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Abstract

Spectral methods have been widely used in a broad range of
applications fields. One important object involved in such
methods is the Laplace-Beltrami operator of a manifold. In-
deed, a variety of work in graphics and geometric optimiza-
tion uses the eigen-structures (i.e, the eigenvalues and eigen-
functions) of the Laplace operator. Applications include
mesh smoothing, compression, editing, shape segmentation,
matching, parameterization, and so on. While the Laplace
operator is defined (mathematically) for a smooth domain,
these applications often approximate a smooth manifold by a
discrete mesh. The spectral structure of the manifold Lapla-
cian is estimated from some discrete Laplace operator con-
structed from this mesh.

In this paper, we study the important question of how
well the spectrum computed from the discrete mesh approx-
imates the true spectrum of the manifold Laplacian. We
exploit a recent result on mesh Laplacian and provide the
first convergence result to relate the spectrum constructed
from a general mesh (approximating an m-manifold embed-
ded in IRd) with the true spectrum. We also study how
stable these eigenvalues and their discrete approximations
are when the underlying manifold is perturbed, and pro-
vide explicit bounds for the Laplacian spectra of two “close”
manifolds, as well as a convergence result for their discrete
approximations. Finally, we present various experimental
results to demonstrate that these discrete spectra are both
accurate and robust in practice.

1 Introduction

Spectral methods have been used in a broad range of
applications fields, including computer vision, machine
learning and data mining. An important object involved
in such methods is the Laplace-Beltrami operator of a
given manifold (such as a surface). It is a fundamen-
tal object encoding the intrinsic geometry of the un-
derlying manifold, and has many properties useful for
practical applications. For example, eigenfunctions of
the Laplacian form a natural basis for square integrable
functions on the manifold analogous to Fourier harmon-
ics for functions on a circle (i.e. periodic functions).
Such a basis reflects the intrinsic geometry of the man-
ifold, which has been used to perform various tasks like
dimensionality reduction, motion tracking, and surface
matching. Its relation to the heat diffusion also makes it
a primary tool for surface smoothing. Indeed, in recent
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years, a considerable amount of work in graphics and
geometric optimization use the eigen-structures (i.e, the
eigenvalues and eigenfunctions) of the Laplace operator,
and applications include mesh smoothing, compression,
editing, shape segmentation, matching, and parameter-
ization (see reviews [7, 14, 24]).

While the Laplace operator is defined (mathemat-
ically) for a smooth domain, in various applications,
the input object is typically represented by a (discrete)
mesh that approximates the underlying smooth object.
Hence in practice, its spectral structure is estimated
from some discrete analog of the Laplace operator con-
structed from the input mesh. An important question
is whether this discrete approximation of the Laplacian
eigen-structure is accurate or not. This is the first ques-
tion we aim to address in this paper. We further study
in this paper how stable these eigen-structures and their
discrete approximations are when the underlying man-
ifold is perturbed, as robustness is usually an impor-
tant property for practical applications such as in shape
matching.

Related work and new results. Several discretiza-
tions of the Laplace operator for meshes have been pro-
posed. See [21] for a nice discussion explaining the di-
versity of discrete Laplace operators. One of the most
popular ones is the so-called cotangent scheme for sur-
faces embedded in three-dimensional space, originally
proposed in [5, 12], and its variants [4, 10, 11, 22]. The
cotangent scheme has several nice properties, including
the so-called weak convergence (which, roughly speak-
ing, means convergence in the sense of inner product)
[6, 20]. However, in general, it does not provide the
standard pointwise convergence [22, 23], though there
are some convergence results for certain special meshes
and manifolds [22]. Nevertheless, in his Ph.D disserta-
tion, Wardetzky showed a convergence result for spectra
based on the cotangent scheme when the surface mesh
satisfies some mild conditions on the aspect ratio of the
triangles [19]. Reuter et al. computed a discrete Laplace
operator using the finite element method, and obtained
good practical performance [13].

In [3], Belkin et al. proposed the so-called mesh-
Laplace operator, which is the first discrete Laplacian
that pointwise converges to the true Laplacian as the



input mesh approximates a smooth manifold better.
Specifically, for any C2-smooth scalar function f defined
on a manifold M and its restriction f̂ on vertices of a
mesh K, |∆Mf(x) − DK f̂(x)|∞ converges to zero as
K converges to M , where ∆M and DK denote the
Laplacian of M and its discrete approximation from
K, respectively. This result can be easily extended
to higher dimensional manifolds1. Experimental results
also show that this operator indeed produces accurate
approximation of the Laplace operator under various
conditions, such as noisy data input, and different
sampling conditions etc [16].

However, so far, no general convergence result is
known for the eigen-structures of any discrete Laplacian
for meshes in arbitrary dimensions, even though many
practical applications rely on these structures. In
general, pointwise convergence between two operators
is not strong enough to imply the convergence of their
respective eigenvalues nor eigenfunctions. As mentioned
above, partial spectrum convergence result was obtained
for surface meshes based on the cotangent scheme
[19]. For high dimensional manifolds, convergence
result is known only under the statistical setting — if
input points are randomly sampled from the underlying
manifold, Belkin and Niyogi showed that the eigen-
structure of the weighted graph Laplacian of these
points converges to that of the manifold Laplacian [2].

In Section 4, we present the first result relating the
eigen-structure of some discrete Laplacian from meshes
with the manifold Laplacian for m-manifolds embedded
in IRd. We focus on the mesh-Laplacian proposed in
[3] and show that its eigenvalues converge to those of
the manifold Laplacian as the mesh approximates a
smooth manifold better. The new result is achieved by
showing that the mesh-Laplace operator converges to
the manifold Laplacian not only pointwise, but in fact
under a stronger operator norm when considered in a
certain appropriate Sobolev space.

In Section 3, we investigate a related question of
how stable the Laplacian spectrum and its discrete
approximation are as the underlying manifold is per-
turbed. We give explicit bounds for the Laplacian spec-
tra of two “close by” manifolds, and present a conver-
gence result for their discrete approximations. This is
the first stability result for discrete Laplace operators.

In Section 5, we provide experimental evidence
showing that the mesh Laplacian indeed produces good
estimates of spectra of the manifold Laplacian, and is
robust to noise and deformations.

1The extension to d-manifolds embedded in IRd+1 is straight-

forward. When the co-dimension is greater than 1, one needs

to define the sampling condition appropriately to guarantee the

convergence of the normal space.

2 Approach Overview

2.1 Objects and Notations

Laplace-Beltrami operator. Consider a smooth,
compact manifold M of dimension m isometrically
embedded in some Euclidean space IRd. The medial
axis of M is the closure of the set of points in IRd that
have at least two closest points in M . The reach ρ(M)
of M is the infimum of the closest distance from any
point p ∈ M to the medial axis of M . In this paper, we
assume that the manifold M has a positive reach.

Given a twice continuously differentiable function
f ∈ C2(M), let ∇Mf denote the gradient vector field
of f on M . The Laplace-Beltrami operator ∆M of f
is defined as the divergence of the gradient; that is,
∆Mf = div(∇Mf). For example, if M is IR2, then

its Laplacian has the familiar form ∆IR2f = ∂2f
∂x2 + ∂2f

∂y2 .

Discrete setting. In practice, the underlying manifold
is often approximated by a discrete mesh. Given a
simplicial mesh K with all vertices lying on M , we
say that it ε-approximates a smooth manifold M if (i)
for any point p ∈ M , there is a sample point (i.e, a
vertex) from K that is at most ερ(M) away; and (ii)
the projection map φ from the underlying space |K|
of K onto M is a homeomorphism and its Jacobian is
bounded by 1 + O(ε) at any point in the interior of
the m-simplices. Intuitively, the first condition ensures
that the mesh is sufficiently fine. However, a very fine
mesh can still provide a poor approximation to the
underlying surface. Hence we need the second condition
to ensure that the distortion between |K| and M is
small. We remark that for an m-manifold embedded in
IRm+1 (such as a surface embedded in IR3), such an ε-
approximation is equivalent to the (ε, η)-approximation
used in [3] with η = O(ε), which bounds both the
sampling density and the normal deviation.

