAS
for such a problem it is sufficient to be able to efficiently sample an element of
Ω(x) almost uniformly at random. To make it precise, given ǫ > 0, we say that a
probability distribution P : 2Ω → [0, 1] over a finite sample space Ω is ǫ-uniform

if for every S ⊆ Ω,
∣

∣

∣P(S)−
|S|
|Ω|

∣

∣

∣
≤ ǫ, that is, if the total variation distance,

dTV (P,
1

|Ω|), between the two distributions is bounded by ǫ.

Definition 5 A randomized algorithm is called a fully polynomial almost uni-
form sampler (FPAUS) for a counting problem |Ω(x)| if for every pair (ǫ, x)
with ǫ > 0 and x ∈ Σ∗, the algorithm samples ω ∈ Ω according to an ǫ-uniform
distribution P and runs in time polynomial in 1/ǫ and |x|.

It has been proved by Jerrum, Valiant, and Vazirani [16] that for a broad
class of counting problems, called self-reducible, including the matching problem,
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knowing an FPAUS allows one to construct an FPRAS. For a proof in the graph
case see Proposition 3.4 in [13]. The hypergraph case follows mutatis mutandis.
Thus, the proof of Theorem 1 reduces to constructing an FPAUS for matchings
in H .

In fact, this approach has been used for perfect matchings in dense graphs
already by Broder in [4], and later successfully executed by Jerrum and Sinclair
in [14] by different means. In their version the main steps of finding an efficient
FPAUS for matchings in a graph H were

• a construction of an ergodic time-reversible, symmetric Markov chainMC(H)
whose state space Ω consists of all matchings in H ;

• a proof that MC(H) is rapidly mixing.

1.5 Rapid Mixing

Given an arbitrary probability distribution P0 on the state space Ω, let us define
the mixing time tmix(ǫ) of a Markov chain MC as

tmix(ǫ) = min{t : dTV (Pt,
1

|Ω|) ≤ ǫ},

where Pt is the chain’s state distribution after t steps, beginning from the initial
distribution P0. Recall that if an ergodic time-reversible Markov chain is sym-
metric, i.e., the transition probabilities satisfy pij = pji for all i, j ∈ Ω, then its
unique stationary distribution is uniform (cf. [13]). In that case we define the
transition graph GMC = G of MC as a graph on the vertex set V (G) = Ω and
the edge set E(G) = {{i, j} : pij > 0}. Note that G is undirected but, possibly,
with loops. The pivotal role in estimating the rate of convergence of MC to its
uniform stationary distribution is played by an expansion parameter, called the
conductance and denoted Φ(MC) which in the symmetric case is defined by a
simplified formula

Φ := Φ(MC) = minS

∑

{pij : ij ∈ G, i ∈ S, j ∈ Ω \ S}

|S|
, (1)

where here (and below) the minimum is taken over all S ⊆ Ω with 0 < |S| ≤
1
2 |Ω|. Indeed, it follows from Theorem 2.2 in [14] that if pii ≥

1
2 for all i ∈ Ω

then
dTV (Pt,

1
|Ω|) ≤ |Ω|2

(

1− Φ2/2
)t
, (2)

regardless of the initial distribution P0, and consequently,

tmix(ǫ) ≤
2

Φ2

(

2 log |Ω|+ log ǫ−1
)

. (3)

Hence, it becomes crucial to estimate the conductance from below by the recip-
rocal of a polynomial in the input size. To this end, observe that

Φ(MC) ≥ minS
pmin|cut(S)|

|S|
, (4)
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where cut(S) is the edge-cut of G defined by S, and

pmin = min{pij : {i, j} ∈ G, i 6= j}.

For Markov chains on matchings of an n-vertex k-graph H , denoted further
by MC(H), to bound |cut(S)|, Jerrum and Sinclair introduced their method of
canonical paths which boils down to:

• defining a canonical path in G for every pair of matchings (I, F ) in H ;
• bounding from above the number of canonical paths containing a prescribed
transition (an edge of G) by poly(n)|Ω|.

Since every canonical path between a matching in S and a matching in the
complement of S must go through an edge of cut(S), we have, for |S| ≤ 1

2 |Ω|,

|cut(S)| ≥
|S|(|Ω| − |S|)

poly(n)|Ω|
≥

|S|

2poly(n)
(5)

and, by (4),

Φ(MC(H)) ≥
pmin

poly(n)
. (6)

2 The Proof of Theorem 1

In this section we first outline a proof of Theorem 1 in its special case s = 0.
This proof is similar to the proof from [14]. After that we discuss how this proof
can be modified in order to yield the full generality of our main result. (The
details are deferred to the full version of the paper.)

