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Abstract

Many NP-hard problems can be solved efficiently when the input is restricted to graphs of
bounded tree-width or clique-width. In particular, by the celebrated result of Courcelle, every de-
cision problem expressible in monadic second order logic is fixed parameter tractable when param-
eterized by the tree-width of the input graph. On the other hand if we restrict ourselves to graphs
of clique-width at most t, then there are many natural problems for which the running time of the
best known algorithms is of the form nf(t), where n is the input length and f is some function. It
was an open question whether natural problems like GRAPH COLORING, MAX-CUT, EDGE DOM-
INATING SET, and HAMILTONIAN PATH are fixed parameter tractable when parameterized by the
clique-width of the input graph. As a first step toward obtaining lower bounds for clique-width pa-
rameterizations, in [SODA 2009 ], we showed that unless FPT6=W[1], there is no algorithm with
run time O(g(t) · nc), for some function g and a constant c not depending on t, for GRAPH COLOR-
ING, EDGE DOMINATING SET and HAMILTONIAN PATH. But the lower bounds obtained in [SODA
2009 ] are weak when compared to the upper bounds on the time complexity of the known algorithms
for these problems when parameterized by the clique-width.

In this paper, we obtain the asymptotically tight bounds for MAX-CUT and EDGE DOMINATING
SET by showing that both problems

• cannot be solved in time f(t)no(t), unless Exponential Time Hypothesis (ETH) collapses; and

• can be solved in time nO(t),

where f is an arbitrary function of t, on input of size n and clique-width at most t.
We obtain our lower bounds by giving non-trivial structure-preserving “linear FPT reductions”.

∗Partially supported by the Norwegian Research Council



1 Introduction

Tree-width is one of the most fundamental parameters in Graph Algorithms. Graphs of bounded tree-
width enjoy good algorithmic properties similar to trees and this is why many problems which are hard
on general graphs can be solved efficiently when the input is restricted to graphs of bounded tree-width.
On the other hand, many hard problems also become tractable when restricted to graphs “similar to
complete graphs”. Courcelle and Olariu [6] introduced the notion of clique-width which captures nice
algorithmic properties of both extremes.

Since 2000, the research on algorithmic and structural aspects of clique-width is an active direction
in Graph Algorithms, Logic, and Complexity. Corneil, Habib, Lanlignel, Reed, and Rotics [4] show that
graphs of clique-width at most 3 can be recognized in polynomial time. Fellows, Rosamond, Rotics, and
Szeider [11] settled a long standing open problem by showing that computing clique-width is NP-hard.
Oum and Seymour [27] describe an algorithm that, for any fixed t, runs in time O(|V (G)|9 log |V (G)|)
and computes (23t+2 − 1)-expressions for a graph G of clique-width at most t. Recently, Hliněný and
Oum obtained an algorithm running in time O(|V (G)|3) and computing (2t+1 − 1)-expressions for a
graph G of clique-width at most t [19]. We refer to the recent survey [20] for further information on
different width parameters beyond tree-width.

There was an intensive study on the algorithmic perspective of graphs of bounded clique-width.
There is a meta-theorem of Courcelle, Makowsky, and Rotics [5] that all problems expressible in
MS1-logic are fixed parameter tractable when parameterized by the clique-width of a graph. For
many other problems, that are not expressible in this logic, like MAX-CUT, EDGE DOMINATING

SET, GRAPH COLORING, or HAMILTONIAN CYCLE, there is a significant amount of the litera-
ture devoted to algorithms for these problems and their generalizations on graphs of bounded clique-
width [9, 16, 15, 17, 22, 23, 24, 28, 29, 30]. The running time of all these algorithms on an n-vertex
graph of clique-width at most t is O(nf(t)), where f is some function of t.

One of the central questions in the area is whether the bound of O(nf(t)) on the running time of all
these algorithms is asymptotically optimal. Even the existence of fixed parameter tractable algorithms
(with clique-width being the parameter) for all these problems (or their generalizations) was open until
very recently [15, 22, 23, 24, 17]. As the first step toward obtaining lower bounds for clique-width
parameterizations, we have shown in [13] that unless FPT 6= W[1], there is no algorithm with run time
O(g(t) · nc), for some function g and a constant c not depending on t, for GRAPH COLORING, EDGE

DOMINATING SET and HAMILTONIAN PATH.
Even though our results in [13] resolve the parameterized complexity of these problems, the conclu-

sion that unless FPT6= W[1], there is no algorithm with run time O(g(t) · nc), for some function g and
a constant c not depending on t, is weak to compare the known algorithmic upper bounds. In this paper,
we provide asymptotically tight optimal lower bounds for MAX-CUT and EDGE DOMINATING SET. In
particular, we show that unless ETH fails, there is no f(t)no(t)-time algorithm for these problems, where
f is an arbitrary function of k, on input of size n and clique-width at most k. While known algorithms
for these problems run in times nO(t2) [22, 23, 9, 30], we give new algorithmic upper bounds of the form
nO(t). These two results together, lower and upper bounds, give asymptotically tight algorithmic bounds
for MAX-CUT and EDGE DOMINATING SET.

To obtain our lower bounds we construct “linear FPT-reductions”. These type of reductions are
much more stringent and delicate than the usual FPT reductions. This is the reason why this research
direction is still in a nascent stage and not so many asymptotically tight results are known in the liter-
ature. Chen et al. [2, 3] initiated this area of strong computational lower bounds and showed that there
is no algorithm for k-CLIQUE (finding a clique of size k) running in time f(k)no(k) unless there exists
an algorithm for solving 3-SAT running in time 2o(n) on a formula with n-variables. The assumption
that there does not exists an algorithm for solving 3-SAT running in time 2o(n) is known as EXPONEN-
TIAL TIME HYPOTHESIS (ETH) [21] and it is equivalent to the parameterized complexity conjecture
that FPT 6=M[1] [7, 12]. The lower bound on k-CLIQUE can be extended to some other parameterized
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problems via a linear FPT-reductions [2, 3]. This kind of investigation has also been useful in obtain-
ing tight algorithmic lower bounds for polynomial time approximation schemes [26] and for constraint
satisfaction problems when parameterized by the tree-width of the “primal graph” [25]. We further ex-
tend the utility of this approach by obtaining asymptotically tight algorithmic bounds for clique-width
parameterizations.

2 Definitions and Preliminary results

Parameterized Complexity. Parameterized complexity is a two dimensional framework for studying
the computational complexity of a problem. One dimension is the input size n and another one is a
parameter k. We refer to the books of Downey and Fellows [8] and Flum and Grohe [12] for a detailed
treatment to parameterized complexity. Now we define the notion of parameterized (linear) reduction
which is the main tool for establishing of our results.

Definition 1. LetA,B be parameterized problems. We say thatA is (uniformly many:1) FPT-reducible
to B if there exist functions f, g : N → N, a constant α ∈ N and an algorithm Φ which transforms an
instance (x, k) of A into an instance (x′, g(k)) of B in time f(k)|x|α so that (x, k) ∈ A if and only if
(x′, g(k)) ∈ B. The reduction is called linear if g(k) = O(k).

Graphs: We only consider finite undirected graphs without loops or multiple edges. The vertex set of a
graph G is denoted by V (G) and its edge set by E(G). A set S ⊆ V (G) of pairwise adjacent vertices
is called a clique. For v ∈ V (G), by EG(v) we mean the set of edges incident to v. For a vertex v,
we denote by NG(v) its (open) neighborhood, that is, the set of vertices which are adjacent to v. The
closed neighborhood of v, that is, the set NG(v)∪ {v}, is denoted by NG[v]. The degree of a vertex v is
denoted by dG(v). For a graph G, the incidence graph of G is the bipartite graph I(G) with the vertex
set V (G) ∪ E(G) such that v ∈ V (G) and e ∈ E(G) are adjacent if and only if v is incident to e in G.
Tree-width: A tree decomposition of a graph G is a pair (X,T ) where T is a tree whose vertices we
will call nodes and X = ({Xi | i ∈ V (T )}) is a collection of subsets of V (G) such that

1.
⋃
i∈V (T )Xi = V (G),

2. for each edge vw ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) equals maxi∈V (T ){|Xi| − 1}. The tree-width
of a graph G is the minimum width over all tree decompositions of G. We use notation tw(G) to denote
the tree-width of a graph G.
Clique-width: Let G be a graph, and t be a positive integer. A t-graph is a graph whose vertices are
labeled by integers from {1, 2, . . . , t}. We call the t-graph consisting of exactly one vertex labeled by
some integer from {1, 2, . . . , t} an initial t-graph. The clique-width cwd(G) is the smallest integer t
such that G can be constructed by means of repeated application of the following four operations: (1)
introduce: construction of an initial t-graph labeled by i (denoted by i(v)), (2) disjoint union (denoted
by ⊕), (3) relabel: changing all labels i to j (denoted by ρi→j) and (4) join: connecting all vertices
labeled by i with all vertices labeled by j by edges (denoted by ηi,j).

An expression tree of a graph G is a rooted tree T of the following form:

• The nodes of T are of four types i, ⊕, η and ρ.
• Introduce nodes i(v) are leaves of T , corresponding to initial t-graphs with vertices v, which are

labeled i.
• A union node ⊕ stands for a disjoint union of graphs associated with its children.
• A relabel node ρi→j has one child and is associated with the t-graph, which is the result of rela-

beling operation for the graph corresponding to the child.
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• A join node ηi,j has one child and is associated with the t-graph, which is the result of join
operation for the graph corresponding to the child.
• The graph G is isomorphic to the graph associated with the root of T (with all labels removed).

The width of the tree T is the number of different labels appearing in T . If a graph G has cwd(G) ≤ t
then it is possible to construct a rooted expression tree T with width t of G. Given a node X of an
expression tree, the graph GX represents the graph formed by the subtree of the expression tree rooted
at X .

A well-known fact is that if the tree-width of a graph is bounded then its clique-width also is bounded.
On the other hand, complete graphs have clique-width 2 and unbounded tree-width. But for sparse graphs
the tree-width and clique-width are linearly related. Particularly, Gurski and Wanke [18] proved that if a
graphG has no subgraph isomorphic toKr,r, then tw(G) ≤ 3(r−1)cwd(G)−1. Linear upper bounds
of the clique-width by the tree-width for sparse graphs were established by Fomin et al. [14]. We use
the following proposition.

