
Algorithms and Complexity for Periodic Real-Time Scheduling

Vincenzo Bonifaci∗† Ho-Leung Chan‡ Alberto Marchetti-Spaccamela§ Nicole Megow∗

Abstract

We investigate the preemptive scheduling of periodic tasks

with hard deadlines. We show that, even in the uniprocessor

case, no polynomial time algorithm can test the feasibility of

a task system within a constant speedup bound, unless P =

NP. This result contrasts with recent results for sporadic

task systems. For two special cases, synchronous task

systems and systems with a constant number of different task

types, we provide the first polynomial time constant-speedup

feasibility tests for multiprocessor platforms. Furthermore,

we show that the problem of testing feasibility is coNP-

hard for synchronous multiprocessor task systems. The

complexity of some of these problems has been open for a

long time.

We also propose a profit maximization variant of the

feasibility problem, where every task has a non-negative

profit, and the goal is to find a subset of tasks that can

be scheduled feasibly with maximum profit. We give the

first constant-speed, constant-approximation algorithm for

the case of synchronous task systems, together with related

hardness results.

1 Introduction

We consider problems concerned with the feasibility
of scheduling a set of periodic tasks in a hard real-
time environment. A real-time task system consists of
a finite number of tasks, each of which generates an
infinite sequence of recurring jobs. There is given one
or multiple processors, each of which can process only
one job at the time. Now, each job must be executed by
the system, possibly with preemptions and migration,
before its deadline.

In a periodic task system I, a task i ∈ I is defined by
a quadruple (ri, ci, di, pi), where the offset (or starting
time) ri specifies the time instant at which the first
job of task i is released, the execution time (or size) ci

∗{bonifaci,nmegow}@mpi-inf.mpg.de. Max-Planck-Institut

für Informatik, Saarbrücken, Germany.
†Università dell’Aquila, Italy.
‡hlchan@cs.hku.hk. The University of Hong Kong, Hong

Kong.
§alberto@dis.uniroma1.it. Sapienza Università di Roma,

Italy. The work of A. Marchetti-Spaccamela was partially sup-

ported by the ICT Programme of the European Union under con-

tract ICT-2008-215270 (FRONTS).

defines the processing requirement for each job of task
i, the relative deadline di represents the time interval
between the release of a job and its hard deadline, and
the period pi specifies the temporal separation between
the release of two successive jobs of task i. Thus, the
k-th job of task i is released at time ri + (k − 1)pi
and has to be processed for ci time units before time
ri + (k − 1)pi + di.

In this paper, we restrict our attention to
constrained-deadline periodic task systems, in which the
quite common assumption is made that di ≤ pi, for
all i ∈ I. Moreover, we assume all input parameters
have integer value. In that case, we can restrict our-
selves without loss of generality to discrete schedules [5],
where job preemptions can occur only at integral times.
Preemptions and migrations are allowed at no cost.

A task system is said to be feasible if there exists
a schedule such that each job completes its execution
requirement before its deadline. The system is called A-
schedulable if algorithm A constructs a feasible schedule
for the task system. The feasibility problem is concerned
with deciding if a given task system is feasible.

A well-known necessary condition for feasibility of a
uniprocessor task system I is that U(I) :=

∑
i∈I ci/pi ≤

1. Quantity U(I) is called the utilization of the task
system and ci/pi is called the utilization of task i.
Unfortunately, the condition U(I) ≤ 1 is far from
being sufficient for feasibility. In fact, it is known
that deciding feasibility for a periodic task system on
one processor is strongly coNP-hard even when the
utilization is bounded above by any constant less than
1 [5, 18].

In the hope of overcoming hardness results, it is
meaningful to relax the accuracy requirements of the
feasibility problem slightly. Therefore, the concept of
approximate feasibility has been introduced [7], which
can be interpreted as a form of resource augmentation
[13, 24]. For a fixed speedup parameter σ ≥ 1, the
problem of deciding σ-approximate feasibility is as
follows.

1350 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

σ-Approximate Feasibility
Input: a periodic task system I and a positive integer
m.
Output: an answer YES or NO such that
• YES implies that system I is feasible on m speed-σ

processors, and
• NO implies that I is not feasible on m speed-1

processors.

We also consider the following natural optimization
variant of the feasibility problem, in which we ask for a
maximum weight subset of tasks that can be scheduled
feasibly.

Maximum Weight Feasible Subsystem (MaxFS)
Input: a periodic task system I, a positive integer m,
weights w : I → Q+.
Output: subset of tasks S ⊆ I such that S is feasible
on m speed-1 processors.
Objective: maximize

∑
i∈S wi.

Clearly, MaxFS is not easier than the feasibility
problem from the point of view of exact solutions. How-
ever, an approximate solution to the weight maximiza-
tion problem does not immediately yield a useful answer
to the feasibility problem, so the optimization problem
might be easier from the point of view of approxima-
tions.

As in the case of the feasibility problem, we analyze
MaxFS using resource augmentation. An algorithm
A is a σ-speed ρ-approximation algorithm for MaxFS
if, on any input, A returns a subset of tasks that is
feasible on m speed-σ processors and has total weight
at least 1/ρ times the weight of any subset of tasks that
is feasible on m speed-1 processors.

Previous work. For periodic task systems, most
of the existing results on feasibility testing concern the
uniprocessor case. In the uniprocessor setting, the well-
known Earliest Deadline First (EDF) algorithm, that
schedules jobs in order of their absolute deadline, is
optimal in the sense that any feasible system is EDF-
schedulable. In spite of that, the feasibility problem is
strongly coNP-hard: the reason here is that the first
failure of EDF might occur after an exponential amount
of time [5, 18].