In the discrete setting, an input function f is only
available at vertices of K, and thus can be represented as
an n-dimensional vector f̂ = [f(v1), . . . , f(vn)]T where
V = {v1, . . . , vn} is the set of vertices in K. In [3], a
discrete mesh-Laplacian LK

t was proposed, where t is
some parameter. Being a linear operator, this discrete
analog of the Laplace operator is an n by n matrix. It
is defined by:

LK
t f(vi) =

1

t(4πt)m/2

∑

vj∈V

Aje
−

‖vi−vj‖2

4t (f(vi) − f(vj)),

where Aj is 1
m+1 -th of the total volume of all m-

simplices incident to the vertex vj . This discrete op-
erator LK

t pointwise converges to the Laplace operator
∆M of M . More precisely,



Theorem 2.1. ([3]) Set t(ε) = ε
1

2.5+α for an arbitrary
fixed positive number α > 0. Then for any f ∈ C2(M)
and any point x ∈ M ,

lim
ε→0

sup
K(ε)

|LK(ε)
t(ε) f(x) − ∆Mf(x)| = 0,

where the supremum is taken over all ε-approximations
K(ε) of M .

Problem definition. In this paper, we aim to un-
derstand the stability of the spectrum of the Laplace
operator and its discrete analog. The first question we
consider is:

P1. How does the spectrum of the mesh-Laplacian LK
t

relate to that of ∆M . Does the former converge to
the latter as the sampling becomes denser?

The second problem aims to understand the stability
of the Laplacian spectrum (both the continuous and
discrete versions) when the underlying manifold M is
perturbed. Specifically, given two smooth and compact
m-manifolds M and N embedded in IRd, we say that
M and N are δ-close if there is a homeomorphism
Ψ : M → N such that (1) ‖x − Ψ(x)‖ = O(δ) for any
x ∈ M , and (2) the Jacobian of the map Ψ is bounded
by |JΨ − 1| = O(δ) at any point of M .

P2. How are the spectra of ∆M and ∆N , as well as the
spectra of the discrete Laplacian computed from
meshes approximating M and N , related.

2.2 Overview of Approaches and Results

To connect the Laplace operator and its approx-
imation, we need an intermediate operator LM

t , called
the functional approximation of ∆M , first introduced
in [1]. Given a point p ∈ M and a function f : M → IR,
it is defined as:

LM
t f(x) =

1

t(4πt)m/2

∫

y∈M

e−
‖x−y‖2

4t (f(x) − f(y)) dy.

(2.1)

The intuition behind using this operator is two-fold.
First, the closed form of the Laplace operator is unavail-
able for general manifolds, making it hard to analyze
directly. Secondly, while the Laplace operator is an un-
bounded operator, this functional Laplacian is bounded
with a simple spectral structure. This facilitates us to
use the standard perturbation theory to analyze the
stability of this operator. The connection between the
functional Laplacian and ∆M can be summarized in the
following theorem [1, 2].

Theorem 2.2. ([1, 2]) For a function f ∈ C2(M), we
have that

lim
t→0

∥∥LM
t f − ∆Mf

∥∥
∞

= 0.

Furthermore, let {λi} and {λ̂i} denote the discrete
eigenvalues of ∆M and LM

t enumerated in non-
decreasing order. Then, for any fixed i and for t small
enough (more precisely, t < 1

2λi
), we have |λi − λ̂i| =

O(t
2

m+6 ).

In [3], it was shown that given a mesh K that ε-
approximates M , LM

t can be approximated by the mesh
Laplacian LK

t with pointwise convergence guarantee.
When combined with the above theorem, this implies
Theorem 2.1. However, to answer Question P1, we need
a stronger (than pointwise) convergence result between
LK

t and LM
t . Specifically, in Section 4, we show the

following result, which is obtained by bounding the
operator norm of the difference between LK

t and LM
t

in an appropriate functional space.

Theorem 2.3. Given a smooth m-manifold M , let
K(ε) denote a simplicial mesh K that ε-approximates

M . Let {λ̂i} and {λD
i (ε)} denote the set of non-

decreasing discrete eigenvalues of LM
t and of L

K(ε)
t ,

respectively. Then, for any fixed i, we have that
limε→0 |λ̂i − λD

i (ε)| = 0.

This result, combined with Theorem 2.2, gives an
answer to Question P1 of this paper, which is stated
below. The relation between these results is illustrated
in Figure 1.

Theorem 2.4. Given a smooth m-manifold M and a
simplicial mesh K(ε) that ε-approximates M , let {λi}
and {λD

i (ε)} denote the set of non-decreasing discrete

eigenvalues of ∆M and of L
K(ε)
t , respectively. Then, for

any fixed i, we have that limt,ε, ε

t
m
2

+3
→0 |λi−λD

i (ε)| = 0.

∆M
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Figure 1: Theorems relating different operators are
shown on top of the arrows. Double arrows indicate the
two main new results in this paper, and lead to those
results specified by dotted arrows.



To answer Question P2, the main component is a
perturbation result for the functional Laplace operator.
Specifically, let Spec(A) denote the spectrum of an
operator A. We show that:

Theorem 2.5. Given two δ-close m-manifolds M and
N , the Hausdorff distance between Spec(LM

t ) and
Spec(LN

t ) is O( δ

t
m
4

+2 ). That is, for any eigenvalue

λ̂ ∈ Spec(LM
t ) and ω̂ ∈ Spec(LN

t ), we have that

dist(λ̂, Spec(LN
t )) = O( δ

t
m
4

+2 ) and dist(ω̂, Spec(LM
t )) =

O( δ

t
m
4

+2 ), where dist(x, X) := infy∈X |y − x|.

Combining this result with Theorem 2.2 bounds the
spectra of ∆M and of ∆N (Theorem 2.6 below); and
combining it with Theorem 2.3 leads to spectral conver-
gence of discrete Laplacians for meshes approximating
M and N , as N converges to M (Theorem 2.7 below).
These relations are also illustrated in Figure 1.

Theorem 2.6. Let {λi} and {ωi} be the nondecreasing
eigenvalues of ∆M and ∆N with multiplicity. Then, for
any λi, there exists δ0 > 0 such that if M and N are

δ-close for any δ < δ0, then |λi − ωi| = O(δ
8

m2+14m+56 ).

Theorem 2.7. Let M and N be two m-manifolds that
are δ-close, and K(ε) and Q(ε) be two simplicial meshes
ε-approximating M and N , respectively. Let {λD

i } and

{ωD
i } be the non-decreasing eigenvalues of LK

t and L
Q
t

with multiplicity. Then, for any fixed i, we have that
as N converges to M and as the meshes approximate
better, limδ,ε, ε

δ
m
2

+3
, δ

t
m
4

+2
→0 |λD

i − ωD
i | = 0.

Outline. In the rest of this paper, instead of following
the above order where we introduced the results, we
first prove Theorem 2.5 and 2.6 in Section 3, as this will
illustrate some of the main ideas of our approach. The
proof for Theorem 2.3 is more technical, and we will
present a sketch of it as well as proofs for the remaining
results in Section 4.

3 Perturbation of Manifold and Stability

In this section, we study the behavior of the spectrum
of ∆M and its discrete approximation as the underlying
manifold M is perturbed to another manifold N that
is δ-close to M . The main component is to relate the
spectrum of LM

t with that of LN
t (i.e, Theorem 2.5)

which we focus on now. Here we consider the Hilbert
spaces L2(M) and L2(N), which are the spaces of square
integrable functions on M and on N , respectively.
Notice that for any compact manifold X , the functional
Laplacian LX

t is a self-adjoint and bounded operator in
L2(X) (equipped with the standard L2 norm).