Proposition 1 ([14]). If G is a planar graph, then cwd(G) ≤ 12(tw(G) + 1).

Moreover, the proof is constructive and an expression tree for G of width at most 12(tw(G) + 1)
can be constructed in FPT time (with tree-width being the parameter) from the tree decomposition of a
planar graph G.

Capacitated Domination – Preliminary Results

A capacitated graph is a pair (G, c), where G is a graph and c : V (G) → N is a capacity function such
that 1 ≤ c(v) ≤ dG(v) for every vertex v ∈ V (G) (sometimes we simply say that G is a capacitated
graph if the capacity function is clear from the context). A set S ⊆ V (G) is called a capacitated
dominating set if there is a domination mapping f : V (G)\S → S which maps every vertex in V (G)\S
to one of its neighbors such that the total number of vertices mapped by f to any vertex v ∈ S does not
exceed its capacity c(v). We say that for a vertex u ∈ S, vertices in the set f−1(u) are dominated by
u. In the CAPACITATED DOMINATING SET (or CDS) problem, we are given a capacitated graph (G, c)
and a positive integer k as an input and the question is whether there exists a capacitated dominating set
S for G containing at most k vertices.

We also consider a special variant of CDS problem which we call EXACT SATURATED CAPAC-
ITATED DOMINATING SET (or EXACT SATURATED CDS). Given a capacitated dominating set S, a
vertex v ∈ S is called saturated if the corresponding domination mapping f maps c(v) vertices to v, that
is, |f−1(v)| = c(v). A capacitated dominating set S ⊆ V (G) is called saturated if there is a domination
mapping f which saturates all vertices of S. In the EXACT SATURATED CAPACITATED DOMINATING

SET problem, a capacitated graph (G, c) and a positive integer k are given as an input and the question
is whether G has a saturated capacitated dominating set S with exactly k vertices.

A red-blue capacitated graph is a pair (G, c), whereG is a bipartite graph with the vertex bipartition
R and B and c : R → N is a capacity function such that 1 ≤ c(v) ≤ dG(v) for every vertex v ∈ R.
The vertices of the set R are called red and the vertices of B are called blue. A set S ⊆ R is called
a capacitated dominating set if there is a domination mapping f : B → S which maps every vertex
in B to one of its neighbors such that the total number of vertices mapped by f to any vertex v ∈ S
does not exceed its capacity c(v). The RED-BLUE CAPACITATED DOMINATING SET (or RED-BLUE

CDS) problem for a given red-blue capacitated graph (G, c) and a positive integer k, asks whether there
exists a capacitated dominating set S for G containing at most k vertices. A capacitated dominating set
S ⊆ R is called saturated if there is a domination mapping f which saturates all vertices of S, that is,
|f−1(v)| = c(v) for each v ∈ S. The RED-BLUE EXACT SATURATED DOMINATING SET problem
(RED-BLUE EXACT SATURATED CDS) takes a red-blue capacitated graph (G, c) and a positive integer
k as an input and asks whether there exists a saturated capacitated dominating set with exactly k vertices.
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If the input graph G is restricted to be planar we call these problems PLANAR CDS, EXACT SAT-
URATED PLANAR CDS, RED-BLUE PLANAR CDS and RED-BLUE EXACT SATURATED PLANAR

CDS respectively. The following proposition can be deduced from the constructions presented in [1].
For completeness and ease of reference we provide a proof in the Appendix 6.1.

Proposition 2. PLANAR CDS, EXACT SATURATED PLANAR CDS, RED-BLUE PLANAR CDS and
RED-BLUE EXACT SATURATED PLANAR CDS can not be solved in time f(t)no(t), where t is the
tree-width of the input graph, unless ETH fails.

The basic schema of all the proofs to come is following. The reduction in Proposition 2 is from
k-CLIQUE to the above mentioned problems and the graphs obtained after the reduction are essentially
k × k2 grid. This immediately implies that the tree-width t of these instances is O(k). Now using
the result of Chen et al. [2, 3] about k-CLIQUE, we conclude that PLANAR CDS, EXACT SATURATED

PLANAR CDS, RED-BLUE PLANAR CDS and RED-BLUE EXACT SATURATED PLANAR CDS can
not be solved in time f(t)no(t), where t is the tree-width of the input graph, unless ETH fails. Now from
Proposition 1 we know that the tree-width and the clique-width are linearly related in planar graph. This
allows us to conclude that PLANAR CDS, EXACT SATURATED PLANAR CDS, RED-BLUE PLANAR

CDS and RED-BLUE EXACT SATURATED PLANAR CDS can not be solved in time f(t)no(t), where t is
the clique-width of the input graph, unless ETH fails. This result is the starting point for our reductions
to obtain the desired algorithmic lower bounds for MAX-CUT and EDGE DOMINATING SET when
parameterized by the clique-width. Furthermore, our reductions are constrained to not blow up the
clique-width in the resulting instances. That is, the clique-width of the input instance and the clique-
width of the instance obtained after the reduction must be linearly related.

3 Max-Cut and related problems

In this section we consider the MAX-CUT problem and a few other problems that are closely related to
it. A cut set of a graph G is the set of edges C ⊆ E(G) such that the graph G′ with the vertex set V (G)
and the edge set C is a bipartite graph. The size of a maximum cut set in G is denoted by mcut(G).
For a partition V1, V2 of V (G), the cut set is defined as CG(V1, V2) = {uv ∈ E(G) : u ∈ V1, v ∈ V2}.
It is well known that there is one to one correspondence between cut sets and partitions of the vertex
set. In the MAX-CUT problem, we are given a graph G and a positive integer k, and the objective is to
check whether there exists a cut set C ⊆ E(G) such that |C| ≥ k. Our main theorem in this section is
following.

Theorem 1. The MAX-CUT problem can not be solved in time f(t)no(t) unless ETH fails. Moreover,
the MAX-CUT problem can be solved in time nO(t). Here, t is the clique-width of the input graph.

We prove this theorem in two parts. We first show the lower bound and then complement this result
with the corresponding upper bound.

Lower Bounds. To prove our result we give a reduction from the RED-BLUE PLANAR CDS problem
to the MAX-CUT problem. The proof is organized as follows: we first give a construction, then prove
its correctness and finally argue on the clique-width of the transformed instance.
Construction: Let (G, c) be an instance of RED-BLUE PLANAR CDS with R = {u1, . . . , un} being
the set of red vertices and B = {v1, . . . , vr} being the set of blue vertices. We also assume that G has
m edges and k is a positive integer. Now we describe the auxiliary gadgets.

Auxiliary gadgets F (x, y) and F ′(x, y): Let x, y be two vertices. We construct F (x, y) by joining x and
y by 4m+ 1 paths of length two. The graph F ′(x, y) is constructed by joining x and y by 4m+ 1 paths
of length three. The properties of F (x, y) and F ′(x, y) which is required for our proof is summarized in
the following simple lemma.
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x1 xs y

H

z1,1 zs,1 z1+l,1 z1+t,1

Figure 1: Graph Hs,t(x1, . . . , xs, y)

Lemma 1. For a pair of vertices x and y, mcut(F (x, y)) = 8m + 2, mcut(F ′(x, y)) = 12m + 3.
For any partition V1, V2 of the set of vertices in the gadget F (x, y) such that x ∈ V1 and y ∈ V2,
|CF (x,y)(V1, V2)| ≤ mcut(F (x, y))− 4m− 1, and for any partition V1, V2 of the set of vertices in the
gadget F ′(x, y) such that x, y ∈ V1, |CF ′(x,y)(V1, V2)| ≤mcut(F ′(x, y))− 4m− 1.

We are going to attach gadgets F (x, y) and F ′(x, y) to other part of our construction through the
vertices x and y. Notice that we can always assume that the vertices of V (F (x, y)) \ {x, y} are included
in exactly one side of an optimal partition of the vertex set leading to the maximum sized cut. Similarly,
we can assume that the vertices of NF ′(x,y)(x) (NF ′(x,y)(y) respectively) also included in exactly one
side of an optimal partition of the vertex set.

Auxiliary gadgets Hs,t(x1, . . . , xs, y): Let l = max{n, r}. We first construct a graph H with the
vertex set {zi,j : 1 ≤ i ≤ 2l, 1 ≤ j ≤ 4m + 1}. Any vertices zi,j and zi′,j′ are joined by an edge
for 1 ≤ i < i′ ≤ 2l. That is, we get a complete 2l partite graph with the 2l-partition Z1, . . . , Z2l,
where Zi = {zi,1, . . . , zi,4m+1}. Then we add graphs F (zi,1, zi,2), . . . , F (zi,4m, zi,4m+1) for each
i ∈ {1, . . . , 2l}. Let h = l(4m + 1)(4ml + 16m + l). One can easily see that a partition V1, V2

corresponding to mcut(H) is following. Let V1 consist of Z1, . . . , Zl and all the vertices of gadgets
F (zi,1, zi,2), . . . , F (zi,4m, zi,4m+1), i ∈ {l+1, . . . , 2l}, except those vertices of these gadgets which are
contained in Zl+1, . . . , Z2l and let V2 be the remaining vertices. Using this partition V1, V2 correspond-
ing to mcut(H) and Lemma 1, we get the following.

Lemma 2. For any partition V1, V2 of the set of vertices of H such that if V1 (or V2) does not contain
exactly l sets from Z1, . . . , Z2l, then |CH(V1, V2)| ≤mcut(H)−4m−1. Furthermore, mcut(H) = h.

Let s and t be two positive integers such that s, t ≤ l. We construct the graph Hs,t(x1, . . . , xs, y)
from H by adding vertices x1, . . . , xs and y, and then joining them with H by the following gadgets,
F (x1, z1,1), . . . , F (xs, zs,1) and F (y, zl+1,1), . . . , F (y, zl+t,1) (see Fig 1). Let hs,t = h+(8m+2)(s+
t). Lemmata 1 and 2 imply the following properties of this graph.

Lemma 3. The following properties holds for the graph Hs,t(x1, . . . , xs, y).