In the special case of uniprocessor scheduling with
a constant number of task types, Baruah et al. [5]
show how to solve the feasibility problem in polynomial
time, by formulating it as an integer linear program of
constant dimension.

Another interesting special case is that of syn-
chronous task systems. In this case all tasks start gen-
erating jobs simultaneously, that is, ri = 0 for all i ∈ I.
In this setting, Albers and Slomka [1] provide a (1 + ε)-
approximate feasibility test for synchronous task sys-

tems on a single processor, for any ε > 0. A pseudopoly-
nomial time feasibility test is possible when U(I) ≤ µ
for some constant µ < 1 [5]. The complexity of the exact
– that is, 1-approximate – feasibility problem for syn-
chronous task systems has been open for a long time [5].

In the multiprocessor case, the feasibility problem
seems even harder. The best algorithm known uses ex-
ponential time and space [16]. Phillips et al. [24] proved
that EDF, when run on m processors of speed 2− 1/m,
can meet all deadlines of a system that is feasible on
m speed-1 processors; but, as before, this does not
yield an efficient test for feasibility or approximate fea-
sibility. However, recently some approximate feasibility
tests have been derived for sporadic task systems [4,6].
Sporadic tasks are defined similarly to periodic tasks,
except that no offsets are given and the period defines
the minimum (as opposed to exact) temporal separation
between the release of two successive jobs of one task.
Consequently, a sporadic task system implicitly defines
an infinite set of job sequences, and the system is called
feasible when all the job sequences compatible with its
parameters are schedulable.

The weight maximization problem is very natural
and relevant in various applications, which is also re-
flected by the attention that related scheduling prob-
lems received in the past, see e.g. [3, 11, 14, 15] and ref-
erences therein. The crucial difference between previous
considerations and our setting lies in the recurrence of
real-time tasks. We are not aware of any weight maxi-
mization results for periodic task systems.

Our contribution. We show that σ-
Approximate Feasibility is coNP-hard for periodic
task systems for any σ ≤ n1−ε, where n is the number
of tasks and ε is any positive real number, even on
a single processor. Assuming P6=NP, this rules out
any polynomial time algorithm for testing feasibility
with a constant speedup factor. This result is in
strong contrast to previous approximability results for
sporadic task systems [1, 4, 6].

To solve the complexity status of σ-Approximate
Feasibility, we reduce from a maximization variant
of the number theoretic Simultaneous Congruences
problem. This problem is interesting by itself and we are
not aware of any hardness of approximation result for it.
We prove that this problem is NP-hard to approximate
within a factor n1−ε, for any ε > 0, where n is the
number of congruences.

In the special case of synchronous systems we show
that 1-Approximate Feasibility for synchronous
multiprocessors task systems is coNP-hard. To this aim
we first define and study Least Common Multiple
Packing, a number theoretic problem that given a set
I of integers and two integers k and L requires to find

1351 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

a set S, S ⊆ I and |S| > k, such that the least common
multiple of integers in S is less than L. Independently
of this work, Eisenbrand and Rothvoss proved (in these
same proceedings) that even the uniprocessor case of
the problem is coNP-hard [9].

We complement our negative results for periodic
real-time systems with the first constant approximation
algorithms for two restricted models. We provide a
polynomial time (2−1/m)-approximate test for periodic
multiprocessor task systems with a constant number
of different task types. Similar to the uniprocessor
test by [5], we decide feasibility by solving integer
linear programs of constant dimension. We utilize
a necessary condition based on an estimate of the
total workload in any interval, that was introduced
recently for sporadic task systems [6]. For synchronous
periodic multiprocessor task systems, we give a (2 −
1/m+ ε)-approximate feasibility test that runs in time
polynomial in the input and 1/ε. To obtain the positive
result, we introduce a stronger version of the above
mentioned estimate of the total workload per interval.

We already mentioned that MaxFS is not easier
than the problem of deciding the feasibility of a task
system. We show that it is NP-hard to approximate
MaxFS to within n1−ε, even in the case of a unipro-
cessor and unit task weights. Moreover, we show that
MaxFS is NP-hard even in the strongly restricted set-
ting of synchronous arrivals with implicit deadlines (i.e.,
di = pi) and wi = ci/pi.

On the positive side, we give the first constant-
speed, constant-approximation algorithms. For syn-
chronous uniprocessor task systems, we give a 2-speed
(4 + ε)-approximate algorithm with running time poly-
nomial in the input and 1/ε. For the special case where
weight equals utilization, we give an improved algorithm
that is 4-speed 1-approximate.

Our results for the approximate feasibility problem
and the optimization problem are summarized in Ta-
bles 1 and 2, respectively.

2 The approximate feasibility problem

2.1 Arbitrary periodic task systems. In this sec-
tion we prove hardness of approximation for the fea-
sibility problem for periodic task systems. In ear-
lier complexity investigations showing that the problem
is coNP-hard, Leung and Merrill [18] reduce from the
Simultaneous Congruences Problem. This prob-
lem is known to be NP-complete, even in the strong
sense [5, 19]. We consider the following natural maxi-
mization variant of this decision problem.

Maximum Simultaneous Congruences (MaxSC)
Input: a1, . . . , an ∈ N, b1, . . . , bn ∈ N.

Output: S ⊆ {1, . . . , n} such that the set {t ∈ N : t ≡
ai (mod bi) for all i ∈ S} is nonempty.
Objective: Maximize |S|.