Roughly speaking, if the norm of the difference
between two operators is bounded in some space, then
the distance between their spectra is also bounded.
Hence, we wish to bound the operator norm of LM

t −LN
t .

However, the two operators LM
t and LN

t are defined over
two different spaces, L2(M) and L2(N), respectively.
Thus, they are not directly comparable. Now assume
Ψ : M → N is a homeomorphism between M and N
that satisfies the δ-closeness conditions. We compare
the operator LM

t with the pull-back operator of LN
t .

Specifically, given an operator A : L2(N) → L2(N), its
pullback via Ψ, denoted by Ψ∗(A) : L2(M) → L2(M),
is defined by: given any function f ∈ L2(M), we obtain
another function in L2(M) which is A(f ◦ Ψ−1) ◦ Ψ.

Lemma 3.1. A and Ψ∗(A) share the same eigenvalues.
The eigenfunctions of Ψ∗(A) are {gi ◦ Ψ} where gi are
the eigenfunctions of A.

Proof: Take an eigenfunction gi of A with eigenvalue
ρ, that is, Agi = ρgi. Now consider f = gi ◦ Ψ and
consider Ψ∗(A)f . We have that

Ψ∗(A)f = A(f ◦Ψ−1) ◦ Ψ = A(gi) ◦Ψ = ρgi ◦Ψ = ρf.

The opposite direction is similar.

Since LN
t and its pullback share the same spectrum, it

suffices to compare LM
t with Ψ∗(LN

t ). The following
result will be needed later (the proof is rather standard
and is in Appendix A):

Claim 3.2. Given an m-manifold M embedded in IRd,

for small enough t > 0,
∫

M e−
‖x−y‖2

4t dy = O(t
m
2 ).

Lemma 3.3. The L2-norm of the difference of LM
t and

Ψ∗(LN
t ) is bounded by ‖LM

t − Ψ∗(LN
t )‖ = O( δ

t
m
4

+2 ).

Proof: Set c = 1
t(4πt)m/2 and Gt(x, y) = e−

‖x−y‖2

4t . Given

two points x, y ∈ M , note that ‖Ψ(x) − x‖ = O(δ) and
‖Ψ(y)− y‖ = O(δ) since M and N are δ-close. Thus

|Gt(Ψ(x), Ψ(y)) − Gt(x, y)| = O(
δ

t
)Gt(x, y).

Now, given a function f : M → IR and a point x ∈ M ,
note that Ψ∗(LN

t )f(x) = LN
t (f ◦ Ψ−1) ◦ Ψ(x). Setting

g = f ◦ Ψ−1 and p = Ψ(x), we have that:

Ψ∗(LN
t )f(x) = LN

t g(p) = c

∫

N

Gt(p, q)[g(p) − g(q)]dq.

By change of variables, we then obtain:

Ψ∗(LN
t )f(x)

= c

∫

Ψ−1(N)

Gt(p, Ψ(y))[g(p) − g ◦ Ψ(y)]JΨ|ydy

= c

∫

M

Gt(Ψ(x), Ψ(y))[f(x) − f(y)]JΨ|ydy,



where JΨ|y is the Jacobian of the map Ψ at y ∈ M , and
is bounded by | JΨ|y − 1 |= O(δ) due to the δ-closeness
condition. Comparing this with LM

t f(x) (recall Eqn
2.1), we have that:
∣∣∣Ψ∗(LN

t )f(x) −LM
t f(x)

∣∣∣

≤ c

∫

M

∣∣f(y)
(
Gt(Ψ(x), Ψ(y))[1 + O(δ)] − Gt(x, y)

)∣∣ dy

+ c

∫

M

∣∣f(x)
(
Gt(Ψ(x), Ψ(y))[1 + O(δ)] − Gt(x, y)

)∣∣ dy

= c |
∫

M

Gt(Ψ(x), Ψ(y))f(y)dy −
∫

M

Gt(x, y)f(y)dy

+ O(δ)

∫

M

Gt(Ψ(x), Ψ(y))f(y)dy |

+ c

∫

M

∣∣f(x)
(
Gt(Ψ(x), Ψ(y))(1 + O(δ)) − Gt(x, y)

)∣∣ dy

≤ c · O(
δ

t
)
[ ∫

M

Gt(x, y)|f(y)|dy + |f(x)|
∫

M

Gt(x, y)dy
]

≤ c · O(
δ

t
)
[
‖f‖

√∫

M

G2
t (x, y)dy + |f(x)|

∫

M

Gt(x, y)dy
]

≤ O(
δ

t
m
4 +2

)‖f‖ + O(
δ

t2
)|f(x)|.

The last but one inequality follows from the fact that
〈f, g〉 ≤ ‖f‖ · ‖g‖ for any two functions. The last
inequality follows from Claim 3.2. Hence the square
of the L2-norm of Ψ∗(LN

t )f −LM
t f is bounded by:

‖Ψ∗(LN
t )f −LM

t f‖2 =

∫

M

[
Ψ∗(LN

t )f(x) −LM
t f(x)

]2
dx

≤ O(
δ2

t
m
2 +4

)

∫

M

(
‖f‖2 + f2(x) + 2‖f‖ · |f(x)|

)
dx

≤ O(
δ2

t
m
2 +4

)
(
‖f‖2 · ‖1‖+ ‖f‖2 + 2‖f‖2

)

≤ O(
δ2

t
m
2 +4

)‖f‖2,

where 1 is the constant function and ‖1‖ = volume(M).
Hence ‖Ψ∗(LN

t )f − LM
t f‖ = O(δ/t

m
4 +2)‖f‖ for any

function f , where the big-O notation hides terms
depending only on the underlying manifold M . The
lemma then follows.

This result and Equation (2) from [17] imply that
for any eigenvalue ω̂ ∈ Spec(LN

t ), we have that
dist(ω̂, Spec(LM

t )) = O( δ

t
m
4

+2 ). Now switching the role

of M and N in Lemma 3.3, we obtain a symmetric re-
sult that for any eigenvalue λ̂ ∈ Spec(LM

t ), we have

that dist(λ̂, Spec(LN
t )) = O( δ

t
m
4

+2 ). Theorem 2.5 then

follows from these two results. We remark that the dis-
tance between spectra of LM

t and LN
t depends not only

on δ, the closeness between M and N , but also on t in-
versely. Intuitively, this is expected as the parameter t
in the functional Laplacian Lt specifies the width of the
Gaussian kernel and thus the range of the region around
x ∈ M influencing LM

t f(x). Hence, the larger t is, the
stronger the smoothing effect it has, while the smaller t
is, the more sensitive the functional Laplacian is to the
perturbation of the underlying manifold, which leads to
larger error between the corresponding spectra.

Sketch of proof of Theorem 2.6. It is well
known that the Laplace operator has only real and iso-
lated eigenvalues with finite multiplicity. We wish to
build a one-to-one relationship between Spec(∆M ) and
Spec(∆N ) and bound their distances. To achieve this
using Theorems 2.2 and 2.5 (recall Diagram 1), there
are two main technical issues to be addressed. First,
the operator LX

t , although bounded and self-adjoint, is
not compact. Hence, it may have a continuous spectrum
(e.g, all values within an interval are eigenvalues). Sec-
ond, Theorem 2.5 only bounds the Hausdorff distance
between spectra of LM

t and LN
t , while we wish to obtain

a one-to-one relationship between (the lowest) eigenval-
ues. Below we provide a sketch of how these two issues
are addressed; the simple but somewhat technical de-
tails can be found in Appendix B.

For the first issue, given an operator T , let
SpecDis(T ) denote the set of isolated eigenvalues of T
with finite multiplicity. The set

SpecEss(T ) = Spec(T ) \ SpecDis(T )

is called the essential spectrum of T .

Claim 3.4. ([2]) The essential spectrum of LX
t is con-

tained in ( 1
2 t−1,∞). The smallest eigenvalue of LX

t is
0, and the discrete spectrum of LX

t is contained in the
interval [0, Θ( 1

t )).