We begin by defining a Metropolis Markov chain whose states are the match-
ings of a k-graph H and then show that the chain is rapidly mixing to a uniform
stationary distribution, yielding an FPAUS.

2.1 The Markov Chain

Given a k-graph H = (V,E), |V | = n, let Ω(H) denote the set of all matchings
in H. We define a Markov chain MC(H) = (Xt)

∞
t=0 with state space Ω(H) as

follows. Set X0 = ∅ and for t ≥ 0, let Xt be a matching M = {h1, h2, . . . , hs} in
H , 0 ≤ s ≤ n/k. Choose an edge h ∈ H uniformly at random and consider the
set Ih := {i : h ∩ hi 6= ∅, i = 1, . . . , s} of the edges of M intersected by h. The
following transitions from Xt are allowed in MC(H):

(-) if h ∈ M then M ′ := M − h,
(+) if h /∈ M and |Ih| = 0 then M ′ := M + h,

(+/-) if h /∈ M and Ih = {j} then M ′ := M + h− hj ,
(0) if h /∈ M and |Ih| ≥ 2 then M ′ := M .

Finally, with probability 1/2 set Xt+1 := M ′, else Xt+1 := Xt.
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Fact 6 The Markov chain MC(H) is ergodic and symmetric.

The above fact implies that MC(H) converges to a stationary distribution that
is uniform over Ω(H). Moreover,

pmin = min{PM,M ′ : {M,M ′} ∈ G, M 6= M ′} =
1

2|H |
≥ n−k. (7)

2.2 Canonical Paths

In this section we define canonical paths, a tool used for estimating the mixing
time of the Markov chain MC(H) introduced in the previous subsection.

For us, a path is a k-graph with edge set {e1, . . . , em}, m ≥ 1, where for every
1 ≤ i < j ≤ m, ei ∩ ej 6= ∅ if and only if j = i + 1. If m ≥ 3 and, in addition,
e1 ∩ em 6= ∅, then such a k-graph will be called a cycle. (Note that a pair of
edges sharing at least two vertices is a path, not a cycle.)

Set V (H) = {1, 2, . . . , n} and minS = min{i : i ∈ S} for any S ⊆ V (H).
Let (I, F ) be an ordered pair of matchings in Ω(H) (we might think of them as
the initial and the final matching of the canonical path-to-be). The symmetric
difference I ⊕F is a hypergraph with ∆(I ⊕F ) ≤ 2 and, due to the assumption
that H ∈ Hk

0 , also∆(L(I⊕F )) ≤ 2, that is, in I⊕F every edge intersects at most
two other edges. Hence, each component of I ⊕ F is a path or a cycle, in which
the edges of I alternate with the edges of F . In particular, each cycle-component
has an even number of edges.

Let us order the components Q1, . . . , Qq of I ⊕F so that minV (Q1) < · · · <
minV (Qq). We construct the canonical path γ(I, F ) = (M0, . . . ,Mt) in the
transition graph G by setting M0 = I and then modifying the current matching
by transitions (+), (-), or (+/-), while traversing the components Q1, . . . , Qq as
follows. For the sake of uniqueness of the canonical path, each component will
be traversed from a well defined starting point (an edge e1) and in a well defined
direction e1, e2, . . . es. Of, course, for a path there are just two starting points
(which determine directions), while for a cycle there are s starting points and
two directions from each. The particular rules for choosing the starting point
and direction are quite arbitrary and do not really matter for us. Suppose that
we have already constructed matchings M0,M1, . . . ,Mj and traversed so far the
components Q1, . . . , Qr−1.

If Qr is an even path then we assume that e1 ∈ F (and so es ∈ I) and take
Mj+1 = Mj+e1−e2,Mj+2 = Mj+1+e3−e4,...,Mj+s/2 = Mj+s/2−1+es−1−es. If
Qr is an odd path then we assume that min(e1∩e2) < min(es−1∩es). If e1, es ∈ I
then take Mj+1 = Mj − e1, Mj+2 = Mj+1 + e2 − e3, Mj+3 = Mj+2 + e4 − e5,
..., Mj+(s+1)/2 = Mj+(s−1)/2 + es−1 − es. If e1, es ∈ F , we apply the sequence
of transitions Mj+1 = Mj + e1 − e2, Mj+2 = Mj+1 + e3 − e4,...,Mj+(s−1)/2 =
Mj+(s−3)/2 + es−2 − es−1, and Mj+(s+1)/2 = Mj+(s−1)/2 + es. Finally, if Qr =
(e1, . . . , es) is a cycle then we assume that min e1 = min(V (Qr) ∩ V (I)) and
min(e2 ∩ e3) > min(es−1 ∩ es), and follow the sequence of transitions Mj+1 =
Mj−e1,Mj+2 = Mj+1+e2−e3,Mj+3 = Mj+2+e4−e5, ...,Mj+s/2 = Mj+s/2−1+
es−2 − es−1, and Mj+s/2+1 = Mj+s/2 + es.
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We call the component Qr of I ⊕ F the venue of the transition (Mj ,Mj+1)
(on the canonical path γ(I, F )) if Mj ⊕Mj+1 ⊆ E(Qr). Note that the obtained
sequence γ(I, F ) = (M0, . . . ,Mt) is unique and satisfies the following properties:

(a) M0 = I and Mt = F ,
(b) for every j = 0, . . . , t − 1, the pair {Mj,Mj+1} is an edge of the transition

graph G,
(c) for every j = 0, . . . , t, we have I ∩ F ⊆ Mj ⊆ I ∪ F ,

(d) for every j = 0, . . . , t, we have F ∩
⋃r−1

i=1 Qi ⊆ Mj and I ∩
⋃q

i=r+1 Qi ⊆ Mj ,
where Qr is the venue of (Mj ,Mj+1).

2.3 Bounding the Cuts

Fix a transition edge (M,M ′) in G. Let ΠM,M ′ = {(I, F ) : (M,M ′) ∈ γ(I, F )}
be the set of canonical paths passing through the transition edge (M,M ′). Our
goal is to show that

|ΠM,M ′ | ≤ |Ω0(H)|, (8)

where Ω0(H) = {H ′ ⊆ H : ∃e ∈ H ′ such that H ′ − e ∈ Ω(H)}. Note that
|Ω0(H)| ≤ |{(M, e) : M ∈ Ω(H), e ∈ H}| ≤ nk|Ω(H)| and log |Ω(H)| =
O(n log n). Thus, in view of the remarks at the end of Section 1, the estimates
(3), (5), (6), (7), and (8) yield a polynomial bound on tmix(ǫ) and thus complete
the proof of Theorem 1 for s = 0.

We will prove (8) by defining a function ηM,M ′ : ΠM,M ′ → Ω0(H) and
showing that ηM,M ′ is an injection. Fix (I, F ) ∈ ΠM,M ′ and define

ηM,M ′(I, F ) = (I ⊕ F )⊕ (M ∪M ′). (9)

Fact 7 For all I, F ∈ ΠM,M ′ we have ηM,M ′(I, F ) ∈ Ω0(H).

Fact 8 The mapping ηM,M ′ : ΠM,M ′ → Ω0(H) is injective.

2.4 The General Case

When 3-combs, or wide edges to that matter, are possible, the structure of
a union of two matchings I and F can be much more complex, as L(I ⊕ F )
may have vertices of degrees up to k. Nevertheless we are still able to apply a
modification of the canonical path method. For the same Markov chain MC(H)
as before, let us redefine the canonical path γ(I, F ) as follows. We again order
the components of I ⊕ F and focus on a single component Qr. Now, we define
a skeleton graph Sr by replacing each edge of Qr with a (graph) cycle Ck. Note
that every vertex of Sr has degree two or four and therefore, by Euler’s theorem,
there is an Eulerian tour Er in Sr. We construct the canonical path γ(I, F ) in
the transition graph G tracing the tours Er, r = 1, . . . , q.

First, for every r we select a start vertex v0 in Er, which is determined by
the smallest indicator. Next, we choose a direction of each tour in the following
way.
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(i) If degEr

(v0) = 4 then there exist g ∈ I and f ∈ F such that v0 ∈ f ∩g. Then
the first edge of Er is (v0, w), where w is the smaller of the two neighbors of
v0 on Sr which are in g .

(ii) If degEr

(v0) = 2 and there exists g ∈ I such that v0 ∈ g, then we choose
(v0, w), as above.

(iii) If degEr

(v0) = 2 and there exists f ∈ F such that v0 ∈ f , then the first
edge of Er is (v0, w), where w is the smaller of the two neighbors of v0 on
Sr (which are in f).

The canonical path γ(I, F ) is now being constructed as we follow the edges
of the Eulerian tours E1, . . . , Eq from the starting points and in the directions
defined above. Let us fix Er = (e1, e2, . . . , es). Suppose that we have traversed
already l − 1 edges of Er and let Mj−1 be the current state on the transition
path γ(I, F ). We have two cases:

1) if el ⊆ g ∈ I then if g ∈ Mj−1 then Mj := Mj−1 − g, while if g /∈ Mj−1 then
do nothing;

2) if el ⊆ f ∈ F then, setting If = {h1, . . . , hm}, if f ∈ Mj−1 then do nothing,
while if f /∈ Mj−1 then Mj := Mj−1 − h1,Mj+1 := Mj − h2, . . . ,Mj+m−2 =
Mj+m−3 − hm−1,Mj+m−1 = Mj+m−2 + f − hm.