• The mcut(Hs,t(x1, . . . , xs, y)) = hs,t.
• Let V1, V2 be an optimal partition of V (Hs,t(x1, . . . , xs, y)), that is, mcut(Hs,t(x1, . . . , xs, y)) =
|CHs,t(x1,...,xs,y)(V1, V2)|, and y ∈ V1. Then at most l − t vertices among x1, . . . , xs are included
in V1.
• Furthermore, there is an optimal partition V1, V2 such that y ∈ V1 and for any 0 ≤ p ≤ l − t,

exactly p vertices among x1, . . . , xs are included in V1.
• Moreover, for any non optimal partition V1, V2 of V (Hs,t(x1, . . . , xs, y)) such that (a) for any

gadget F (zi,j , zi,j+1), 1 ≤ i ≤ 2l and 1 ≤ j ≤ 4m, we have that V (F (zi,j , zi,j+1))\{zi,j , zi,j+1}
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is either contained in V1 or V2; (b) for any gadget F (xi, zi,1), 1 ≤ i ≤ s and F (y, zl+j,1)
1 ≤ j ≤ t, we have that V (F (xi, zi,1)) \ {xi, zi,1} and V (F (y, zl+j,1)) \ {y, zl+j,1} is either
contained in V1 and V2; then |CHs,t(x1,...,xs,y)(V1, V2)| ≤mcut(Hs,t(x1, . . . , xs, y))− 4m− 1.

Final Reduction: Now we describe our reduction. Each edge e = uivj of G is replaced by two
vertices ae and be and joined by edges to ui and vj . We create two vertices w1 and w2 and construct
a copy of F ′(w1, w2). For each vertex vj ∈ B, a copy of F (vj , w1) is created. In the next step, we
introduce a copy of Hn,l−k(u1, . . . , un, w1). By G′ we denote the graph obtained until now. Finally,
for each vertex ui ∈ R, a copy of HdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)

, w2), where {e1, . . . , edG(ui)} =
EG(ui) is constructed, and for each vertex vj ∈ B, a copy of HdG(vj),l−1(ae1 , . . . , aedG(vj)

, w2), where
{e1, . . . , edG(vj)} = EG(vj) is added. Let the resulting graph be Q. Let µ = (4m + 1)(2r + 3) +
hn,l−k +

∑n
i=1 hdG(ui),l−c(ui) +

∑r
j=1 hdG(vj),l−1 + 2(m+ r).

Lemma 4. The graph G has a capacitated dominating set of the size at most k if and only if Q has a cut
set with at least µ edges.

Proof. Let S be a capacitated dominating set of the size at most k in G and f be a corresponding dom-
ination mapping. We construct a partition V1, V2 of the vertex set of Q which corresponds to the cut
set of size at least µ as follows. The vertex w1 is included in V1, the vertex w2 is included in V2, all
vertices v1, . . . , vr are included in V1, all the vertices in S are included in V1 and vertices in R \ S are
included in V2. We also include all the vertices be in V2. For each edge e = uivj ∈ E(G) such that
f(vj) = ui, that is, e is being used for domination, the corresponding vertex ae is included in V2 and
all other vertices ae, whose corresponding edge is not used for domination are included in V1. Finally,
we extend our partition to an optimal partition of all gadgets F (x, y), F ′(x, y) and Hs,t(x1, . . . , xs, y)
used in the construction of Q. The desired extensions of these gadgets to an optimal partition can be
done by applications of Lemmata 1, 2 and 3. By construction of our partitions V1 and V2, the contribu-
tion of the gadgets F (x, y), F ′(x, y) and Hs,t(x1, . . . , xs, y) to the cut CQ(V1, V2) is mcut(F (x, y)),
mcut(F ′(x, y)) and mcut(Hs,t(x1, . . . , xs, y)) respectively. Hence, we have already accounted for
(4m+ 1)(2r+ 3) +hn,l−k +

∑n
i=1 hdG(ui),l−c(ui) +

∑r
j=1 hdG(vj),l−1 edges in the cut CQ(V1, V2). The

remaining 2(m+ r) edges in the cut CQ(V1, V2) come from the edges incident on the vertices ae and be
for some e. Look at an edge e, then we have two cases, either it is an edge used for domination or not. In
the first case when e = uv is used for dominating then uae, aev, ube and bev are part of the cut. In the
second case, for an edge when e = uv exactly two of the edges among uae, aev, ube and bev are part of
the cut. In any case for every e at least two edges among uae, aev, ube and bev are part of the cut and
hence edges incident to the vertices ae and be contribute at least 2(m − r) + 4r = 2(m + r) to the cut
CQ(V1, V2). This completes the forward direction of the proof.

Assume now thatQ has a cut set C of size at least µ, and V1, V2 be the corresponding partition of the
vertex set of Q. Let Q′ be the graph obtained by the union of the edge sets of auxiliary gadgets F (x, y),
F ′(x, y) andHs,t(x1, . . . , xs, y). Then there exists a partitionA andB of V (Q′) such thatCQ′(A,B) =
µ′, where µ′ = (4m + 1)(2r + 3) + hn,l−k +

∑n
i=1 hdG(ui),l−c(ui) +

∑r
j=1 hdG(vj),l−1. Suppose

that at least for one of our auxiliary gadgets F (x, y), F ′(x, y) or Hs,t(x1, . . . , xs, y), say F (x, y), the
partition V ′1 and V ′2 of V (F (x, y)) obtained by restricting the partition V1 and V2 to V (F (x, y)) is
not optimal. That is, |CF (x,y)(V ′1 , V

′
2)| < mcut(F (x, y)). Then because of Lemmata 1, 2 and 3,

|C| ≤ µ′ − (4m + 1) + 4m < µ. By choosing a non-optimal partition of auxiliary gadgets we at least
loose 4m+1 edges while we can only gain 4m new edges by cutting 4m edges ofQwhich do not belong
to these gadgets. This implies that C restricted to all these gadgets is an optimal cut in Q′. By Lemma 1,
w1 and w2 belong to different sets of the bipartition V1, V2. Assume that w1 ∈ V1 and w2 ∈ V2. Then
Lemma 1 implies that v1, . . . , vr ∈ V1. Thus, using Lemma 3 we conclude that at most k vertices of the
set R = {u1, . . . , un} belong to V1. We set S = R∩V1 and prove that S is a capacitated dominating set
in G. Notice that by Lemma 3, at most one vertex ae in the neighborhood of each vertex vj is included

6



in V2. Suppose that there is a vertex vj such that it’s neighborhood in Q has no vertices ae ∈ V2. Then
|C| ≤ µ′ + 2m+ 2(r − 1) < µ, a contradiction. So, for each vertex vj , there is an edge e = uivj such
that ae ∈ V2. Now we argue that ui ∈ S. This follows from the fact that if ui /∈ S then ui ∈ V2 and
hence |C| ≤ µ′+2m+2r−2 < µ. We define the domination mapping f(vj) = ui. Since by Lemma 3,
at most c(ui) vertices in the set NQ(ui) ∩ {ae | e ∈ E(G)} are included in V2, |f−1(ui)| ≤ c(ui). This
concludes the proof.

Now we upper bound the clique-width of Q by a linear function of the tree-width of G.

Lemma 5. Let t ≥ 2. If tw(G) ≤ t then cwd(Q) ≤ 96t+ 106.

Proof. Since t ≥ 2, tw(I(G)) = tw(G), and by Proposition 1 we have that cwd(I(G)) ≤ c =
12t+ 12. We construct an expression tree for Q in two stages and use 8c+ 10 labels. At the first stage
we construct en expression tree for G′ using 4c + 10 labels, and at the second stage we describe how it
can modified to get an expression tree for Q using 4c additional labels.

Construction of an expression tree for G′: Suppose that the expression tree for I(G) uses c labels
{α1, . . . , αc}. To construct the expression tree for G′ we use the following additional labels.

• Labels β1, . . . , βc for the vertices v1, . . . , vr.
• Labels γ1, . . . , γc for the vertices {ae | e ∈ E(G)}.
• Labels δ1, . . . , δc for the vertices {be | e ∈ E(G)}.
• Labels ζ1, ζ2 for the vertices w1, w2.
• Label η for the vertices zi,j in Hn,l−k(u1, . . . , un, w1).
• Working labels λ1, λ2, λ3 and ξ1, ξ2, ξ3, ξ4.

We construct the required expression tree for G′ by going over the expression tree for I(G) and
making necessary changes in it. When a vertex ui ∈ R labeled byαp is introduced, we perform following
set of operations. We first introduce the vertex ui labeled αp and a vertex (which is essentially zi,1)
labeled by ξ3. Then 4m + 1 vertices labeled with ξ2 are introduced and joined with vertices labeled
αp and ξ3. Then the vertices labeled ξ2 are relabeled λ1. Now we repeat the following operations 4m
times: (a) introduce a vertex labeled ξ1 and 4m+ 1 vertices labeled ξ2; (b) join vertices labeled ξ2 with
vertices labeled ξ1 and ξ3; (c) relabel vertices labeled ξ2 by λ1, the vertex labeled ξ3 by η, and the vertex
labeled ξ1 by ξ3; (d) finally, the vertex labeled ξ3 is relabeled η. We omit the union operations from our
descriptions here and henceforth in any similar descriptions and assume that if some vertex is introduced
then union is always performed.

When a vertex x ∈ V (I(G)) which corresponds to an edge e ∈ E(G) labeled αp is introduced,
we introduce the vertices ae and be and label it with γp and δp, respectively. Now we move toward
introduction of vertices from the set B. When a vertex vj ∈ B labeled αp is introduced, we introduce
the vertex vj with label βp. Then 4m + 1 vertices labeled ξ1 are introduced, joined with the vertex
labeled βp and relabeled λ2. We are labeling these vertices with λ2 to finally join them with the vertex
w1, when it gets introduced.

For each union operation in the expression tree for I(G), we do as follows. If both graphs contain
vertices labeled η, then (a) vertices labeled η in one of the graphs are relabeled ξ1; (b) we perform the
union operation; (c) the vertices labeled η and ξ1 are joined; and (d) the vertices labeled ξ1 are relabeled
η. If only one graph contains vertices labeled η then we just do the union operation.

If in the expression tree of I(G), we have join operation between two labels say αp and αq then we
simulate this by applying join operations between following: (i) αp and γq; (ii) αp and δq; (iii) βp and
γq; (iv) βp and δq; (v) αq and γp; (vi) αq and δp; (vii) βq and γp; and (viii) βq and δp.