This problem can be seen as a Maximum Feasible
Subsystem type of problem [10], with univariate congru-
ences in place of multivariate linear equalities. We show
the following inapproximability result for MaxSC.

Theorem 2.1. For all ε > 0, it is NP-hard to approxi-
mate MaxSC within a factor n1−ε.

Proof. We give an approximation preserving reduction
from Maximum Independent Set, which is known to
be NP-hard to approximate within n1−ε [26]. Consider
a graph G(V,E) and let V = {1, 2, . . . , n}. We set ai = i
for i ∈ V . Moreover, to every edge e ∈ E we associate
a distinct prime number π(e) > n. This can be done in
polynomial time, for example it is known [23] that there
are at least n2 prime numbers in the range (n, 4n4]. We
finally define bi :=

∏
e∈δ(i) π(e).

Now if (i, j) /∈ E then gcd(bi, bj) = 1 and
then ai ≡ aj (mod gcd(bi, bj)). If (i, j) ∈ E
then gcd(bi, bj) = π((i, j)) > max(ai, aj) so that ai ≡/ aj
(mod gcd(bi, bj)). Thus, by the Generalized Chinese
Remainder Theorem, see e.g. [2], a set S of congruences
is satisfiable if and only if S is an independent set in G.
The theorem follows. �

Theorem 2.2. For any ε > 0 and 1 ≤ σ ≤ n1−ε, σ-
Approximate Feasibility is coNP-hard, even in the
single processor case.

Proof. We show that a polynomial time algorithm for σ-
Approximate Feasibility could be used to distin-
guish between systems that admit k simultaneously sat-
isfiable congruences, and systems for which no set of k/σ
simultaneously satisfiable congruences exists, which is
NP-hard by Theorem 2.1.

We associate a task to every congruence. For
each 1 ≤ i ≤ n, we set ri = k · ai, ci = σ, di = k,
pi = k · bi. We also add an extra task with rn+1 =
0, cn+1 = 1, and dn+1 = pn+1 = k. Without loss of
generality we assume that σ is an integer (otherwise we
round it up).

If k congruences are simultaneously satisfiable, then
there is a time t when k jobs are released simultaneously,
meaning that during the interval [t, t+k] at least σ ·k+
1 > σ · k units of work would have to be processed, and
thus, the task system is infeasible for a speed-σ machine.
Hence, the algorithm must output NO.

On the other hand, if there is no set of k/σ
simultaneously satisfiable congruences, then in every
interval [t, t + k], the total work to be processed is an
integer strictly less than σ · (k/σ) + 1, meaning that it

1352 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Uniprocessor Multiprocessor
σ Complexity σ Complexity

Arbitrary n1−ε coNP-hard ∗ n1−ε coNP-hard ∗
systems

Synchronous 1 + ε P [1] 2− 1/m+ ε P ∗
systems 1 coNP-hard ∗

Constant n. 1 P [5] 2− 1/m P ∗
of task types

Table 1: Results for σ-Approximate Feasibility. Results that are given in this paper are marked with ∗. Here
n is the number of tasks and ε is any positive real constant.

is at most k and so it can be processed by a unit speed
machine using (for example) EDF. Thus the algorithm
must output YES. �

2.2 Approximate feasibility tests for a constant
number of task types. We have seen that Theo-
rem 2.2 defeats the hope for any constant-approximate
polynomial time algorithm for deciding the feasibility of
an arbitrary periodic task system. However, for the spe-
cial case in which the system consists of a constant num-
ber of different task types, we derive a polynomial time
feasibility test that decides either that EDF provides a
feasible schedule on m processors of speed 2− 1/m, or,
that the system is infeasible on m speed-1 processors.
In this model, tasks belonging to the same task type
have identical parameters (offset, execution time, rela-
tive deadline and period).

In the context of sporadic task systems, Boni-
faci et al. [6] introduced a lower bound on the total
processing requirement of a task system in an interval,
which they called forward forced demand (ffd).

Definition 2.1. (Forward Forced Demand)
Let I be a task system and ∆ = [t1, t2] be an interval.
Let ki be the number of jobs of task i that are released
strictly before t1, and let k′i be the number of jobs of
task i that are released and due within the interval ∆.
Then

ffdI(∆) =
∑
i∈I

k′ici + (ci − (t1 − ri − (ki − 1)pi)+)+.

The following results show that the forward
forced demand approximately characterizes the EDF-
schedulability on multiple processors of a particular
speed. They were originally formulated for sporadic
task systems, but can be easily seen to apply to periodic
task systems as well.

Proposition 2.1. ([6]) If a periodic task system I is
feasible on m unit speed processors, then ffdI(∆) ≤
m ‖∆‖ for any interval ∆.

Theorem 2.3. ([6]) Let I be a periodic task system,
σ ≥ 1, and m ∈ N. If I is not EDF-schedulable on m
speed-σ processors, then there is an interval ∆ such
that ffdI(∆)/‖∆‖ > m(σ − 1) + 1.

With these prerequisites we can state our result.

Theorem 2.4. For periodic task systems with a fixed
number of distinct types of tasks on m processors, there
is a polynomial time algorithm solving σ-Approximate
Feasibility, for any σ ≥ 2− 1/m.

Proof. Given a periodic task system I, let n̄ denote
the number of distinct types of tasks, and let ni,
for i = 1, . . . , n̄, denote the number of tasks of the i-
th task type. We use lcm(p1, . . . , pn̄) to denote the
least common multiple of the periods. Assume there
is an interval ∆ := [t1, t2] such that ffd(∆) > m‖∆‖.
Without loss of generality we can assume that ri ≤ t1
for each task i ∈ I; if not, we can increase both t1 and t2
by some multiple of lcm(p1, . . . , pn̄) and the ffd does not
decrease.