In other words, even though LM
t contains a continuous

spectrum, those with low values (smaller than 1
2 t−1) are

isolated with finite multiplicity, and can be potentially
related to those of LN

t in a one-to-one manner. These
first few eigenvalues are also what are typically used in
practice. As t goes to zero, the interval [0, 1

2 t−1) will
contain more and more isolated eigenvalues.

For the second issue, consider the first k eigenvalues
{λ̂i} of LM

t and {ω̂i} of LN
t , in non-decreasing order,

where k is an integer such that λ̂k < 1
2 t−1 and

ω̂k < 1
2 t−1 (i.e, the first k isolated eigenvalues). By

using Proposition 6 from [18], we can show that when
δ

t
m
4

+2 , the Hausdorff distance between Spec(LM
t ) and

Spec(LN
t ), is small enough, then |λ̂i − ω̂i| = O( δ

t
m
4

+2 )

for i ∈ [1, k].



Finally, combining this with Theorem 2.2, we

choose t = δ
4(m+6)

m2+14m+56 so that the two convergence
rates, between ∆M (resp. ∆N ) and LM

t (resp. LN
t ),

and between LM
t and LN

t , respectively, are balanced

(i.e, t
2

m+6 = δ
tm/4+2 ). Theorem 2.6 then follows.

4 Spectra Convergence between Discrete and

Continuous Laplacians

In this section, given a mesh K that ε-approximates
a smooth compact m-manifold M embedded in IRd,
we relate the spectrum of ∆M to that of its discrete
approximation. By Theorem 2.2, we only need to show
spectral convergence between the functional Laplace
LM

t and the mesh-Laplacian LK
t (i.e, Theorem 2.3).

Similar to previous section, we will achieve this by
showing that the latter converges to the former in some
operator norm. The main difference and challenge is
that we now need to define the functional space we use
to compare the relevant operators more carefully.

Specifically, the discrete Laplacian LK
t is a linear

operator in IRn where n is the number of vertices in
K; while LM

t is an operator in an infinite dimensional
functional space. Hence, in Step 1, we first construct
a continuous operator CK

t , which (almost) shares the
same spectrum as the discrete operator LK

t , and which,
at the same time, is well-defined in certain a common
functional space along with LM

t . Next, in Step 2, we
bound the operator norm of the difference between CK

t

and LM
t in this space, which will in turn relate their

spectra. Below we give a sketch for the procedure,
focusing on illustrating the intuitions. Details can be
found in Appendix C.

The Sobolev space Hs. The common functional
space we use to compare CK

t and LM
t is the s-th Sobolev

space Hs and we will choose s = m
2 + 1. The norm

in Hs is the Sobolev norm ‖g‖Hs =
[∑s

i=0 ‖g(i)‖2
]1/2

,

where g(i) is the i-th weak derivative2 of g and ‖ · ‖
denotes the standard L2 norm. The key property of Hs

for s ≥ m
2 +1 that we will need is the following [15] and

its corollary.

Lemma 4.1. ([15]) Let f ∈ Hs(M) with s ≥ m/2 + 1
where m is the intrinsic dimension of the manifold M .
Then f is Lipschitz with the Lipschitz constant bounded
by C‖f‖Hs for some universal constant C.

Corollary 4.2. Given any f ∈ Hs(M) with s ≥
m/2+1, ‖f‖∞ ≤ C ′‖f‖Hs with some universal constant

2The weak derivative is a generalization of the derivative of a

function f , when f is not necessarily differentiable in the usual

sense, and these two notions coincide when f is differentiable. For

our purpose, the reader can think of it as the ordinary derivative.

C ′ depending only on the underlying manifold M .

Proof: The Lipschitz constant of f is bounded by
C‖f‖Hs by Lemma 4.1. For any two points x, y ∈ M ,

∣∣∣|f(x)| − |f(y)|
∣∣∣ ≤ |f(x) − f(y)|

≤ C‖f‖Hs · |x − y| ≤ C · Diameter(M) · ‖f‖Hs .

Let p ∈ M be a point so that |f(p)| = minx |f(x)|;
note that |f(p)| ≤ ‖f‖ ≤ ‖f‖Hs . It then follows that
|f(x)| − |f(p)| ≤ C · Diameter(M) · ‖f‖Hs , implying

|f(x)| ≤ |f(p)| + C · Diameter(M) · ‖f‖Hs ≤ C ′‖f‖Hs .

The corollary then follows.
From now on, we fix s = m/2 + 1. There are two

main reasons behind relating the operators of interest
in the space Hs(M), instead of using some other spaces,
say the space of square integrable functions L2(M).

(i) We can extend the discrete operator LK
t into

a well-defined and well-behaved operator in Hs(M).
Intuitively, this is not possible in L2(M), as functions
in L2(M) are not defined pointwise (two functions can
be arbitrarily different at a finite set of points while
the L2-norm of their difference is zero); while at the
same time, LK

t requires point evaluations (as it is
only defined at discrete sample points). Corollary 4.2
guarantees that the point evaluations in Hm/2+1(M) are
not only defined, but also bounded (Hi(M) is, in fact,
a reproducing kernel Hilbert space for i ≥ m/2 + 1).

(ii) It turns out that we cannot bound the L2-norm
distance of relevant operators (which is the operator
norm in L2(M)). As we will see later, this happens
because the Lipschitz constant of the input function
appears while bounding the L2-norm of the operator
difference. Lemma 4.1 says that the Lipschitz constant
can be bounded by the s-th Sobolev norm of f , which
again suggests that we should use the space Hs(M).

Step 1: Continuous extension for LK
t . We extend

LK
t to an operator CK

t : Hs(M) → Hs(M) defined as:

CK
t f(x) =

1

t(4πt)m/2

n∑

i=1

AiGt(x, vi)
(
f(x) − f(vi)

)
.

Intuitively, we extend the kernel function from an n by
n matrix (i.e, Gt(vj , vi)’s) to a continuous (Gaussian)
kernel function defined on M × IRn. A similar extension
was used in [18] to relate the graph Laplacian with the
functional Laplacian.

The operator CK
t is bounded in Hs(M) and its

spectrum has a simple structure (similar to Claim 3.4).
Roughly speaking, its discrete spectrum is the same as
the spectrum of LK

t (see Appendix C.1 for more precise



statements). Hence, to bound the difference between
Spec(LK

t ) and SpecDis(LM
t ), it suffices to bound that

between SpecDis(CK
t ) and SpecDis(LM

t ).

Step 2: Relation between CK
t and LM

t . Let D =
LM

t − CK
t denote the difference between operators LM

t

and CK
t . We aim to show that ‖Df‖Hs ≤ O(ε)‖f‖Hs

for any function f ∈ Hs(M), which will then imply
that ‖D‖Hs = O(ε). First, the following result bounds
the derivatives of the Gaussian kernel function (see
Appendix C.2 for the proof).

Lemma 4.3. G
(i)
t (x, y) =

∑b i
2 c

j=0 O(ii)‖x−y‖i−2j

(2t)i−j Gt(x, y)

The derivative is taken with respect to the variable x.

Theorem 4.1. Set D(j)f = (Df)(j) to be the j-th
(weak) derivative of the function Df . We have that
‖D(j)f‖ = O

(
ε

tj+2 (‖f‖Hj + ‖f‖Hm/2+1
)
)

for j ≥ 0,
where the big-O notation hides constants exponential in
j and dependent on the underlying manifold M .

This implies that ‖LM
t − CK

t ‖Hs = O( ε
ts+2 ) for any

s ≥ m/2 + 1.