Finally, the relabel operation in the expression tree of G, that is, relabel αp to αq is replaced by
following relabeling process: (a) αp to αq; (b) βp to βq; (c) γp to γq; and (d) δp to δq.
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After we have completed the scanning of the expression tree for I(G), the verticesw1 andw2 labeled
by ζ1 and ζ2 respectively, are introduced. Then we repeat the following operations 4m + 1 times: (a)
introduce two vertices labeled ξ1 and ξ2; (b) join vertices labeled ζ1 and ξ1, ξ1 and ξ2, ξ2 and ζ2; (c)
and relabel vertices labeled ζ1 and ζ2 by λ1. After that the vertex w1 labeled ζ1 is joined with vertices
labeled λ2.

Now we show how to complete the construction ofHn,l−k(u1, . . . , un, w1). We start of by repeating
the following l−n+k times. A vertex labeled ξ3 is introduced. Now we repeat the following operations
4m times: (a) introduce a vertex labeled ξ1 and 4m + 1 vertices labeled ξ2; (b) join vertices labeled ξ2
and vertices labeled with ξ1 and ξ3; (c) relabel vertices labeled ξ2 by λ1, the vertex labeled ξ3 by ξ4,
and the vertex labeled ξ1 by ξ3. Finally, the vertex labeled ξ3 is relabeled ξ4, the vertices labeled ξ4 are
joined with vertices labeled η and then relabeled by η.

Now, we do the following l − k times. A vertex labeled ξ3 and 4m + 1 vertices labeled ξ1 are
introduced. The vertices labeled ξ1 are joined with vertices labeled ζ1 and ξ2, and relabeled λ1. After
this we repeat the following operations 4m times: (a) introduce a vertex labeled ξ1 and 4m+ 1 vertices
labeled ξ2; (b) join vertices labeled ξ2 and vertices labeled ξ1 and ξ3; (c) relabel vertices labeled ξ2 by
λ1, the vertex labeled ξ3 by ξ4, and the vertex labeled ξ1 by ξ3. Finally, the vertex labeled ξ3 is relabeled
ξ4, the vertices labeled ξ4 are joined with vertices labeled η and then relabeled η.

Construction of an expression tree for Q: We now show how to modify the expression tree for G′ to
add gadgets HdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)

, w2) where {e1, . . . , edG(ui)} = EG(ui) for ui ∈ R using
2c additional labels. The gadgets HdG(vj),l−1(ae1 , . . . , aedG(vj)

, w2) where {e1, . . . , edG(vj)} = EG(vj)
for vertices vj ∈ B can be added in the same way by using additional 2c labels.

To add gadgetsHdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)
, w2) where {e1, . . . , edG(ui)} = EG(ui) for ui ∈ R,

we use following additional labels α′1, . . . , α
′
c and β′1, . . . , β

′
c. We scan the expression tree for G′ and

iteratively change it for each ui, i ∈ {1, . . . , n} to add the corresponding gadgets. Let EG(ui) =
{e1, . . . , edG(ui)}. Let A denote the set of vertices {ae1 , . . . , aedG(ui)

} and let U = A ∪ {ui}. Let X
be a node of the expression tree for G′ and G′X be the subgraph of G′ corresponding to this node. If
V (G′X) ∩ U 6= ∅ but G′[U ] is not a subgraph of G′X then we can observe the following:

• If ui ∈ V [G′X ] then ui is labeled by a label which is different from labels of other vertices of G′X .
• If ui /∈ V [G′X ] then vertices of U ∩ V (G′X) are labeled by labels which are different from labels

of other vertices of G′X .

We use these observations to construct the graph HdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)
, w2) in such a way

that all vertices zi,j of this gadget constructed for the node X are labeled by same labels, if ui ∈ V [G′X ]
and this vertex is labeled by λp then we label it by α′p, and if ui /∈ V [G′X ] and the labels γp1 , . . . , γph

are used for vertices U ∩ V (G′X) then all vertices zi,j are labeled by one of the labels γ′p1 , . . . , γ
′
ph

. The
construction of the gadget HdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)

, w2) is completed when after some union
operation all vertices of U are included in the graph G′X . We finally relabel vertices of G′X by the label
λ1 which is not used for any join operation.

When a vertex ui ∈ R labeled by αp is introduced, we perform following set of operations. First, we
introduce the vertex ui labeled by αp. Then we repeat the following operations l+c(ui)−dG(ui) times.
A vertex labeled ξ3 is introduced and then the following operations are repeated 4m times: (a) introduce
a vertex labeled ξ1 and 4m + 1 vertices labeled ξ2, (b) join vertices labeled ξ2 and vertices labeled ξ1
and ξ3, (c) relabel vertices labeled ξ2 by λ1, the vertex labeled ξ3 by ξ4, and the vertex labeled ξ1 by ξ3.
Finally, the vertex labeled ξ3 is relabeled ξ4, the vertices labeled ξ4 are joined with vertices labeled α′p (if
they exist) and then relabeled α′p. Next we perform the following l− c(ui) times: (a) a vertex labeled ξ3
and 4m+ 1 vertices labeled ξ1 are introduced; (b) the vertices labeled ξ1 are joined with vertices labeled
ξ2, and relabeled λ3. Then we repeat the following operations 4m times: (i) introduce a vertex labeled
ξ1 and 4m+ 1 vertices labeled ξ2, (ii) join vertices labeled ξ2 and vertices labeled ξ1 and ξ3, (iii) relabel
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vertices labeled ξ2 by λ1, the vertex labeled ξ3 by ξ4, and the vertex labeled ξ1 by ξ3. Finally, the vertex
labeled ξ3 is relabeled ξ4, the vertices labeled ξ4 are joined with vertices labeled α′p and then relabeled
α′p.

When a vertex ae such that uiae ∈ E(Q) labeled by γq is introduced, we perform following set of
operations. First, we introduce the vertex ae labeled γq and a vertex labeled by ξ3. Then 4m+ 1 vertices
labeled ξ2 are introduced and joined with vertices labeled γp and ξ3. Then the vertices labeled ξ2 are
relabeled λ1. Now we repeat the following operations 4m times: (a) introduce a vertex labeled ξ1 and
4m+ 1 vertices labeled ξ2, (b) join vertices labeled ξ2 and vertices labeled ξ1 and ξ3, (c) relabel vertices
labeled ξ2 by λ1, the vertex labeled ξ3 by γ′q, and the vertex labeled ξ1 by ξ3. Finally, the vertex labeled
ξ3 is relabeled γ′q.

Having dealt with introduction nodes, next we consider union operations. Let X be a union node
of the expression tree for G′. Denote by X and Y two children of this node and let G′Y and G′Z be
subgraphs of G′ which correspond to these nodes. If one of these graphs do not contain vertices of U
then we just perform the same operation. Otherwise we have two cases.

• ui ∈ V (G′Y ) ∪ V (G′Z). Suppose that ui ∈ V (G′Y ) and is labeled αp. Then vertices zi,j of
HdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)

, w2) which are constructed for the node Y are labeled α′p. The
graph G′Z includes vertices of A labeled by some labels γp1 , . . . , γph

, and all vertices zi,j of
HdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)

, w2) corresponding to this node are labeled by same label γ′pj
.

We do the union operation as before, then join the vertices labeled α′p and γ′pj
, relabel the vertices

labeled γ′pj
by α′p. If the graphG′X corresponding toX contains all vertices of U , then the vertices

labeled α′p are relabeled λ1.
• ui /∈ V (G′Y ) ∪ V (G′Z). Then G′Y includes vertices of A that are labeled by γp1 , . . . , γph

, and all
vertices zi,j of HdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)

, w2) corresponding to this node and are labeled
by same label γ′pi

. Similarly, G′Z includes vertices of A labeled by some labels γq1 , . . . , γqf , and
all the vertices zi,j of HdG(ui),l−c(ui)(ae1 , . . . , aedG(ui)

, w2) corresponding to this node and are
labeled by same label γ′qj . We relabel vertices labeled γ′pi

by ξ2 in the first graph, then perform
the union operation, join the vertices labeled ξ2 and γ′qj , relabel the vertices labeled ξ2 by γ′qj .

The join operations in the expression tree for G′ are done in the new tree in exactly the same way.
The relabel operation in the expression tree of G′, that is, relabel αp to αq and relabel γp to γq, are
replaced by relabel αp to αq, α′p to α′q, and γp to γq, γ′p to γ′q, respectively.

When we have completed the scan of the expression tree for G′, the only thing which remains is to
join vertices labeled λ3 and the vertex labeled ζ2 (the vertex w2).

To conclude the first part of the proof of the Theorem 1, we observe that the number of vertices of Q
is polynomial in n+ r, and therefore if we could solve the MAX-CUT in time f(t)|V (Q)|o(t) where t =
cwd(Q) then the RED-BLUE PLANAR CDS could be solved in time f(t)|V (G)|o(t′) = f(t)|V (G)|o(t)
where t′ = tw(G) = O(cwd(Q)) = O(t).

Algorithmic upper bounds for Max-Cut. Now we outline an algorithm for solving MAX-CUT in
time nO(t) on graphs of clique-width at most t. The algorithm is based on dynamic programming over
the expression tree of the input graph. We briefly describe what we store in the tables corresponding to
the nodes in the expression tree and move the further details to the Appendix 6.2.

Let G be a graph with n vertices and m edges, and let T be an expression tree for G of width t.
For a node X of T , denote by GX the t-graph associated with this node, and let U1(X), . . . , Ut(X) be
the sets of vertices of GX labeled 1, . . . , t respectively. The table of data for the node X stores vectors
(s1, . . . , st, r) of integers such that 0 ≤ si ≤ |Ui(X)| for 1 ≤ i ≤ t, and 0 ≤ r ≤ |E(GX)|, for which
there is a partition V1, V2 of V (GX) such that |V1 ∩ Ui(GX)| = si and |CGX

(V1, V2)| ≥ r. Notice that
this table contains at most (n+ 1)t ·m vectors. If X is the root node of T (i.e. G = GX ) then mcut(G)
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is equal to the maximum value of r for which the table for X contains an entry with this value. This
concludes the proof of the Theorem 1.

Theorem 1 have several interesting corollaries for similar problems like BIPARTIZATION BY EDGE

REMOVAL and MAXIMUM (MINIMUM) BISECTION problem and they can be found in Appendix 6.3.