We construct a system of (linear and non-linear)
inequalities that characterizes such an interval ∆. By
Proposition 2.1, a feasible solution of this system implies
that I is infeasible.

ri + kipi ≥ t1,(2.1)

ri + (ki − 1)pi < t1,(2.2)

ri + kipi + (k′i − 1)pi + di ≤ t2,(2.3)

ri ≤ t1,(2.4) ∑
i∈I

nik
′
ici + ni(ci − (t1 − ri − (ki − 1)pi)+)+

> m(t2 − t1)
(2.5)

t1, t2, ki, k
′
i ∈ Z+(2.6)

The variables of this system of inequalities are t1, t2,
the end points of the interval ∆, and ki and k′i,
for i = 1, . . . , n̄. Here, ki is the number of jobs of

1353 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Uniprocessor
Speed Approximation Complexity

Arbitrary 1 n1−ε NP-hard ∗
systems n1−ε 1 coNP-hard ∗

Synchronous 2 4 + ε P ∗
systems

Synchronous syst., 4 1 P ∗
wi = ci/pi 1 1 NP-hard ∗

Table 2: Results for Maximum Weight Feasible Subsystem. Results that are given in this paper are marked
with ∗. Here n is the number of tasks and ε is any positive real constant.

task i that are released strictly before t1, which is
ensured by (2.1) and (2.2). Variable k′i is the number
of jobs of task i that are released and due within
the interval [t1, t2], see (2.3). The left hand side of
Inequality (2.5) expresses ffd(∆) (cf. Definition 2.1),
and thus, (2.5) enforces that the workload inequality
in Proposition 2.1 is violated, i.e., ffdI(∆) > m‖∆‖.

The expression of ffdI(∆) on the left hand side of
inequality (2.5) contains the non-linear term gi := (ci−
(t1−ri− (ki−1)pi)+)+. Notice that by constraint (2.2)
gi can take only one of two values for any i ∈ I:

gi =


ci − (t1 − ri − pi(ki − 1))

if ci − (t1 − ri − pi(ki − 1)) > 0 (2.7’)
0

if ci − (t1 − ri − pi(ki − 1)) ≤ 0 (2.7”).

The idea now is to guess, for each i, which of the two
cases occurs. That is, we consider 2n̄ integer linear pro-
grams. Every such program consists of the inequalities
(2.1)–(2.6) above, with inequality (2.5) being simplified
in the appropriate way, plus inequality (2.7’) or (2.7”)
for each i, depending on the guess for the corresponding
term gi.

For any choice of gi’s, for i = 1, . . . , n̄, this yields a
system of 5n̄+1 linear inequalities. Since n̄ is fixed, we
obtain integer linear programs with a constant number
of variables and inequalities. Therefore, for each of these
programs, we can verify in polynomial time if there is
an integral solution; see Lenstra [17].

If any of these integer programs has a feasible
solution, then we have found an overloaded interval ∆
which proves that the task system is infeasible by
Proposition 2.1. Otherwise, such an interval cannot
exist and thus Theorem 2.3 implies that EDF yields a
feasible schedule on m processors of speed 2− 1/m. �

2.3 Approximate feasibility tests for syn-
chronous task systems. In the special case of syn-
chronous task systems, where all tasks have equal start-

ing times, we show coNP-hardness and give a constant
approximate feasibility test.

To derive hardness, we reduce from the following
number theoretic problem. We believe that this problem
is of independent interest.

Least Common Multiple Packing
Input: a sequence q1, . . . , qm of positive integers and
two positive integers k and L.
Question: is there S ⊆ {1, 2, . . . ,m} such that |S| > k
and lcm{qi : i ∈ S} ≤ L?

Theorem 2.5. Least Common Multiple Packing
is NP-hard.

Proof. A (k, n)-Mignotte sequence [21] is a set of n
pairwise coprime integers π1 < π2 < . . . < πn such
that the product of any k of them is larger than the
product of any k − 1 of them, that is Π1≤i≤kπi >
Π1≤i≤k−1πn−i+1. Such a sequence can be constructed
in expected time that is polynomial in n, by the
well-known method of sampling random primes in the
interval (2n, 2n+1). In fact, it can also be constructed
in deterministic polynomial time (see Lemma A.2 in the
Appendix).

We reduce from the decision version of Maxi-
mum Clique to Least Common Multiple Packing.
Given a graph G = ({1, 2, . . . , n}, E) and an integer s,
we construct an (s+1, n)-Mignotte sequence π1 < . . . <
πn and define m = |E| integers by setting qe := πi · πj
for each e = (i, j) ∈ E. We also set L := Π1≤i≤sπn−i+1

and k :=
(
s
2

)
− 1.

Now if G has a s-clique, and S is the corresponding
set of k + 1 edges, since S spans exactly s vertices we
have lcm{qi : i ∈ S} ≤ Π1≤i≤sπn−i+1 = L. Conversely,
if G has no s-clique, any set S of at least k + 1 edges
must span at least s + 1 vertices, so that lcm{qi : i ∈
S} ≥ Π1≤i≤s+1πi > L. �

We can now proceed to prove hardness of the
feasibility problem for synchronous systems.

1354 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Theorem 2.6. 1-Approximate Feasibility is
coNP-hard for synchronous multiprocessor task sys-
tems.