So far we have not used the assumption on the bounded number of wide
edges in H . But here it comes. In order to bound |ΠM,M ′ | ≤ poly(n)|Ω(H)| we
define, as before, the function ηM,M ′(I, F ). However, now ηM,M ′(I, F ) is farther
away from being a matching. Indeed, the presence of wide edges may lead to sit-
uations where, e.g., e1, e2, e3 ∈ I, e4 ∈ F , and e4∩ei 6= ∅, i = 1, 2, 3. Then, in the
process of creating the canonical path γ(I, F ), in order to put e4 on the current
matching Mj we would need first to delete e1 and e2, and at least one of them,
say e2, by a transition of type (-). As e2 might intersect two other (than e4)
edges of F , this may create a path of length three in the set ηM,M ′(I, F ). Fortu-
nately, this scenario can repeat at most s times and, consequently, ηM,M ′ (I, F )
belongs to the set Ωs(H) = {H ′ ⊆ H : ∃e0, e1 . . . , es ∈ H ′ such that H ′ −
{e0, e1, . . . , es} ∈ Ω(H)}. Finally, note that |Ωs(H)| ≤ |{(M, e0, e1, . . . , es) :
M ∈ Ω(H), e0, e1, . . . , es ∈ H}| ≤ n(s+1)k|Ω(H)|. Theorem 1 follows for any
fixed s ≥ 0.

3 Hypergraphs with no 3-Combs

In this section we give a couple of examples of classes of uniform hypergraphs
which belong to family Hk

0 . We concentrate on hypergraphs whose intersection
graphs have unbounded maximum degree, so that the result of [9] does not apply
to them.

3.1 Subdivided 3-graphs

The following operation generalizes the edge subdivision in graphs. For an arbi-
trary 3-graph H = (V,E) construct the subdivided 3-graph H ′ = (V ′, E′) in the
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following way. The vertex set is V ′ = V ∪VE , where VE = {ve : e ∈ E} is disjoint
from V . The edge set E′ is obtained by replacing each hyperedge e = {v1, v2, v3}
with all four triples of the form {vi, vj , ve}. It is easy to see that for every H the
hypergraph H ′ contains no 3-comb. Observe that |H ′| = Θ(|V ′|) and, depending
on the structure of H , we might also have ∆(L(H ′)) = Θ(|V |). Note that for
a linear H , every matching M = {{u1, v1}, . . . , {ut, vt}} in the shadow graph
Γ (H) of H (obtained by replacing each hyperedge with a graph triangle) deter-
mines uniquely a matching M ′ = {e1, . . . , et} in H ′, where ei is the unique edge
of H containing the pair {ui, vi}. Moreover, every matching of H ′ is determined
this way. Thus, for linear H , the problem of counting matchings in H ′ reduces
to counting matchings in graphs.

3.2 Rooted Blow-up Hypergraphs

Partition an N -vertex set V into n nonempty sets V1, . . . , Vn, and fix one vertex
vi ∈ Vi for each i = 1, . . . , n. Fix k ≥ 2 and for every pair 1 ≤ i < j ≤ n include to
the edge set E the family Eij of all k-element subsets of Vi∪Vj containing both,
vi and vj . Again, it is not hard to see that the obtained k-graph D = (V,E) has
no 3-combs. Note that when |Vi| = O(1) for all i, the hypergraph D has Θ(n2)
edges and ∆(L(D)) = Θ(n).

4 Further Research

It remains an open question how to extend our result to larger classes of hyper-
graphs. In particular, in view of Proposition 3, an intriguing open question is
about the existence of an FPRAS for all k-uniform hypergraphs, k = 3, 4, 5. The
success in the case of graphs (k = 2) relied mostly on the fact that every graph
is free of 3-combs and thus I ⊕F has a very simple structure. This is the case of
the hypergraphs in the family Hk

0 as well. By a more complex argument we were
able to prove the existence of an FPRAS for Hk

s , s ≥ 0. For general hypergraphs,
however, the unlimited presence of wide edges may cause the image of ηM,M ′ to
become much larger than poly(n)Ω(H), and thus condition (5) might fail.

Another direction of further research is to try to obtain an FPRAS for perfect
matchings in dense k-uniform hypergraphs, where the density is measured as,
e.g., in [17]. For k = 2 this was done in [14]. The corresponding decision problem
for this class of hypergraphs as well as the problem of constructing a perfect
matching was proven in [17] to be polynomial time solvable. The 3-combs are an
obstacle here too, but in addition, we are facing the problem of the necessity of
including into the state space of the Markov chain matchings much smaller than
the perfect ones (in [14] the state space consisted only of perfect and near-perfect
matchings, that is, matchings missing just two vertices).
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