4 Edge Dominating Set

In this section, we consider the EDGE DOMINATING SET problem. In the EDGE DOMINATING SET

problem, we are given a graphG and a positive integer k, and the objective is to determine whether there
is a set of edges X ⊆ E(G) such that |X| ≤ k and every edge of G is either included in X , or it is
adjacent to at least one edge of X (which dominates it). The set X is called an edge dominating set of
G. We prove the following result for EDGE DOMINATING SET.

Theorem 2. The EDGE DOMINATING SET problem can not be solved in time f(t)no(t) unless ETH fails.
Moreover, the EDGE DOMINATING SET problem can be solved in time nO(t). Here, t is the clique-width
of the input graph.

The proof of Theorem 2 can be found in Appendix 6.4.

5 Conclusion and Further Directions

In this paper, we obtained the first asymptotically tight bounds for problems parameterized by the clique-
width of the input graph. In particular, we showed that MAX-CUT and EDGE DOMINATING SET cannot
be solved in time f(t)no(t), unless ETH collapses; while there do exist algorithms with running time
nO(t) for both these problems, where t is the clique-width of the input graph. We believe that our results
opens a new direction in the algorithmic study around clique-width. Our reduction to obtain a tight lower
bound for MAX-CUT is also an FPT-reduction, thus resolving an open problem about the parameterized
complexity of MAX-CUT.

We conclude with an open problem related to HAMILTONIAN CYCLE. In the HAMILTONIAN CY-
CLE problem, we are given a graph G and the objective is to check whether there exists a cycle passing
through every vertex of G. Similar to MAX-CUT and EDGE DOMINATING SET we can obtain the fol-
lowing algorithmic lower bound for the HAMILTONIAN CYCLE problem when parameterized by the
clique-width of the input graph.

Theorem 3. The HAMILTONIAN CYCLE problem can not be solved in time f(t)no(t), where t is the
clique-width of the input graph, unless ETH fails.

A proof of Theorem 3 is given in Appendix 6.5. However, all the algorithms we know for HAMILTO-
NIAN CYCLE run in time nO(t2), where t is the clique-width of the input graph. We leave it open to find
either an improved lower bound or an improved upper bound for the HAMILTONIAN CYCLE problem.
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6 Appendix

6.1 Proof of Proposition 2

In the proof that PLANAR CDS is W [1]-hard when parameterized by the tree-width presented in [1],
the reduction is a polynomial time linear FPT-reduction from the k-MULTI-COLORED CLIQUE (k-
MCC) problem. Recall that the k-MCC asks for a given k-partite graph G = (V1 ∪ · · · ∪ Vk, E), where
V1, . . . , Vk are sets of the k-partition, whether there is a k-clique C in G. The fact that this problem
can not be solved in time f(k)no(k) unless ETH fails follows immediately from the reduction from the
k-CLIQUE problem (see e.g. [10]). The reduction to PLANAR CDS goes via an intermediate problem,
called PLANAR ARC SUPPLY (PAS) which we describe here. In PAS we are given a planar digraph
D = (N,A) with |N(D)|+ |A(D)| = k, no loops and no double arcs. Every node u ∈ N has a demand
ζ(u) and every arc uv ∈ A has a list L(uv) of ordered integer pairs, called the supply pairs of uv. The
supply pairs and the demand are all coded in unary. The task is to decide whether there is a function fa :
A → N and a function fb : A → N such that for every arc uv ∈ A we have (fa(uv), fb(uv)) ∈ L(uv)
and for every node u ∈ N we have that ζ(u) ≤

∑
v∈N+(u) fa(uv) +

∑
v∈N−(u) fb(vu). In essence we

are asked to pick a supply pair from the list of every arc such that for every vertex the arcs incident to it
are able to cover the demand of the vertex. Therefore the pair of functions fa and fb are called a supply
selection and a supply selection is called satisfying if the demand of all vertices is met.

In [1] a reduction from k-MCC to PAS is given. Let D be the directed graph of the PAS instance
constructed from a an instance of k-MCC and let the underlying undirected graph of D be U(D). Then
D has the following key properties, (a) U(D) is a subgraph of a O(k) × O(k2) grid (and hence has
tree-width O(k)), (b) every vertex of D either has in-degree 1 and out-degree 1 or in-degree 2 and out-
degree 2, and (c) the distance in U(D) between any two vertices of degree 4 is at least 3. Lemmata 1
and 2 from [1] imply that PAS restricted to digraphs with properties (a),(b) and (c) can not be solved in
time f(t)no(t) unless ETH collapses, where t is the tree-width of the underlying undirected graph U(D)
of the input digraph D. Another property of the constructed PAS instances is that whenever they are
yes-instances there is a satisfying supply selection such that for every vertex the supply exactly equals
the demand. Therefore, the exact version of PAS, (EPAS) where the supply is required to be exactly the
demand can not be solved in time f(t)no(t) unless ETH fails as well.

We now give a reduction from EPAS (with properties (a),(b),(c)) to EXACT SATURATED PLANAR

CDS. We consider here a slightly modified version of EXACT SATURATED PLANAR CDS, which we
call EXACT SATURATED PLANAR MARKED CDS, where we mark some vertices and demand that all
marked vertices must be in the dominating set. In particular we show how to transform an instance D,
k of EPAS where U(D) is a subgraph of a t × t2 grid, to an instance H, k∗ of EXACT SATURATED

PLANAR MARKED CDS. Let X be the largest demand of any vertex of D and U ≤ M ≤ D be large
positive integers, chosen such that both U andM−U are an order of magnitude (at least a 100) times
larger than X . Modify the demand of each vertex v of D by increasing it by d(v)M . Modify every
supply-pair (a, b) to (U + a,D + b). It is easy to see that by property (b) these modifications do not
change whether D,k is a yes instance of PAS.

To build H we start with the node set N(D) and make every vertex of N(D) marked. For every
arc uv of D we make a gadget between u and v in H . In particular, for an arc uv ∈ A(D), for every
pair of integers (p, q) ∈ L(u, v) we add a vertex w to H , make w adjacent to u, add p vertices of degree
2 adjacent to u and w and add q vertices of degree 2 adjacent to w and v. We call the vertex w is a
list vertex. This concludes the construction of the graph H . Since D is planar and the gadget we add
to H for every arc of D is planar, H is planar as well. Every marked vertex v of H is also a vertex in
D. The capacity of v in H is set to dH(v) − ζ(v) − d+

D(v), that is, the degree of v in H , minus v’s
demand in D and minus v’s out-degree in D. For all unmarked vertices, their capacity in H is equal
to their degree in H . Finally, k∗ = |N(D)| + |A(D)|. This concludes the construction of the EXACT

SATURATED PLANAR MARKED CDS instance (H, k∗). Observe that H can be obtained from U(D)
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by subdividing edges, and adding copies of subdivided edges. Any sequence of these operations can
increase the tree-width of a graph by at most 1 and hence the tree-width of H is at most t+ 1.

Claim 1. If D has a satisfying supply selection then H has a saturated capacitated dominating set of
size k∗

Proof. We build a capacitated dominating set S of H . First we insert all the marked vertices of H
in S. For every arc uv of D we add a list vertex w to S, namely the list vertex that corresponds to
the supply pair in L(uv) that was selected by the satisfying supply selection of D. The size of S is
|N(D)|+ |A(D)| = k∗. We now prove that S is a capacitated dominating set of H .

First, observe that the marked vertices of H form a dominating set of H , so S is a dominating set
of H . Now, every unmarked vertex in S has capacity equal to its degree, so all unmarked vertices
in S dominate all their neighbors. We now prove that for every marked vertex u, the number of yet
undominated neighbors of u is at most the capacity of u. The number of neighbors of u that already
have been dominated is at least ζ(u). The number of neighbors of u that are in S is d+

D(u). Hence, the
total number of yet undominated neighbors of u is at most dH(u)− ζ(u)− d+

D(u) which is exactly the
capacity of u. Hence S is a saturated capacitated dominating set of H of size k∗.

Claim 2. If H has a capacitated dominating set S of size k∗ then D has a satisfying supply selection.

Proof. There are two kinds of unmarked vertices in H , list vertices and vertices of degree 2. Every
degree 2 vertex u has exactly one neighbor that is unmarked, and one neighbor v that is a list vertex.
Since the capacity of v is equal to its degree and all marked vertices must be in S, if u ∈ S then
S ∪ {v} \ {u} is a capacitated dominating set of H of size at most k∗. Thus, without loss of generality,
all unmarked vertices in S are list vertices.

For an arc uv of D, let s(uv) be the number of vertices in S in the gadget corresponding to the arc
uv. For a vertex u of D let s+(u) =

∑
uv∈A(D) s(uv), s−(u) =

∑
vu∈A(D) s(uv) and s(u) = s+(u) +

s−(u). Since S contains at most |A(D)| unmarked vertices we have that
∑

u∈V (D) s(u) ≤ 2|A(D)|. If
s(u) < dD(u) for a vertex u then the number of vertices in NH(u) dominated by vertices other than
u is at most s(u) · (D + 4X ) < dD(u)M . However the capacity of u is at most dH(u) − dD(u)M ,
contradicting that S is a capacitated dominating set. Hence, for every node u ∈ N(D), s(u) ≥ dD(u).
If for some node s(u) > dD(u) then

∑
u∈N(D) s(u) >

∑
u∈N(D) dD(u) = 2|A(D)|, contradicting that∑

u∈N(D) s(u) ≤ 2|A(D)|. Thus, for every node u ∈ N(D), s(u) = dD(u).
Consider now three consecutive arcs pq, qr and rs in A(D) such that both q and r have degree 2

in D. There are three cases, either s(pq) = s(qr) = s(qs) = 1 or s(pq) = s(qs) = 2 and s(qr) = 0
or finally s(pq) = s(qs) = 0 and s(qr) = 2. We show that the last two cases lead to a contradiction.
If s(pq) = s(qs) = 2 and s(qr) = 0 then the number of neighbors of r dominated by vertices other
than r is at most 2(U + 4X ) < 2M . However the capacity of r is at most dH(r) − 2M , contradicting
that S is a capacitated dominating set. Similarly, if s(pq) = s(qs) = 0 and s(qr) = 2 then the number
of neighbors of q dominated by vertices other than q is at most 2(U + 4X ) < 2M . However the
capacity of q is at most dH(q)−2M , contradicting that S is a capacitated dominating set. It follows that
s(pq) = s(qr) = s(qs) = 1. Because the distance in H between any pair of vertices with degree 4 is at
least 3 it follows that s(pq) = 1 for every arc pq ∈ A(D).