Sketch of Proof:

v
σ
′

See Appendix C.3 for a de-
tailed proof. Set c(t) to be the
constant 1

t(4πt)m/2 . One way to

interpret the mesh-Laplacian LK
t

(as well as CK
t ) is that, for any

m-simplex σ ∈ K, subdivide it to
m + 1 pieces with equal volume,
with each piece σ′ represented by one unique vertex,
say v, of σ. We refer to the vertex v as the pivot pz of
every point z in this portion σ′ ⊂ σ. See the right fig-
ure for one such subdivision of a 2-dimensional example,
where all points in the shaded region have pivot v. The
sampling condition of K implies that ‖z − pz‖ = O(ε).
This way, we can rewrite the sum in CK

t f(x) as an
integral over the underlying space |K| of K; that is,
CK

t f(x) = c(t)
∫
|K| Gt(x, pz)(f(x) − f(pz))dz. Thus

Df(x) = c(t)

∫

M

Gt(x, y)(f(x) − f(y))dy

− c(t)

∫

|K|

Gt(x, pz)(f(x) − f(pz))dz.

Let φ : |K| → M be the homeomorphism between |K|
and M so that K ε-approximates M . By change of
variable z = φ−1(y), we get the following where Jy is

the Jacobian of the map φ−1 : M → |K| at y ∈ M .

Df(x) = c(t)

∫

M

Gt(x, y)(f(x) − f(y))dy

− c(t)

∫

M

Gt(x, py)(f(x) − f(py))Jydy
]

= c(t)
[ ∫

M

Gt(x, py)f(py)Jydy −
∫

M

Gt(x, y)f(y)dy
]

− c(t)
[ ∫

M

Gt(x, py)f(x)Jydy −
∫

M

Gt(x, y)f(x)dy
]
.

It then follows that

D(j)f(x) =

c(t)
[ ∫

M

G
(j)
t (x, py)f(py)Jydy −

∫

M

G
(j)
t (x, y)f(y)dy

]

+ c(t)
[ ∫

M

j∑

i=0

[G
(i)
t (x, y)f (j−i)(x)] dy

−
∫

M

j∑

i=0

[G
(i)
t (x, py)f (j−i)(x)] Jydy

]

Combining this with the fact that ‖y − py‖ = O(ε),
|Jy − 1| = O(ε) and Lemma 4.3, we can show that :

| D(j)f(x) | ≤ c(t) · O(
ε · Lipf

tj+1
)

∫

M

Gt(x, y)dy

+ c(t) · O(
ε

tj+1
)

∫

M

Gt(x, y)f(y)dy

+ c(t)

j∑

i=0

O(
ε · f j−i(x)

ti+1
)

∫

M

Gt(x, y)dy ,

where Lipf is the Lipschitz constant of the function f ,
and is bounded by D‖f‖Hs by Lemma 4.1. Further-
more, by Corollary 4.2, f(y) ≤ ‖f‖∞ ≤ C ′‖f‖Hs . Com-
bining these with Claim 3.2 we have that:

| D(j)f(x) |≤ O(
ε

tj+2
)‖f‖Hs +

j∑

i=0

f (j−i)(x)O(
ε

ti+2
).

This implies

‖D(j)f‖ ≤ O(
ε

tj+2
)‖f‖Hs + O(

ε

tj+2
)

j∑

i=0

‖f (j−i)‖

= O(
ε

tj+2
)‖f‖Hs + O(

jε

tj+2
)‖f‖Hj

= O(
ε

tj+2
)(‖f‖Hs + ‖f‖Hj ).

The bound on the s-th Sobolev norm for LM
t −CK

t then
follows easily.

Putting everything together. Now, for a fixed
t, consider a sequence of meshes {K(ε)}ε→0 that ε-



approximates M and converges to M as ε goes to zero.
This induces a sequence of discrete Laplace operators

{LK(ε)
t }ε→0 as well as a sequence of their continuous ex-

tensions {CK(ε)
t }ε→0 in the Sobolev space Hm/2+1(M).

All these operators have only real eigenvalues. Theorem

4.1 implies that the sequence of operators {CK(ε)
t }ε→0

converges in operator norm to the functional Laplacian
LM

t as ε goes to zero. Using Proposition 6 in [18], by
a similar argument as the one used in Section 3 (in
Appendix B), when ε is small enough, there is a one
to one correspondence between the lowest few eigen-

values of CK(ε)
t and SpecDis(LM

t ) such that the i-th

one from SpecDis(CK(ε)
t ) converges to the ith one from

SpecDis(LM
t ) as ε goes to zero. Since CK(ε)

t shares

discrete eigenvalues with L
K(ε)
t (precise statement in

Lemma C.2), this then implies Theorem 2.3. Finally,
Theorem 2.4 follows from this and Theorem 2.2. By
4.1, the condition ε

t
m
2

+3 → 0 in the limit guarantees

that the sequence of continuous extensions {CK(ε)
t }ε→0

converges to LM
t in operator norm.

Proof of Theorem 2.7. Imagine that we have a
sequence of manifolds {Nδ}δ→0 that is δ-close to M and

δ converges to zero. Now choose t(δ) = Ω(δ
4

m+8−ν)
for some small constant ν > 0 and denote LNδ

t(δ) by

LN (δ). By Lemma 3.3, the sequence of manifolds(
Nδ

)
δ→0

induces a sequence of operators
(
LN (δ)

)
δ→0

that converges to LM
t in operator norm. Combining

Theorem 2.3, Theorem 2.7 then follows from a similar
argument as above.

5 Experiments

In this section, we show through experiments that the
spectrum of the mesh Laplacian [3] converges to that of
the manifold Laplacian, is robust, and changes smoothly
with smooth deformation of a surface. For all our
experiments, we normalize the input surface to diameter
1. We use the code from Belkin et al. [3] to compute
the mesh-Laplacian, and use MATLAB R© to find its first
300 eigenvalues and eigenvectors.

To demonstrate the convergence behavior, we con-
sider a sequence of increasingly denser meshes approx-
imating a unit sphere, for which we can obtain the
ground truth. We use an adaptive t, which becomes
smaller as the meshes become denser. The results are
shown in Figure 2, where we plot the error of each of the
first 300 eigenvalues / eigenfunctions (x-axis is the index
of the eigenvalue/eigenfuction). In (a) we plot for each
i, the difference |λi − λD

i |, where λi and λD
i are the ith

eigenvalue of the manifold and mesh Laplacians, respec-
tively. In (b) we plot the error in eigenvectors. Specif-

(a)

(b)

Figure 2: Errors in the (a) eigenvalues and (b)
eigenvectors of discrete Laplacian of meshes of unit
sphere with increasing number of vertices.

ically, note that the restriction of each ground truth
eigenfunction φi to the vertices of the mesh gives us a
vector φ̂i. We compute the error as the L2-norm dis-
tance between φ̂i and the corresponding discrete eigen-
vector of the mesh Laplacian. If an eigenvalue has mul-
tiplicity more than 1, we project the discrete eigenvector
into the eigenspace spanned by the restricted eigenfunc-
tions corresponding to that eigenvalue and return the
error as distance between this vector and its projection.
As we can see, the eigenvalues and eigenvectors converge
to ground truth as the sampling density increases.

Next, we show that, with a fixed t, the mesh-
Laplacian is robust against changes in the sampling
density, noise, and quality of sampling. Here we use a
more interesting genus 3 surface (see Figure 3), and plot
the spectra of different meshes in the bottom picture,
where x-axis is the index of each eigenvalue, and y-
axis is the value. All these curves are close, indicating
that the discrete Laplacian spectra are resilient to these
changes.

For nearly isometric deformations, we use various
poses of a human figure (Figure 4), and show that the
discrete Laplacian spectrum is robust against such de-
formations. Finally, we investigate how the discrete
Laplacian spectrum changes as the manifold undergoes



(a) (b) (c)

Figure 4: (a) Some near-isometric deformations of a human. (b) An example of non-isometric deformation. (c)
Comparison of spectra computed from five isometric and two non-isometric deformations.

Figure 5: Snapshots of continuous deformation of an eight loop and plot of spectra of corresponding meshes.