Proof. We reduce from Least Common Multiple
Packing. Given q1, . . . , qm, k, L ∈ N we create a system
of m+ k tasks. For 1 ≤ i ≤ m, task i has the following
parameters: ri = 0, ci = qi − 1, di = qi − 1, pi = qi.
Notice that each job from any of these tasks must be
started as soon as it is released in order to meet its
deadline. Thus, m processors are certainly necessary
for feasibility. We will define the remaining k tasks in
such a way that it will be possible to fit them in the
unused time slots on the m processors if and only if
there is no solution to the Least Common Multiple
Packing instance.

For any t ≥ 0 and 1 ≤ i ≤ m, let

hi(t) :=
{

1 if t ≡ −1 (mod qi)
0 otherwise.

That is, hi(t) = 1 if and only if task i does not
have to be scheduled during interval [t, t + 1]. Also
let h(t) :=

∑
1≤i≤m hi(t); this is the total number of

“free” processor slots during [t, t + 1]. We now define
the remaining k identical tasks by setting, for each j =
m+1, . . . ,m+k: rj = 0, cj = (1/k) ·

∑
0≤t<L h(t), dj =

L, pj = lcm{q1, . . . , qm}. We remark that all these
parameters can be computed in polynomial time, in
particular cj = (1/k)

∑
1≤i≤m bL/pic.

For the analysis, consider the quantity H :=
max0≤t<L h(t). This is the maximum number of slots
that are simultaneously free at any time between 0
and L. Now, the total amount of work needed for the
additional k tasks is

∑
0≤t<L h(t). However, because

there are only k additional tasks and we cannot process
a task simultaneously on more than one processor, the
total available time is in fact

∑
0≤t<L min(h(t), k). So

it will be possible to schedule all the tasks if and only
if H ≤ k.

For a set S ⊆ {1, . . . ,m}, the minimum t for which
hi(t) = 1 for all i ∈ S is easily seen to be lcm{qi : i ∈
S} − 1. Thus, H ≤ k if and only if there is no set S
such that |S| > k and lcm{qi : i ∈ S}−1 < L, that is, if
and only if the instance of Least Common Multiple
Packing has no solution. �

In the remainder of this section, we give an approx-
imate feasibility test for synchronous systems. To this
aim, we introduce a strengthened formulation of the for-
ward forced demand (recall Definition 2.1). The defini-
tion of ffd for any interval [t1, t2] only considers the de-
mand of jobs which have their deadline in [t1, t2]. This
may neglect the demand of some job ik with deadline

in (t2, t2 + ci) that necessarily must be scheduled also
within [t1, t2].

Definition 2.2. (Extended ffd) Consider a task
system I where a task i ∈ I consists of jobs
ik, k = 0, 1, . . ., with corresponding release dates
r(ik) := ri + kpi and deadlines d(ik) := ri + kpi + di.
Given an interval ∆ := [t1, t2] we define

effdI(ik,∆) := (ci − (t1 − r(ik))+ − (d(ik)− t2)+)+,

effdI(i,∆) :=
∑
k

effdI(ik,∆),

effdI(∆) :=
∑
i∈I

effdI(i,∆).

It is easy to see that the extended forward forced
demand of an interval is a lower bound on the total
processing requirement of a feasible task system in that
interval.

Proposition 2.2. If a periodic task system I is feasible
on m unit speed processors, then effdI(∆) ≤ m ‖∆‖ for
any interval ∆.

The following lemma shows that effd(∆)/‖∆‖ is
maximized for an interval ∆ starting at time 0.

Lemma 2.1. For any synchronous periodic task sys-
tem I,

max
∆

effdI(∆)
‖∆‖

= max
t

effdI([0, t])
t

.

Proof. Let ∆ := [t1, t2] be such that effdI(∆)/‖∆‖ is
maximized. Clearly, effdI(∆)/‖∆‖ ≥ effdI([0, t])/t. We
construct an instance I ′ which differs from I only in the
start times: for each task i let 0 ≤ δi ≤ pi denote
the value by which we must increase ri such that a
job is released at t1. Let r′i = ri + δi. We show
that effdI′(∆) ≥ effdI(∆) on a task by task basis.

To that end, consider some task i and δi. The
crucial observation is that the change in the effd value
when increasing start times is due to (i) the decreased
contribution of the last job i` released strictly before t2
and (ii) the increased contribution of the last job ik
released strictly before t1. No other jobs contribution
is affected. We observe that (i) the decrease in the
contribution of i` is bounded by min{ δ, ci }, and (ii),
the increased contribution of ik is at least min{ δ, ci }.
We omit details.

Thus, effdI′(∆) ≥ effdI(∆). Since we consider
periodic task systems, this implies that the expres-
sion effdI(∆)/‖∆‖ is maximized on any interval of
length ‖∆‖ if all tasks simultaneously release a job

1355 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

at the beginning of the interval. By definition,
in synchronous systems such an interval is [0, ‖∆‖].
Thus, effdI′(∆) corresponds to the effdI([0, ‖∆‖]),
which implies the lemma. �

With the previous lemma we can simplify the
expression for the maximum extended forward forced
demand per time interval as follows.

Proposition 2.3. Given a synchronous periodic task
system I and t ∈ N, then

max
∆:‖∆‖=t

effdI(∆) =
∑
i∈I

kici + (ci − (kipi + di − t)+)+ ,

where ki :=
⌊ t+ pi − di

pi

⌋
.

Theorem 2.7. Let ε > 0. Given a synchronous peri-
odic task system for m processors, there is an algorithm
solving σ-Approximate Feasibility, for any σ ≥
2 − 1/m + ε, with running time that is polynomial in
the input size and 1/ε.