We now make a supply selection (fa, fb) for D as follows. For every arc uv there is exactly one
unmarked vertex x in S in the gadget in H corresponding to the arc uv. This vertex x corresponds to a
pair (p, q) ∈ L(uv) and we make uv select the pair (p, q). Every arc selects a pair from its list in this
manner. We now show that this supply selection is satisfying. Suppose for contradiction that this is not
the case, then there is some vertex u ∈ N(D) whose demand is not met. Then u is a marked vertex in
H , and the demand of u is dH(u) − ζ(u) − d+

D(u). The number of neighbors of u that are dominated
by vertices other than u is at most

∑
v∈N+(u) fa(uv) +

∑
v∈N−(u) fb(vu) < ζ(u). Since s(pq) = 1 for

every arc pq ∈ A(D), u is adjacent to exactly d+(u) vertices in S. Thus u must dominate more than
dH(u)− ζ(u)− d+

D(u) vertices, a contradiction. This concludes the proof.
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The construction, together with Claims 2 and 1 imply that EXACT SATURATED PLANAR CDS and
PLANAR CDS can not be solved in time f(t)no(t) unless ETH collapses. If we in the construction
color all marked vertices and all list vertices red, all other vertices blue and decrease the capacity of
every marked vertex by the number of list vertices in its neighborhood minus 1, Claims 2 and 1 also
go through for RED-BLUE EXACT SATURATED PLANAR CDS and RED-BLUE PLANAR CDS. Hence
RED-BLUE PLANAR CDS and RED-BLUE EXACT SATURATED PLANAR CDS can not be solved in
time f(t)no(t) unless ETH fails. This concludes the proof.

6.2 Algorithmic upper bounds for Max-Cut.

Now we outline an algorithm for solving MAX-CUT in time nO(t) on graphs of clique-width at most t.
The algorithm is based on dynamic programming over the expression tree of the input graph. We first
describe what we store in the tables corresponding to the nodes in the expression tree. and move the
further

Let G be a graph with n vertices and m edges, and let T be an expression tree for G of width t.
For a node X of T , denote by GX the t-graph associated with this node, and let U1(X), . . . , Ut(X) be
the sets of vertices of GX labeled 1, . . . , t respectively. The table of data for the node X stores vectors
(s1, . . . , st, r) of integers such that 0 ≤ si ≤ |Ui(X)| for 1 ≤ i ≤ t, and 0 ≤ r ≤ |E(GX)|, for which
there is a partition V1, V2 of V (GX) such that |V1 ∩ Ui(GX)| = si and |CGX

(V1, V2)| ≥ r. Notice that
this table contains at most (n + 1)t · m vectors. If X is the root node of T (that is, G = GX ) then
mcut(G) is equal to the maximum value of r for which the table for X contains an entry with this
value.

Now we give the details of how we make our tables and how do we update it.

Introduce Node: Tables for introduce nodes of T are constructed in a straightforward manner.

Relabel Node: Suppose that X is a relabel node ρi→j , and let Y be the child of X . Then the table for
X contains a vector (s1, . . . , st, r) if and only if si = 0 and the table for Y contains the entry
(s′1, . . . , s

′
t, r) such that s′p = sp for 1 ≤ p ≤ t, t 6= i, j, and sj = s′i + s′j .

Union Node: Let X be a union node with children Y and Z. In this case the table for X contains
a vector (s1, . . . , st, r) if and only if the tables for Y and Z have vectors (s′1, . . . , s

′
t, r
′) and

(s′′1, . . . , s
′′
t , r
′′) respectively, such that s′i + s′′i = si for 1 ≤ i ≤ t, and r′ + r′′ ≥ r.

Join Node: Finally, suppose that X is a join node ηi,j with the child Y . It can be noted that the table for
X has a vector (s1, . . . , st, r) if and only if the table for Y includes a vector (s1, . . . , st, r′) such
that r′ + si(|Uj(Y )| − sj) + sj(|Ui(Y )| − si) ≥ r.

Correctness of the algorithm follows from the description of the procedure, and its runs in time
O(tO(1)n2t+O(1)). This proves that MAX-CUT can be solved in time nO(t) on graphs of clique-width at
most t.

6.3 Bipartization by Edge Removal and Maximum (Minimum) Bisection

In the BIPARTIZATION BY EDGE REMOVAL problem, we are given a graph G and a positive integer k,
and the question is whether there is a set of edges X such that |X| ≤ k and the graph G′ with the vertex
set V (G) and the edge set E(G) \ X) is bipartite. Since this problem is dual to the MAXIMUM CUT

problem, we immediately have the following corollary.

Corollary 1. The BIPARTIZATION BY EDGE REMOVAL problem can not be solved in time f(t)no(t)

unless ETH fails. Moreover, the BIPARTIZATION BY EDGE REMOVAL problem can be solved in time
nO(t). Here, t is the clique-width of the input graph.
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In the MAXIMUM (MINIMUM) BISECTION problem, we are given a graph G with an even number
of vertices and a positive integer k, and the objective is to check whether there is a partition of V (G)
into two sets V1 and V2 of equal size such that |CG(V1, V2)| ≥ k (|CG(V1, V2)| ≤ k).

Corollary 2. The MAXIMUM (MINIMUM) BISECTION problem can not be solved in time f(t)no(t)

unless ETH fails. Moreover, the MAXIMUM (MINIMUM) BISECTION problem can be solved in time
nO(t). Here, t is the clique-width of the input graph.

Proof. The algorithmic upper bound for the MAXIMUM BISECTION follows from the observation that
the algorithm for the MAX-CUT described in 6.2 can be modified for this problem. The lower bound can
be obtained from the fact that the MAX-CUT problem for a graph G can be reduced to the MAXIMUM

BISECTION by adding |V (G| isolated vertices. The claim about the MINIMUM BISECTION follows from
the observation that the MAXIMUM BISECTION problem for a graphG can be reduced to the MINIMUM

BISECTION problem in the complement G, and the fact that cwd(G) ≤ 2cwd(G) (see [30, 6]).

6.4 Proof of Theorem 2

We prove this theorem in two parts. We first show the lower bound and then complement this result
with the corresponding upper bound. Our proof for lower bounds uses several ideas form the proof of
W[1]-hardness given in [13], though requires several new ideas to get a linear bound on the clique-width
of the instances we reduce to.

Lower Bounds. To prove our result we give a linear FPT-reduction from the RED-BLUE EXACT

SATURATED PLANAR CDS problem to the EDGE DOMINATING SET problem. The proof is organized
as follows: we first give a construction, then prove its correctness and finally argue on the clique-width
of the transformed instance. We start with descriptions of auxiliary gadgets.

Auxiliary gadgets: Let s ≤ t be positive integers. We construct a graph Fs,t with the vertex set
{x1, . . . , xs, y1, . . . , ys, z1, . . . , zt} and edges xiyi, 1 ≤ i ≤ s and yizj , 1 ≤ i ≤ s and 1 ≤ j ≤ t.
Basically we have complete bipartite graph between yi’s and zj’s with pendent vertices attached to yi’s.
The vertices z1, z2, . . . , zt are called roots of Fs,t.

Graph Fs,t has the following property.

Lemma 6. Any set of s edges incident to vertices y1, . . . , ys forms an edge dominating set in Fs,t.
Furthermore, letG be a graph obtained by the union of Fs,t with some other graphH such that V (Fs,t)∩
V (H) = {z1, . . . , zt}. Then every edge dominating set of G contains at least s edges from Fs,t.

The proof of the lemma follows from the fact that every edge dominating set includes at least one
edge from E(yi) for i ∈ {1, . . . , s}.

Final Reduction: Now we describe our reduction. Let (G, c) be red-blue capacitated graph with R =
{u1, . . . , un} being the set of red vertices and B = {v1, . . . , vr} being the set of blue vertices and k be
a positive integer. Each red vertex ui is replaced by the set Ui with c(ui) vertices, and for every edge
uiuj ∈ E(G), all vertices of Ui are joined to vj by edges. For every vertex vj we add one additional leaf
(a pendent vertex). Now vertex sets {a1, . . . , an} and {b1, . . . , bn} are constructed, and vertices ai are
made adjacent to all the vertices of Ui and the vertex bi. For every vertex bi, a set Ri of c(ui) vertices
is added and bi is made adjacent to all the vertices in Ri. Then to every vertex of R1 ∪ R2 ∪ · · · ∪ Rn
we add a path of length two. Let X be the set of middle vertices of these paths. We denote the obtained
graph by G′ (see Fig 2). Finally, we introduce three copies of Fs,t:

• a copy of Fn−k,n with roots {a1, . . . , an},
• a copy of Fk,n with roots {b1, . . . , bn}, and a
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Figure 2: Graph G′

• a copy of Fm,r where r =
n∑
i=1

c(ui) with roots in X .

Let this final resulting graph be H .

Lemma 7. A graph G has a saturated capacitated dominating set of the size k if and only if H has an
edge dominating set of cardinality at most n+m+ r.