Figure 3: Original, noisy, and non-uniform meshes for
the same genus 3 surface. Bottom : comparison of their
eigenvalues.

larger deformations. Specifically, we continuously de-
form a figure-eight loop and plot the corresponding dis-
crete Laplacian spectra. See Figure 5 and note the spec-
trum also changes continuously with the deformations.

6 Conclusion and Discussion

This paper provides the first result showing that eigen-
values of a certain discrete Laplace operator [3] approxi-
mated from a general mesh in d-dimensional space con-
verge to those of the manifold Laplacian as the mesh
converges to a smooth manifold. It also shows that
the spectrum of this discrete mesh-Laplacian is sta-
ble when the smooth manifold is perturbed, which is
demonstrated by experimental studies. This helps to
provide theoretical guarantees for applications using the
mesh-Laplace operator.

In this paper, we only focus on the eigenvalues of
the Laplace operator. Another important family of
eigen-structures is the set of Laplacian eigenfunctions.
Indeed, these eigenfunctions have been widely used
in spectral mesh processing applications. We believe
that similar convergence results can be obtained for
the eigenfunctions as well3 using the separation gap

3To be more careful, for eigenvalues with multiplicity more

than one, we should consider the eigenspace spanned by the

corresponding eigenfunctions.



between consecutive distinct eigenvalues. Experimental
results also show that eigen-spaces are stable. We leave
the precise statement and formal proof of stability for
eigenfunctions as an immediate future work.

Another future work is to investigate similar prob-
lems for discrete point-cloud Laplace operator, con-
structed from a set of unorganized points sampled from
a hidden manifold. Such input is common as demon-
strated by the plethora of high dimensional data in var-
ious scientific and engineering applications. As a result,
many recent work focus on processing point data for
spectral shape analysis. It appears that results from
this paper can be extended to the point-clouds Lapla-
cian proposed in [8] when the input points is a so-called
(ε, η)-sample of a manifold M ; namely, (i) for every
point p ∈ M there is a sample point at most ερ(M)
away, where ρ(M) is the reach of M , and (ii) no two
sample points are within distance ηρ(M). It will be
interesting to see whether similar results can be estab-
lished for the more general ε-sampling without the η-
sparsity condition.

Finally, most of our results only show convergence
instead of explicitly bounding the error between the
discrete and true Laplacian spectra. An explicit error
bound not only helps the theoretical understanding of
discrete mesh Laplacian but also has practical implica-
tions. It will be interesting to explore this direction.
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A Proof for Claim 3.2

Choose r = (t)1/4 ≤ ρ/2 as a constant small enough,
where ρ is the reach of the manifold M . Let B be
the ball centered at point x with radius r, and MB

the intersection between B and M . First, observe that

e−
r2

4t ≤ o(tα) for any α > 0 when t is small enough, as

lim
t→0

e−
r2

4t /tα = lim
t→0

e
− 1

4
√

t /tα = 0.

It then follows that
∫

M\MB

e−
‖x−y‖2

4t dy ≤ V ol(M)e−
r2

4t = o(tm/2).(A.1)

On the other hand, consider the map from MB to Tx,
where Tx is the tangent space at x of M . Obviously, Tx

is a m-dimensional subspace. Consider the projection
map φ : MB → Tx. For r < ρ/2, φ is injective. It is
shown in [3] that the Jacobian of φ at any y ∈ MB is
bounded by 1 + O(r2/ρ2). Same bound holds for the
Jacobian of φ−1 for any z ∈ φ(MB). This also implies
that

‖φ(y) − x‖ ≥ (1 − O(r2/ρ2))‖y − x‖.
Applying change of variables, we have:

∫

MB

e−
‖x−y‖2

4t dy =

∫

φ(MB)

e−
‖x−φ−1(z)‖2

4t Jφ−1(z)dz

≤
∫

φ(MB)

e−
(1−O(r2/ρ2))‖x−z‖2

4t (1 + O(
r2

ρ2
))dz

≤
∫

φ(MB)

eO( r2‖x−z‖2

4t )e−
‖x−z‖2

4t (1 + O(
√

t))dz

≤
∫

φ(MB)

2eO( r4

4t )e−
‖x−z‖2

4t dz

≤ O(1) ·
∫

φ(MB)

e−
‖x−z‖2

4t dz

≤ O(1) ·
∫

IRm

e−
‖x−z‖2

4t dz ≤ O(tm/2).

The last inequality follows from Claim 3.1 from [9]. The
claim then follows from this and Eqn (A.1).

B Details from Proof for Theorem 2.6

It is well known that the Laplace operator only has
real and isolated eigenvalues with finite multiplicity.
We wish to build a one-to-one relationship between
Spec(∆M ) and Spec(∆N ) and bound their distance. To
achieve this using Theorems 2.2 and 2.5 (recall Diagram
1), there are two main technical issues to be addressed.
First, the operator LX

t , although bounded and self-
adjoint, is not compact. Hence, it may have non-isolated
a continuous spectrum (e.g, all values within an interval

are eigenvalues). Second, Theorem 2.5 only bounds
the Hausdorff distance between spectra of LM

t and
LN

t , while we wish to obtain a one-to-one relationship
between (their lowest) eigenvalues.

For the first issue, given an operator T , recall
that SpecDis(T ) denotes the set of isolated eigenval-
ues of T with finite multiplicity, and SpecEss(T ) =
Spec(T ) \ SpecDis(T ) is the so-called essential spec-
trum of T . Claim 3.4 was shown in [2, 18]. We
provide an intuition here: Set c(t) = 1

t(4πt)m/2 and

Gt(x, y) = e−
‖x−y‖2

4t . It turns out that the opera-
tor LX

t can be rewritten as LX
t = MX

t − IX
t , where

MX
t f(x) = g(x) · f(x) with g(x) = c(t)

∫
X

Gt(x, y)dy,
and IX

t f(x) = c(t)
∫

X Gt(x, y)f(y)dy. In other words,
MX

t is a multiplication operator and IX
t is an integral

operator. It is easy to verify that both are self-adjoint
in L2(X), and the former is bounded while the latter
is compact. It then follows that the essential spectrum
of LX

t coincide with the range of the function g(·) (i.e,
[inf g(x), sup g(x)]). The range of this function g(·) was
shown in [2] and Claim 3.4 thus follows.

Claim 3.4 states that, even though LM
t contains

continuous spectrum, those with low values (smaller
than 1

2 t−1) are isolated with finite multiplicity, and
can be potentially related to those of LN

t in a one-to-
one manner. These top few eigenvalues are also what
are typically used in practice. As t goes to zero, the
interval [0, 1

2 t−1) will contain more and more isolated
eigenvalues.

For the second issue, consider the first k eigenvalues
{λ̂i} of LM

t and {ω̂i} of LN
t , in non-decreasing order,

where k is an integer such that λ̂k < 1
2 t−1 and ω̂k <

1
2 t−1 (i.e, the first k isolated eigenvalues). Theorem 2.2

from [2] states that for each i < k, |λi − λ̂i| = O(t
2

m+6 ).
In other words, the first few eigenvalues from LM

t one-
to-one correspond to the first few eigenvalues from ∆M .
The same statement holds for the lowest eigenvalues
{ωi} for ∆N and {ω̂i} for LN

t .
Now we wish to also establish a one-to-one corre-

spondence between (lowest) eigenvalues {λ̂i} and {ω̂i}.
Imagine a sequence of manifolds {N(δ)}δ→0 that con-
verges to M , where N(δ) is δ-close to M . This induces

a sequence of functional Laplacians {LN(δ)
t }δ→0, and

Lemma 3.3 states that this sequence of functional Lapla-
cians converges in operator norm to LM

t as δ goes to
zero. It then follows from Proposition 6 in [18] that,

for any isolated eigenvalue λ̂ ∈ SpecDis(LM
t ) with mul-

tiplicity m, and any open interval I ∈ IR containing λ̂
but no other eigenvalue from SpecDis(LM

t ), there exists
some δ0 > 0 such that for any δ < δ0, exactly m (not

necessarily distinct) eigenvalues of LN(δ)
t are contained

in I . A similar result, in fact, holds for a finite set of



consecutive isolated eigenvalues from SpecDis(LM
t ).