Proof. Our goal is to approximate the so-called maxi-
mum total load in any time interval, that is, the quantity
λ∗ := maxt effdI([0, t])/t. By Proposition 2.3, this value
in a synchronous periodic task system equals the value
of the maximum total load in a sporadic task system,
see [6, Lemma 4.1]. Bonifaci et al. [6] provide a fully
polynomial time scheme that, for any ε > 0, computes
λ such that λ∗/(1 + ε) ≤ λ ≤ λ∗. Now we compare
λ with m: if λ > m, then there must be an interval
∆ such that effd(∆) > m ‖∆‖, and then by Proposi-
tion 2.2 the task system cannot be feasible on m unit
speed machines. If λ ≤ m, then for any interval ∆,
ffd(∆) ≤ effd(∆) ≤ (1 + ε)m ‖∆‖, and by Theorem 2.3
(with σ = 2 − 1/m + ε) the task system must be EDF-
schedulable on m speed-(2− 1/m+ ε) machines. �

3 The maximum weight feasible subsystem
problem

3.1 Hardness. The lower bounds of this section
carry over directly to the multiprocessor case.

Theorem 3.1. For any ε > 0, it is NP-hard to approx-
imate MaxFS within a factor of n1−ε in the single pro-
cessor case.

Proof. We give an approximation preserving reduction
from Maximum Clique, which is NP-hard to approx-
imate within n1−ε, where n is the number of vertices
in the graph [12]. Using the same construction as in
Theorem 2.1, we obtain numbers ai, bi such that:

• if (i, j) ∈ E then ai ≡/ aj (mod gcd(bi, bj));

• if (i, j) /∈ E then ai ≡ aj (mod gcd(bi, bj)).

We now associate a task to every node i. We set, for
all 1 ≤ i ≤ n, ri = ai, ci = 1, di = 1, pi = bi. Now any
feasible subset of tasks must be a clique in the original
graph (otherwise there would be a time where at least
two jobs are released simultaneously and thus cannot be
completed in time by a single unit-speed processor), and
vice versa any clique in the original graph determines a
subset of tasks that is feasible, because no two tasks are
ever released at the same time and all completion times
are one. �

Theorem 3.2. For synchronous systems, MaxFS is
NP-hard in the single processor case. This holds even
when wi = ci/pi for all task i ∈ I.

Proof. We reduce from Subset Sum: given inte-
gers a1, . . . , an and a target integer A, decide if there
is a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = A. We

set ci = ai, di = pi = A, ri = 0 for all i. In a periodic
task system where di = pi for all i, a subset S of tasks is
feasible on one processor if and only if

∑
i∈S ci/pi ≤ 1,

that is,
∑
i∈S ai ≤ A [20]. Now an optimal subset of

tasks has total weight 1 if and only if there is a subset S
such that

∑
i∈S ai = A. �

3.2 Approximation algorithms for synchronous
systems. The above lower bounds motivate us to focus
on synchronous systems, for which we present two algo-
rithms. For general weights, we give a 2-speed (4 + ε)-
approximate algorithm. For the special case where wi =
ci/pi for all tasks i, we give an improved 4-speed 1-
approximate algorithm. We first state an observation
about the total size of jobs generated by a task up to
certain time.

Observation 3.1. Let i be a task and t ≥ 0 be any
time. Consider the total size of jobs generated by i with
deadlines at most t. Then, if t < di, the total size is 0;
otherwise, i.e., t ≥ di, the total size is ci +

⌊
t−di

pi

⌋
ci ≤

ci + ci

pi
· t.

3.2.1 Tasks with general weights. For tasks with
general weights, our algorithm makes use of a result for
the following problem.

Budgeted continuous real-time
scheduling (BCRS). Given a set J of
jobs, where each job ji ∈ J is associated
with a time window Wi = [ri, di], a size ci,
a cost si and a weight wi. A job ji can
be completed by processing it in Wi for ci
units of time nonpreemptively, i.e., for any

1356 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

interval [t, t + ci] ⊆ [ri, di]. A subset J ′ ⊆ J
is feasible if all jobs in J ′ can be completed
with non-overlapping processing intervals and
the total cost of all jobs in J ′ is at most 1.
The problem is to find a feasible set J ′ with
maximum total weight.

Lemma 3.1. ([14]) There is a (4 + ε)-approximate al-
gorithm for BCRS.

Our algorithm is defined as follows.

Algorithm 1 General weight algorithm.
1: For each task i in the input set I, let ji be the first

job generated by i. We let Wi = [0, di] be the time
window associated with ji. We define the size of ji
as ci, the cost si as ci/pi and the weight as wi.
Let J be the set of these first generated jobs ji over
all tasks i ∈ I.

2: We invoke the algorithm of [14] with the set J .
Let J ′ ⊆ J be the feasible set of jobs returned.

3: Let I ′ be the set of tasks corresponding to J ′,
i.e., I ′ = {i : ji ∈ J ′}. We return I ′ as the output.

We prove the performance of the above algorithm
by the following two lemmas. Let Opt be any feasible
subset of tasks.

Lemma 3.2. The set I ′ of tasks has total weight at
least 1/(4 + ε) times that of Opt.