Proof. Let S be an exact saturated dominating set of the size k in G and f be its corresponding domi-
nation mapping. For convenient, we assume that S = {u1, . . . , uk}. We construct the edge dominating
set as follows. First we select an edge emanating from every vertex in the set {v1, . . . , vm}. For every
vertex vj , we choose a vertex u in Ui where ui = f(vj) which is not incident to already chosen edges
and add the edge uvi to our set. Notice that we always have such a choice of u ∈ Uj as c(uj) = |Uj |.
We observe that these edges already dominate all the edges in the sets E(vj), 1 ≤ j ≤ m, and in sets
E(u) for u ∈ U1 ∪ · · · ∪ Uk. Now we add n − k edges from Fn−k,n which are incident to vertices in
{ak+1, . . . , an} and k edges from Fk,n which are incident to {b1, . . . , bk}. Then r −m matching edges
joining vertices of Rk+1, . . . , Rn to the vertices of X are included in the set. Finally, we add m edges
form Fm,r which are incident to vertices of X and are adjacent to vertices of R1, . . . , Rk. Since S is an
exact capacitated dominating set,

∑k
i=1 c(ui) = m, and from our description it is clear that the resulting

set is an edge dominating set of size n+m+ r for H .
We proceed to prove the other direction of the equivalence. Let L be an edge dominating set of

cardinality at most n+m+ r. The set L is forced to contain at least one edge from every E(vj), at least
n − k edges from Fn−k,n, at least k edges from Fk,n, and at least one edge from E(x) for all x ∈ X ,
because of the presence of pendent edges. This implies that |L| = n+m+r, and L contains exactly one
edge from everyE(vi), exactly n−k edges fromFn−k,n, exactly k edges fromFk,n, and exactly one edge
fromE(x) for all x ∈ X . Every edge aibi needs to be dominated by some edge of L, in particular it must
be dominated from either an edge of Fn−k,n, or Fk,n. Let I = {i : ai is incident to an edge from L ∩
E(Fn−k,n)} and J = {j : bj is incident to an edge from L∩E(Fk,n)}. The above constraints on the set
L implies that |I| = n− k, |J | = k, and these sets form a partition of {1, . . . , n}. The edges which join
vertices bi and Ri for i ∈ I are not dominated by edges from L ∩ E(Fk,n). Hence to dominate these
edges we need at least

∑
i∈I |Ri| edges which connect setsRi andX . Since at leastm edges of Fm,r are

included in L, we have that
∑

i∈I |Ri| ≤ r −m and
∑

j∈J |Rj | = r −
∑

i∈I |Ri| ≥ r − (r −m) ≥ m.
Let S = {ui : i ∈ J}. Clearly, |S| = k. Now we show that S is a saturated capacitated dominating
set. For i ∈ J , edges which join a vertex ai to Ui are not dominated by edges from L ∩ E(Fn−k,k), and
hence they have to be dominated by edges from sets E(vj). Since m ≤

∑
i∈J |Rj | =

∑
i∈J |Uj |, there

are exactly m such edges, and every such edge must be dominated by exactly one edge from L. We also
know that L∩E(vj) 6= ∅ for all j ∈ {1, . . . ,m} and hence for every vj , there is exactly one edge which
joins it with some vertex u ∈ Ui for some i ∈ J . Furthermore, all these edges are not adjacent, that is,
they form a matching. We define f(vj) = ui for j ∈ {1, . . . ,m}. From our construction it follows that
f is a domination mapping for S and S is an exact saturated dominating set in G.
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The next lemma shows that if the graph G we started with has bounded tree-width then H has
bounded clique-width.

Lemma 8. If tw(G) ≤ t then cwd(H) ≤ 12t+ 24.

Proof. By Proposition 1, we have that the graph G is of clique-width at most s = 12t + 12. Suppose
that the expression tree for G uses s-labels {α1, . . . , αs}. We construct the expression tree for H by
scanning the expression tree for G. To construct the expression tree for H we need following additional
labels:

• Labels ξ1, ξ2, and ξ3 for attaching Fn−k,n, Fk,n and Fm,r respectively.
• Labels ζ1, ζ2, ζ3 for marking some vertices.
• Working labels γ1, . . . , γ6.

When a vertex ui ∈ R labeled αp is introduced, we perform following set of operations. First we
introduce following vertices with some working labels: c(ui) vertices of Ui with label γ1, the vertex ai
with label γ2, and the vertex bi with label γ3. Then we join the vertices labeled with γ1 to the vertex
labeled with γ2, and the vertex labeled γ2 with the vertex labeled γ3. Now we want to make the vertices
ofRi and the paths attached to it. To do so we perform following operations c(ui) times: introduce three
nodes labeled with γ4, γ5 and γ6 and join γ3 with γ4, γ4 with γ5 and γ5 with γ6. Finally, we relabel
γ1 to αp, γ2 to ξ1 and γ3 to ξ3, γ4 to ζ1, γ5 to ξ3, and γ6 to ζ2. We omit the union operations from the
description and assume that if some vertex is introduced then this operation is immediately performed.

If a vertex vj ∈ B labeled αq is introduced then we introduce the vertex vi labeled by γ1, and the
vertex labeled γ2 (pendent vertex), join vertices labeled γ1 and γ2, and then relabel γ1 to αq and γ2 to
ζ3.

If in the expression tree of G, we have join operation between two labels say αp and αq then we
repeat in the new tree. Union operations in the expression tree is exactly done as before.

Finally to complete the expression tree for H , we need to add Fn−k,n, Fk,n and Fn,r. Notice that all
the vertices in {a1, . . . , an}, {b1, . . . , bn} and X are labeled ξ1, ξ2 and ξ3 respectively. From here we
can easily add Fn−k,n, Fk,n and Fn,r with root vertices {a1, . . . , an}, {b1, . . . , bn} and X respectively
by using working labels. This concludes the description for the expression tree for H .

To conclude the proof of the first part of the Theorem 2, it remains to note that H has 4(n + m +
r) ≤ 4(n + m + n2) vertices, and therefore if we could solve the EDGE DOMINATING SET in time
f(k)|V (H)|o(t) where t = cwd(H) then same would hold for the RED-BLUE EXACT SATURATED

PLANAR CDS with only difference that t is the tree-width.

Algorithmic upper bound for Edge Dominating Set: Now we give an algorithmic upper bound for
the EDGE DOMINATING SET problem parameterized by the clique-width, that is, give an algorithm
running in time nO(t) for EDGE DOMINATING SET on graphs of clique-width at most t. As usually
is the case with algorithms over graphs of bounded clique-width, the algorithm is based on a dynamic
programming over the expression tree of the input graph.

Let G be a graph with n vertices and m edges, and let T be an expression tree for G of the width
t. For a node X of T , denote by GX the t-graph associated with this node, and let U1(X), . . . , Ut(X)
be sets of vertices of GX labeled 1, . . . , t respectively. The table of data for the node X stores vectors
(s1, . . . , st, r1, . . . , rt, l) of non negative integers with the following properties:

• si + ri ≤ |Ui(X)| for 1 ≤ i ≤ t;
• l ≤ |E(GX)|;
• there is a set of edges S ⊆ E(GX) such that si vertices of Ui(X) are adjacent to the edges of S

for 1 ≤ i ≤ t, and |S| ≤ l;
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• it is possible to attach ri pendent edges to the vertices of Ui(X) for 1 ≤ i ≤ t in such a way that
these edges dominate all edges of GX undominated by S.

The size of this table is at most (n+ 1)2t ·m. If X is the root node of T (that is G = GX ) then the size
of the minimum edge dominating set is the minimum value of l for which the table for X contains an
entry with the value of the parameter being l and r1 = . . . = rt = 0.

Now we give the details of how we make our tables and how do we update it.

Introduce Node: Tables for introduce nodes of T are constructed in a straightforward way.

Relabel Node: LetX be a relabel node ρi→j , and let Y be the child ofX . Then the table forX contains
a vector (s1, . . . , st, r1, . . . , rs, l) if and only if si = 0, ri = 0 and the table for Y contains the
entry (s′1, . . . , s

′
t, r
′
1, . . . , r

′
t, l) such that s′p = sp and rp = r′p for 1 ≤ p ≤ t, t 6= i, j, and

sj = s′i + s′j , rj = r′i + r′j .

Union Node: Let X be a union node with children Y and Z. In this case the table for X con-
tains a vector (s1, . . . , st, r1, . . . , rt, l) if and only if the tables for Y and Z have vectors
(s′1, . . . , s

′
t, r
′
1, . . . , r

′
t, l
′) and (s′′1, . . . , s

′′
t , r
′′
1 , . . . , r

′′
t , l
′′) respectively such that s′i + s′′i = si and

r′i + r′′i = ri for 1 ≤ i ≤ t, and l′ + l′′ ≤ l.

Join Node: Finally, suppose that X is a join node ηi,j with the child Y . It can be noted that the ta-
ble for X has a vector (s1, . . . , st, r1, . . . , rt, l) if and only if the table for Y includes a vector
(s′1, . . . , s

′
t, r
′
1, . . . , r

′
t, l
′) such that

• sp = s′p and rp = r′p for 1 ≤ p ≤ t, p 6= i, j;
• si + ri = s′i + r′i, sj + rj = s′i + r′j ;
• s′i ≤ si, s′j ≤ sj ;
• either s′i + r′i = |Ui(Y )| or s′j + r′j = |Uj(Y )|;
• l′ + max{si − s′i, sj − s′j} ≤ l.

Correctness of the algorithm follows from the description of the algorithm, and it runs in time
O(tO(1)n4t+O(1)). This implies that the EDGE DOMINATIN SET problem can be solved in time nO(t),
where t is the clique-width of the input graph. This concludes the proof of the Theorem 2.

6.5 Proof of Theorem 3

To prove our result we give a linear FPT-reduction from the RED-BLUE PLANAR CDS problem to the
HAMILTONIAN CYCLE problem. The proof is organized as follows: we first give a construction, then
prove its correctness and finally argue on the clique-width of the transformed instance. We call a graph
hamiltonian if it contains a hamiltonian cycle. We start with descriptions of our auxiliary gadgets.

Auxiliary gadgets: We denote by L1, the graph with the vertex set {x, y, z, a, b, c, d} and the edge set
{xa, ab, bc, cd, dy, bz, cz}. Let P1 be the path xabzcdy, and P2 = xabcdy. (See Fig. 3.)

We abstract a property of this graph in the following lemma.

Lemma 9. LetG be a Hamiltonian graph such thatG[V ′] is isomorphic to L1. Furthermore, if all edges
in E(G) \E(G[V ′]) incident to V ′ are incident to the copies of the vertices x, y, and z in V ′, then every
Hamiltonian cycle in G either includes the path P1, or the path P2 as a segment.

Our second auxiliary gadget is the graph L2. This graph has {x, y, z, s, t, a, b, c, d, e, f, g, h}
as its vertex set. We first include following {xa, ab, bz, cz, cd, dy, se, ef, fb, ch, hg, gt} in its edge
set. Then x, y-path of length 10, xw1 · · ·w9y, is added, and edges fw3, w1w6, w4w9, w7h are in-
cluded in the set of edges. Let P = xabzcdy, R1 = sefbaxw1w2 . . . w9ydchgt, and R2 =
sefw3w2w1w6w5w4w9w8w7hgt. (See Fig. 3.) This graph has the following property.
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Figure 3: Graphs L1 and L2. Paths P1, P2, R1, R2 and P are shown by thick lines

Lemma 10. Let G be a Hamiltonian graph such that G[V ′] is isomorphic to L2. Furthermore, if all
edges in E(G) \E(G[V ′]) incident to V ′ are incident to the copies of the vertices x, y, z, s, t in V ′, then
every Hamiltonian cycle in G includes either the path R1, or two paths P and R2 as segments.