λ̂i

Now, imagine we
plot the first k iso-
lated eigenvalues λ̂is of LM

t on a real line. See the
right figure where each empty dot is a distinct eigen-
value of LM

t with multiplicity. For each one, we choose
an open interval around it as shown in the figure (so
their closures partition the line). Proposition 6 in [18]
says that eventually (when δ is small enough), for the ith
eigenvalue, only exactly mi number of eigenvalues from

Spec(LN(δ)
t ) will fall in the interval around it, where

mi is the multiplicity of λ̂i. (The right figure shows
an example where mi = 3, and the black dots repre-

sents eigenvalues of LN(δ)
t .) This idea, combined with

the one-to-one correspondence result between λi and
λ̂i, eventually implies that when t is small enough and
when δ

t
m
4

+2 is smaller than the separation gap between

two consecutive λis (which is a quantity depending only
on the underlying manifold M when t is small enough),

there is a one to one correspondence between λ̂i and ω̂i

and their distance is O( δ

t
m
4

+2 ). Specifically, each empty

dot in the real line will be a set of mi number of λ̂s clus-
tered within a ball of radius O(t

2
m+6 ) where mi is the

multiplicity of the eigenvalue λi of ∆M , and Proposition
6 in [18] states that there will be exactly mi number of
ω̂s in the corresponding interval.

Finally, by choosing t so that the two convergence
rates, between ∆M (resp. ∆N ) to LM

t (resp. LN
t ) and

between LM
t and LN

t , are balanced, that is, t
2

m+6 =
δ

t
m
4

+2 , we obtain the result in Theorem 2.6. The

various conditions in these theorems on the value of the
eigenvalues are to ensure that the eigenvalues fall in the
discrete spectrum for the functional Laplacian. Their
existence does not matter for those lowest eigenvalues,
which are the interesting ones in practice.

C Details from Section 4

Below are several details missing from Section 4.

C.1 Step 1: Continuous Extension for LK
t

We define operator CK
t : Hs(M) → Hs(M) as:

CK
t f(x) :=

1

t(4πt)m/2

n∑

i=1

AiGt(x, vi)
(
f(x) − f(vi)

)
.

Intuitively, we extend the kernel function from an n by
n matrix (i.e, Gt(vj , vi)’s) to a continuous (Gaussian)
kernel function defined on M × IRn. A similar extension
was used in [18] to relate the graph Laplacian with the
functional Laplacian.

Roughly speaking, there is a “one-to-one” corre-
spondence between the eigenvalues (as well as eigen-
functions) of the operator CK

t and those of the discrete
operator LK

t . To make this correspondence more pre-
cise, set a function dK : M → IR as

dK(x) =
1

t(4πt)m/2

n∑

i=1

AiGt(x, vi)

and define the multiplication operator SK : Hs(M) →
Hs(M) as SKf(x) = dK(x)f(x). Set WK : Hs(M) →
Hs(M) as

WKf(x) =
1

t(4πt)m/2

n∑

i=1

[
AiGt(x, vi)f(vi)

]
.

It is easy to check that the operator CK
t = SK −WK . In

space Hs(M) where point evaluation is bounded (recall
Hs(M) is a reproducing kernel Hilbert space), SK is a
bounded multiplication operator and WK is a compact
operator [18]; implying that CK

t is bounded.
Unfortunately, the spectrum of CK

t may contain
continuous spectrum. However, similar to the case
of LX

t in Section 3, since WK is compact, it turns
out that SpecEss(CK

t ) = SpecEss(SK) = range(dK),
where range(dK) is the range of the function dK (i.e,
range(dK) = [infx dK(x), supx, dK(x)]). Lemma C.1
can then be derived by results from [18] and Lemma
C.2 follows from elementary calculations:

Lemma C.1. The essential spectrum of CK
t coincide

with the range of the function dK . For ε and t small
enough, range(dK) (and thus SpecEss(CK

t )) is contained
in ( 1

2 t−1,∞). The discrete spectrum of CK
t contains

finite number of real eigenvalues, and is contained in
the interval [0, Θ( 1

t )).

Lemma C.2. 1. If ρ is an eigenfunction of CK
t with

arbitrary eigenvalue λ, then the n-vector ρ̂ =
[ρ(v1), . . . , ρ(vn)]T ∈ IRn is an eigenvector of LK

t

with eigenvalue λ.

2. If λ /∈ range(dK) = SpecEss(CK
t ) is an eigenvalue

with multiplicity m, and ρ1, . . . , ρm are the cor-
responding eigenfunctions, then LK

t has an eigen-
value λ also with multiplicity m, with the set of n-
vectors ρ̂1, . . . , ρ̂m being the corresponding m eigen-
vectors.

3. If λ /∈ range(dK) is an eigenvalue for LK
t with mul-

tiplicity m, and ρ̂1, . . . , ρ̂m being the corresponding
m eigenvectors, then λ is an eigenvalue of CK

t with
multiplicity m, corresponding to a set of eigenfunc-
tions ρ1, . . . , ρm such that

ρi(x) =
1

t(4πt)m/2
·
∑n

j=1 AjGt(x, vj)ρ̂i[j]

dK(x) − λ
.



These results state that the interesting eigenvalues
(i.e, with lowest values) are isolated with finite multi-
plicity, and that there is a one-to-one correspondence
between such eigenvalues of CK

t and of LK .

C.2 Proof for Lemma 4.3

Recall that Gt(x, y) = e−
‖x−y‖2

4t . We will prove
the following statement by induction (which immedi-
ately implies Lemma 4.3).

G
(i)
t (x, y) =

∑bi/2c
j=0 cj,i

‖x−y‖i−2j

(2t)i−j Gt(x, y) where
c0,0 = 1, c0,i = −c0,i−1,
cj,i = (i − 2j + 1)cj−1,i−1 − cj,i−1, 0 < j ≤ bi/2c,
cj,i = 0, otherwise.
and |cj,i| = O((i + 1)i).

Now for the base case i = 1, we have

G
(1)
t (x, y) = −‖x − y‖

2t
Gt(x, y) = c0,1

‖x − y‖
2t

Gt(x, y)

=

bi/2c∑

j=0

cj,i
‖x − y‖i−2j

(2t)i−j
Gt(x, y).

Thus the claim holds. For G
(i+1)
t (x, y), we need to

consider two cases - when i is odd and when i is even.

Case 1: i is odd: Inductive hypothesis states

G
(i)
t (x, y) = Gt(x, y)

[
c0,i

‖x − y‖i

(2t)i
+ c1,i

‖x − y‖i−2

(2t)i−1

+ . . . + c i−1
2 ,i

‖x − y‖
(2t)

i+1
2

]

We then have:

G
(i+1)
t (x, y) = Gt(x, y)

[
ic0,i

‖x − y‖i−1

(2t)i
− c0,i

‖x − y‖i+1

(2t)i+1

+ (i − 2)c1,i
‖x − y‖i−3

(2t)i−1
− c1,i

‖x − y‖i−1

(2t)i

+ . . . + c i−1
2 ,i

1

(2t)
i+1
2

− c i−1
2 ,i

‖x − y‖2

(2t)
i+3
2

]

Grouping terms together, we get

G
(i+1)
t (x, y)

= Gt(x, y)
[
− c0,i

‖x − y‖i+1

(2t)i+1
+ [ic0,i − c1,i]

‖x − y‖i−1

(2t)i

+ [(i − 2)c1,i − c2,i]
‖x − y‖i−3

(2t)i−1
+ . . .