Proof. Let J ′′ ⊆ J be the set of first generated jobs
corresponding to tasks in Opt. Since all jobs in J ′′ are
released at time 0, they can be completed nonpreem-
tively by EDF. Furthermore, the total cost of J ′′, which
is
∑
ji∈J′′ ci/pi, is at most 1. Hence, J ′′ is a feasible

set of jobs. Then, by Lemma 3.1, the set J ′′ has total
weight at most (4 + ε) times that of J ′. Equivalently, I ′

has total weight at least 1/(4 + ε) times that of Opt. �

Hence, if I ′ can be scheduled on a speed-2 processor,
we have a 2-speed (4 + ε)-approximate algorithm. To
show this, we prove a more general lemma as follows.

Lemma 3.3. Assume a set of tasks V satisfies the
following two properties.

1. The set of first generated jobs over all tasks in V
can be completed by a speed-x processor.

2. The total utilization of V , i.e.,
∑
i∈V ci/pi is at

most y.

Then, the jobs generated by V can be scheduled by a
speed-(x+ y) processor by EDF.

Proof. Let t be any time. Consider the set of the jobs
generated by tasks in V with deadlines at most t. We
want to show that these jobs have total size at most (x+
y)t. We observe that it will imply the feasibility of EDF
by induction. Specifically, the implication is true when
there is only one job. When there are n > 1 jobs, the
induction hypothesis states that the n − 1 jobs with
earliest deadlines will be completed, while the latest
deadline job will be completed because the total size
of jobs up to its deadline d is at most (x+ y)d.

It remains to prove the above size bound. Let V ′ ⊆
V be the tasks with relative deadlines at least t. Note
that only V ′ can contribute to the total size concerned.
Consider the first jobs generated by tasks in V ′. Prop-
erty 1 ensures that they can be completed by a speed-x
processor, so their total size is at most xt. Property
2 states that the total utilization of V ′ is at most y,
i.e.,

∑
i∈V ′ ci/pi ≤ y. Hence, by Observation 3.1, the

total size of jobs generated by tasks in V ′ with dead-
lines at most t is bounded by∑

i∈V ′

(
ci +

ci
pi
t

)
≤ xt+ yt,

and the lemma follows. �

Theorem 3.3. Algorithm 1 is 2-speed (4 + ε)-
approximate for MaxFS in the synchronous single
processor case.

Proof. By Lemma 3.2, the total weight of I ′ is at
least 1/(4 + ε) times that of Opt. Note that the
corresponding set J ′ is feasible on a unit-speed processor
and the total utilization of I ′ is at most 1. By
Lemma 3.3, I ′ can be scheduled by a speed-2 processor
and the theorem follows. �

3.2.2 Tasks with weight equal to utilization.
When the weight of each task i equals its utilization,
i.e., wi = ci/pi, we give a better algorithm as follows.

Algorithm 2 Algorithm for weights = utilization
1: Define the set J of jobs as in Step 1 of Algorithm 1.

Note that each job ji has cost si = wi = ci/pi.
2: Find a set J ′ ⊆ J of jobs with the following two

properties.
• The total weight of J ′ is at least the total weight
of any feasible set J ′′ ⊆ J .
• J ′ can be completed by a speed-2 processor and
has total cost at most 2.

3: Define the set I ′ of tasks as in Step 3 of Algorithm 1.
Return I ′ as the output.

We can perform Step 2 by the following greedy
algorithm. We define the density of a job ji to be

1357 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

its weight divided by its size, i.e., density equals wi/ci.
Initially, let J ′ be an empty set. We consider each job
in J in descending order of density. When considering
a job ji, we check whether J ′ ∪ ji can be completed by
a speed-2 processor. If yes, we include ji into J ′, i.e.,
setting J ′ = J ′ ∪ ji. Otherwise, we discard ji. We then
stop if the total cost of J ′ is at least 1, or terminate
after all jobs are considered.

Lemma 3.4. The set J ′ returned by the above greedy
algorithm satisfies the two properties in Step 2.

Theorem 3.4. Algorithm 2 is 4-speed 1-approximate
for MaxFS in the synchronous single processor case
when for every task the weight equals the utilization.

4 Open Problems

Several interesting open problems remain in the context
of this paper.

1. Is there a polynomial time algorithm for 1-
Approximate Feasibility in non-synchronous
multiprocessor systems with a fixed number of task
types?

2. Is there a constant-speed, constant-approximation
algorithm for MaxFS in non-synchronous unipro-
cessor systems?

3. Can the results for MaxFS be extended to multi-
processor systems?

From a broader perspective, it would be interesting to
determine other tractable special cases of the feasibility
problem.

Acknowledgments. We thank Benjamin Doerr for his
help with the derandomization of Theorem 2.5.

References

[1] K. Albers and F. Slomka. An event stream driven
approximation for the analysis of real-time systems.
In Proc. 16th Euromicro Conf. on Real-Time Systems,
pages 187–195, 2004.

[2] E. Bach and J. Shallit. Algorithmic number theory.
Vol. I: Efficient algorithms. MIT Press, 1996.

[3] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber.
Approximating the throughput of multiple machines
in real-time scheduling. SIAM Journal on Computing,
31(2):331–352, 2001.

[4] S. K. Baruah and T. P. Baker. Schedulability analysis
of global EDF. Real-Time Systems, 38(3):223–235,
2008.

[5] S. K. Baruah, L. E. Rosier, and R. R. Howell. Al-
gorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one proces-
sor. Real-Time Systems, 2:301–324, 1990.

[6] V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller.
A constant-approximate feasibility test for multipro-
cessor real-time scheduling. In D. Halperin and
K. Mehlhorn, editors, Proc. 16th European Symp. on
Algorithms, volume 5193 of Lecture Notes in Computer
Science, pages 210–221. Springer, 2008.