The lemma easily follows from the presence of degree 2 vertices in the graph L2, since for any such
vertex, the vertex and the adjacent vertices have to belong to one segment of a Hamiltonian path.

Final Reduction: Now we describe our reduction. Let (G, c) be red-blue capacitated graph with R =
{u1, . . . , un} being the set of red vertices and B = {v1, . . . , vr} being the set of blue vertices and k
be a positive integer. Each red vertex ui is replaced by two vertices ai, bi, the vertices ai and bi are
joined by c(ui) + 1 paths of length two. Let Ci denote the set of middle vertices of these paths, and
Xi = Ci ∪{ai, bi}. Each edge uivj ∈ E(G), is replaced by a copy Lij2 of L2 with z = vj and vertices x
and y are made adjacent to all the vertices of Ci. The vertices corresponding to s and t are called sij and
tij in Lij2 . Furthermore, let xij and yij denote the vertices corresponding to x and y in Lij2 . The paths
corresponding to P , R1 and R2 are called P ij , Rij1 and Rij2 respectively in Lij2 . Denote the obtained
graph by G′(c). (See Fig. 4 for an illustration.)

In the next step we add two vertices g and h which are joined by
∑n

i=1(c(vi) + 3) +m+ 1 paths of
length two. Let Y be the set of middle vertices of these paths. All vertices sij and tij are joined by edges
with all vertices of Y . For every vertex w such that w ∈ Xi (recall Xi = Ci ∪ {ai, bi}), i ∈ {1, . . . , n},
a copy Lw1 of L1 with z = w is attached and the vertices x, y of this gadget are joined to all vertices of
Y . We let xw and yw denote the vertices corresponding to x and y in Lw1 . Similarly Pw1 and Pw2 denotes
paths in Lw1 corresponding to P1 and P2 respectively.

vj

z

x y

s t

L2

biai bn

vr

a1

v1

Figure 4: Graph G′(c)

Finally we add k + 1 vertices, namely {p1, . . . , pk+1}, and make them adjacent to all the vertices
{ai, bi : 1 ≤ i ≤ n} and to g and h. Let this resultant graph be H . The construction of H can easily be
done in time polynomial in n and m.

Lemma 11. A graph (G, c) has a capacitated dominating set of size at most k if and only if H has a
Hamiltonian cycle.

Proof. Let S be a capacitated dominating set of size at most k in (G, c) with the corresponding dom-
inating mapping f . Without loss of a generality we assume that |S| = k and S = {u1, . . . , uk}.
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The Hamiltonian cycle we are trying to construct is naturally divided into k + 1 parts by the vertices
{p1, . . . , pk+1}. We construct the Hamiltonian cycle starting from the vertex p1. Assume that the part
of the cycle up to the vertex pi is already constructed. We show how to construct the part from pi to
pi+1. We include the edge piai in it. Let J = {j ∈ {1, . . . , x} : f(vj) = ui}. If J = ∅ then ai is joined
with bi by a path of length two which goes through one vertex of Ci. Otherwise, for all gadgets Lij2
where j ∈ J , the paths P ij are included to the cycle as segments, and endpoints of these paths are joined
consecutively by paths of length two through vertices of Ci with ai and bi (that is, ai is joined with one
endpoint of the first path through a vertex of Ci, another endpoint of this path is joined the endpoint of
the second path through another vertex of Ci and so on, the remaining endpoint of the last path is joined
with bi). Since |J | ≤ c(ui) and |Ci| = c(ui), we can always find vertices in Ci for this construction.
Finally we include the edge bipi+1 to the cycle.

When the vertex pk+1 is reached we move to the set Y . Note that at this stage all vertices {v1, . . . , vr}
are already included in the cycle. We start by including the edge pk+1g. We will add following segments
to the cycle and connect them appropriately.

• For every Lij2 , the path Rij1 is added to the cycle if P ij was not included to it, else the path Rij2 is
added. Note that m such paths are included to the cycle.

• For every vertex w such that w ∈ Xi for some i ∈ {1, . . . , n}, the path P r2 is included in the cycle
if w is already included in the constructed part of the cycle, else the path Pw1 is added. Clearly, we
add

∑n
i=1(c(vi) + 3) paths.

Finally the total number of paths we will add is
∑n

i=1(c(vi) + 3) +m = |Y | − 1. We add the segments
of the paths mentioned with the help of vertices in Y , in the way we added the paths P ij with the help
of vertices in Ci. Let the end points of the resultant joined path be {q1, q2}. Notice that (a) q1, q2 ∈ Y
and (b) this path include all the vertices of Y . Now we add edges gq1, q2h and hp1. This completes the
construction of the Hamiltonian cycle.

For the reverse direction of the proof, we assume that we have been given C, a Hamiltonian cycle
in H . This cycle is divided into k + 1 segments by the vertices p1, . . . , pk+1. Let S =

{
ui : pjai ∈

E(C), aips /∈ E(C), j 6= s, for some j ∈ {1, 2, . . . , k + 1}
}

. We prove that S is a capacitated
dominating set in G of cardinality at most k. We first argue about the size of S, clearly its size is upper
bounded by k + 1. To argue that it is at most k, it is enough to observe that by Lemmas 9 and 10, either
pjg, or pjh must be in E(C) for some j ∈ {1, . . . , k + 1}. Now we show that S is indeed a capacitated
dominating set. Our proof is based on following observations.

• By Lemma 10, every vertex vj appears in a segment P ij for some j ∈ {1, . . . , r} in C. We set the
domination function f(vj) = ui if vj is included in the segment P ij in C.

• By Lemmata 9 and 10, the endpoints of paths P ij can be reached only through vertices ai and
bi from outside of the set Xi. This implies that all paths P ij which appear as segments in C for
some i ∈ {1, . . . , n} are joined together and with vertices ai and bi into one segment of C by
paths which go through vertices of Ci. It means that ui ∈ S and f(B) ⊆ S. Moreover, since
|Ci| = c(ui) + 1, at most c(ui) paths P ij can be segments of C for each i ∈ {1, . . . , n} and
therefore |f−1(ui)| ≤ c(ui) for ui ∈ S.

This concludes the proof of the lemma.

The next lemma upper bounds the clique-width of the resultant graph H .

Lemma 12. Let t ≥ 2. If tw(G) ≤ t then cwd(H) ≤ 48t+ 72.

Proof. Since t ≥ 2, tw(I(G)) = tw(G), and by Proposition 1, we have that cwd(I(G)) ≤ c =
12t+ 12. We construct an expression tree for H using 4c+ 24 labels. Suppose that the expression tree
for I(G) uses t labels {α1, . . . , αc}. To construct the expression tree for H we use following additional
labels:
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• Labels β1, . . . , βc for the vertices v1, . . . , vr.
• Labels γ1, . . . , γc and δ1, . . . , δc for the vertices in the copies of L2 which are adjacent to the

vertices of C1, . . . , Cn and v1, . . . , vr.
• Labels ξ1, ξ2, ξ3 for marking some vertices.
• Working labels ζ1, . . . , ζ21.

When a vertex w ∈ V (I(G)) which corresponds to the edge uivj ∈ E(G) labeled αp is introduced,
we perform the following set of operations. We use labels ζ1, . . . , ζ21 to create a copy of the graph
L2 − z (for simplicity we use a separate label for each vertex). Then vertices x and y are relabeled by
γp, vertices b and c (adjacent to z) by δp and vertices s and t by ξ1. Remaining vertices are relabeled by
ξ3. We omit the union operations from our descriptions here and henceforth in any similar descriptions
and assume that if some vertex is introduced then union is always performed.

If a vertex ui labeled αp is introduced, then we do the following operations. First we create the
vertex ai labeled ζ1. Then the 6 vertices of a copy of the gadget L1 attached to ai labeled ζ5, . . . , ζ10 are
introduced and edges of L1 are created by corresponding join operations. We relabel vertices x and y
of this copy of L1 by ξ1 and remaining vertices of L1 − z are relabeled by ξ3. Next step is to introduce
bi with label ζ2. After this we introduce a copy of L1 attached to bi, relabel x and y by ξ1 and relabel
remaining vertices of L1 − z by ξ3. Now we repeat the following c(ui) times (to create vertices of Ci
with attached gadgets L1): introduce a vertex labeled ζ3, use labels ζ5, . . . , ζ10 (together with the vertex
labeled ζ3) to make a copy of L1, relabel x and y of L1 by ξ1, relabel vertices L1 − z by ξ3, and relabel
the vertex labeled by ζ3 by ζ4. Finally, vertices labeled by ζ4 are joined with vertices labeled ζ1 and ζ2,
the vertices ai and bi are relabeled by ξ2, and vertices labeled by ζ4 are relabeled by αp.

When a vertex vj labeled αp is introduced, the vertex labeled βp is introduced.
If in the expression tree of I(G), we have join operation between two labels say αp and αq then

we simulate this by applying join operations between αp and γq, δp and βq, αq and γp, δq and βp. The
relabel operation in the expression tree of G, that is, relabel αp to αq is replaced by relabel αp to αq, βp
to βq, γp to γq and relabel δp to δq. Union operations in the expression tree are done as before.

Now we construct vertices g and h using labels ζ1 and ζ2. Then
∑n

i=1(c(vi)+3)+m+1 vertices of
Y labeled ζ3 are introduced and joined with the vertices labeled ζ1 and ζ2. The vertices g, h are relabeled
by ξ2. Notice that all the vertices which have to be joined with vertices of Y are labeled by ξ1. So, we
join vertices labeled by ζ3 with vertices labeled ξ1. It remains to construct vertices p1, . . . , pk+1 and
connect them with the already constructed part of H . To do this we introduce k + 1 vertices labeled ζ4,
and join them with vertices labeled ξ2.

Lemmata 11, 12 and Proposition 2 together imply the Theorem 3.
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