+ [3 · c i−3
2 ,i − c i−1

2 ,i]
‖x − y‖2

(2t)
i+3
2

+ c i−1
2 ,i

1

(2t)
i+1
2

]

=

i+1
2∑

j=0

cj,i+1
‖x − y‖i+1−2j

(2t)i+1−j
Gt(x, y)

where
c0,i+1 = −c0,i,
cj,i+1 = ((i + 1) − 2j + 1)cj−1,i − cj,i, 0 < j ≤ i+1

2 ,
cj,i+1 = 0, otherwise.

Case 2: i is even: Can be shown by a similar argument
to Case 1.

Finally, to bound the value of cji , note that cj,i =
(i − 2j + 1)cj−1,i−1 − cj,i−1 ≤ i|cj−1,i−1| − cj,i−1. One
can then easily the use substitution method to show
that cj,i = O((i + 1)i).

We remark that for simplicity, here we proceed as if
x is a one-dimensional variable. In general, x ∈ M is of
m-dimension and one needs to compute the derivative
w.r.t all mixed terms of coordinates. This will increase
the bound by a factor that is exponential in m, but will
not affect our final results.

C.3 Detailed Proof for Theorem 4.1

Recall that D = LM
t − CK

t . Set c(t) to be the
constant 1

t(4πt)m/2 , and let |K| denote the underlying

space of the mesh K. One way to interpret the
mesh-Laplacian LK

t (as well as CK
t ) is that, for any

m-dimensional simplex σ ∈ K, subdivide it to m + 1
equal volume portions, with every portion σ′ being
represented by a different vertex, say v, of σ. We refer
to the vertex v as the pivot pz of every point z in this
portion σ′ ⊂ σ. The sampling condition of K implies
that ‖z − pz‖ = O(ε). This way, we can rewrite

CK
t f(x) = c(t)

∫

|K|

Gt(x, pz)(f(x) − f(pz))dz,

and thus

Df(x) = c(t)

∫

M

Gt(x, y)(f(x) − f(y))dy

− c(t)

∫

|K|

Gt(x, pz)(f(x) − f(pz))dz.



Let φ : |K| → M be the homeomorphism between |K|
and M so that K ε-approximates M . By change of
variable z = φ−1(y), we get the following where Jy is
the Jacobian of the map φ−1 : M → |K| at y ∈ M .

Df(x) = c(t)

∫

M

Gt(x, y)(f(x) − f(y))dy

− c(t)

∫

M

Gt(x, py)(f(x) − f(py))Jydy
]

= c(t)
[ ∫

M

Gt(x, py)f(py)Jydy −
∫

M

Gt(x, y)f(y)dy
]

− c(t)
[ ∫

M

Gt(x, py)f(x)Jydy −
∫

M

Gt(x, y)f(x)dy
]
.

It then follows that

D(j)f(x) =(C.2)

c(t)
[ ∫

M

G
(j)
t (x, py)f(py)Jydy −

∫

M

G
(j)
t (x, y)f(y)dy

]

+c(t)
[ ∫

M

j∑

i=0

[G
(i)
t (x, y)f (j−i)(x)] dy

−
∫

M

j∑

i=0

[G
(i)
t (x, py)f (j−i)(x)] Jydy

]

On the other hand, since ‖y − py‖ = O(ε), we have

‖x − y‖j − O(ε‖x − y‖j−1) ≤ ‖x − py‖j(C.3)

≤ ‖x − y‖j + O(ε‖x − y‖j−1) and

(1 − O(ε/t)) Gt(x, y) ≤ Gt(x, py)(C.4)

≤ (1 + O(ε/t))Gt(x, y)

Let Gt to denote Gt(x, y) and α = O(ii) to simplify

exposition. Using Lemma 4.3, we have:

| G
(i)
t (x, y) − G

(i)
t (x, py) |

≤
bi/2c∑

j=0

|cj,i|
∣∣∣∣
‖x − py‖i−2j

ti−j
Gt(x, py) − ‖x − y‖i−2j

ti−j
Gt

∣∣∣∣

≤
bi/2c∑

j=0

α
[
(1 + O(

ε

t
))
‖x − py‖i−2j

ti−j
Gt −

‖x − y‖i−2j

ti−j
Gt

]

(Using Eqn C.4)

≤
bi/2c∑

j=0

α
[
(1 + O(

ε

t
))Gt

(‖x − y‖i−2j

ti−j
+

ε‖x − y‖i−2j−1

ti−j

)

− ‖x − y‖i−2j

ti−j
Gt

]
(Using Eqn C.3)

≤
bi/2c∑

j=0

αGt

[
O(

ε

t
)
‖x − y‖i−2j

ti−j
+ O(ε)

‖x − y‖i−2j−1

ti−j

]

≤
bi/2c∑

j=0

αO(
εDi−2j

ti−j+1
)Gt ≤ O(

iDiε

ti+1
)Gt(x, y),

where D is the diameter of the manifold M . Further-
more, as ‖x − y‖ ≤ D and Gt(x, y) ≤ 1,

G
(i)
t (x, y) = O(

i · Di

ti
Gt(x, y)) = O(

1

ti
)Gt(x, y)

Combined with Eqn (C.2) and that |Jy − 1| = O(ε), we
have that (again, Gt denotes Gt(x, y)):

1

c(t)
| D(j)f(x) |

≤
∣∣∣∣
∫

M

[
G

(j)
t (x, py)f(py)Jy − G

(j)
t f(y)

]
dy

∣∣∣∣

+

j∑

i=0

∣∣∣∣f
(j−i)(x)

∫

M

[
G

(i)
t − G

(i)
t (x, py)Jy

]
dy

∣∣∣∣

≤
∣∣∣∣
∫

M

[(1 + O(ε))
[
O(

εGt

tj+1
) + G

(j)
t

]
f(py) − G

(j)
t f(y)]dy

∣∣∣∣

+

j∑

i=0

∣∣∣∣f
(j−i)(x)

∫

M

[
G

(i)
t − (1 + O(ε))(O(

εGt

ti+1
) + G

(i)
t )

]
dy

∣∣∣∣

≤
∣∣∣∣
∫

M

O(
εGt

tj+1
)f(py)dy +

∫

M

G
(j)
t [(1 + O(ε))f(py) − f(y)]dy

∣∣∣∣

+

j∑

i=0

∣∣∣∣f
(j−i)(x)

∫

M

[
O(

ε

ti+1
)Gt − O(ε)G

(i)
t

]
dy

∣∣∣∣

≤
∣∣∣∣
∫

M

O(
ε

tj+1
)Gt

[
O(ε)Lipf + f(y)

]
dy

∣∣∣∣

+

∣∣∣∣
∫

M

O(
εGt

tj
)
[
Lipf + f(y)

]
dy

∣∣∣∣ +

j∑

i=0

f (j−i)(x)

∫

M

O(
εGt

ti+1
)dy



Hence

| D(j)f(x) |

≤ c(t)O(
εLipf

tj+1
)

∫

M

Gtdy + c(t)O(
ε

tj+1
)

∣∣∣∣
∫

M

Gtf(y)dy

∣∣∣∣

+ c(t)

j∑

i=0

f (j−i)(x) · O(
ε

ti+1
)

∫

M

Gtdy

where Lipf is the Lipschitz constant of the function f ,
which is bounded by C‖f‖Hs by Lemma 4.1. Further-
more, by Corollary 4.2, f(y) ≤ ‖f‖∞ ≤ C ′‖f‖Hs . Com-
bining these with Claim 3.2 we have that:

| D(j)f(x) |≤ O(
ε

tj+2
)‖f‖Hs +

j∑

i=0

f (j−i)(x)O(
ε

ti+2
).

This implies

‖D(j)f‖ ≤ O(
ε

tj+2
)‖f‖Hs + O(

ε

tj+2
)

j∑

i=0

‖f (j−i)‖

= O(
ε

tj+2
)‖f‖Hs + O(

jε

tj+2
)‖f‖Hj

= O(
ε

tj+2
)(‖f‖Hs + ‖f‖Hj ).

The bound on the s-th Sobolev norm for LM
t −CK

t then
follows easily.