[7] S. Chakraborty, S. Künzli, and L. Thiele. Approxi-
mate schedulability analysis. In Proc. 23rd Real-Time
Systems Symp., pages 159–168, 2002.

[8] B. Doerr. Private communication, 2009.
[9] F. Eisenbrand and T. Rothvoß. EDF-schedulability

of synchronous periodic task systems is coNP-hard.
In Proc. 21st ACM-SIAM Symposium on Discrete
Algorithms, 2010.

[10] K. M. Elbassioni, R. Raman, S. Ray, and R. Sitters.
On the approximability of the maximum feasible sub-
system problem with 0/1-coefficients. In Proc. of the
20th ACM-SIAM Symposium on Discrete Algorithms,
pages 1210–1219, 2009.

[11] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srini-
vasan. Dependent rounding and its applications to
approximation algorithms. Journal of the ACM,
53(3):324–360, 2006.

[12] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New
York, 1979.

[13] B. Kalyanasundaram and K. Pruhs. Speed is as pow-
erful as clairvoyance. Journal of the ACM, 47(4):617–
643, 2000.

[14] A. Kulik and H. Shachnai. On Lagrangian relaxation
and subset selection problems. In Proc. 6th Workshop
on Approximation and Online Algorithms, pages 160–
173, 2009.

[15] E. L. Lawler. A dynamic programming algorithm for
preemptive scheduling of a single machine to minimize
the number of late jobs. Annals of Operations Re-
search, 26:125–133, 1990.

[16] E. L. Lawler and C. U. Martel. Scheduling periodically
occurring tasks on multiple processors. Information
Processing Letters, 12(1):9–12, 1981.

[17] H. W. Lenstra, Jr. Integer programming with a
fixed number of variables. Mathematics of Operations
Research, 8(4):538–548, 1983.

[18] J. Y.-T. Leung and M. L. Merrill. A note on preemp-
tive scheduling of periodic, real-time tasks. Informa-
tion Processing Letters, 11(3):115–118, 1980.

[19] J. Y.-T. Leung and J. Whitehead. On the complexity
of fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, 2(4):237–250, 1982.

[20] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[21] M. Mignotte. How to share a secret? In Proc. of the
Workshop on Cryptography, pages 371–375, 1982.

[22] I. Niven, H. Zuckerman, and H. Montgomery. An
introduction to the theory of numbers. John Wiley &
Sons, 1991.

1358 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[23] C. H. Papadimitriou. Computational complexity.
Addison-Wesley Publishing Company, Reading, MA,
1994.

[24] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Opti-
mal time-critical scheduling via resource augmentation.
Algorithmica, 32(2):163–200, 2002.

[25] B. Rosser. Explicit bounds for some functions of
prime numbers. American Journal of Mathematics,
63(1):211–232, 1941.

[26] D. Zuckerman. Linear degree extractors and the in-
approximability of max clique and chromatic number.
Theory of Computing, 3(1):103–128, 2007.

A Construction of a Mignotte sequence

Lemma A.1. Let π([a, b]) denote the number of primes
in the interval [a, b]. For sufficiently large x,
π[x, 3
√

2x] ≥ x/(4 ln(x)).

Proof. For x ≥ 55, the number of primes up to x, π(x),
is bounded [25] by

x

lnx+ 2
< π(x) <

x

lnx− 4
.

For x sufficiently large, this gives

π([x, 3
√

2x]) = π([0, 3
√

2x])− (π[0, x])

≥
3
√

2x
ln (3
√

2x) + 2
− x

lnx− 4

=
x

lnx

(
3
√

2

1 + 2+ln 3√2
ln x

− 1
1− 4

ln x

)
≥ x

4 lnx
.

�

Lemma A.2. ([8]) A (k, n)-Mignotte sequence can be
constructed in time that is polynomial in n.

Proof. It is sufficient to construct an arbitrary set S
of k ≤ n pairwise coprime integers in [2n, 2n+1] since
every such set is a (k, n)-Mignotte sequence.

We identify k − 1 pairs ai, bi of primes with ai ∈
[n2, 3
√

2n2] and bi ∈ [3
√

2
2
n2, 2n2], for i = 1, . . . , k − 1.

By Lemma A.1 there are sufficiently many primes in
both intervals if n is large enough. Thus, we can simply
search both intervals and test primality in time that is
polynomial in n [22]. Notice that 3

√
2 ≤ bi/ai ≤ 2.

Now we are ready to find the desired set of coprimes
starting from S = {2n}. In each iteration i, for i =
1, . . . , k − 1, find a candidate which is a power of
the prime ai as follows. Let x = blogai

2n+1c. If
the candidate axi lies in the interval, then add it
to S. Otherwise (that is when axi < 2n), multiply the

candidate sufficiently often with bi/ai until it lies in the
desired interval.

Clearly, all elements s ∈ S are by construction
pairwise coprime. It is left to show that every candi-
date axi < 2n needs to be multiplied by factor bi/ai at
most x times, which is polynomial in n, until it certainly
exceeds 2n. In that case, it must lie in the interval since
the factor is at most 2.

Let y be the parameter in question, i.e., y is the
smallest exponent such that ax(b/a)y ≥ 2n, where a :=
ai and b := bi. Clearly, y = dlogb/a 2n/axe. By
definition, we have ax+1 > 2n+1 which implies 2n/ax <
a/2. Hence,

y =
⌈

logb/a
2n

ax

⌉
< log 3√2

a

2
+ 1 < log 3√2 n

2 + 1

= 2 log 3√2 n+ 2 .

The desired bound, y ≤ x = blogai
2n+1c, follows for

sufficiently large n. �

1359 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

