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Abstract

Consider a routing problem instance consisting of a demand graph H = (V,E(H)) and a supply graph
G = (V,E(G)). If the pair obeys the cut condition, then the flow-cut gap for this instance is the minimum
value C such that there exists a feasible multiflow for H if each edge of G is given capacity C. It is well-
known that the flow-cut gap may be greater than 1 even in the case where G is the (series-parallel) graph
K2,3. In this paper we are primarily interested in the “integer” flow-cut gap. What is the minimum value
C such that there exists a feasible integer valued multiflow for H if each edge of G is given capacity C?
We formulate a conjecture that states that the integer flow-cut gap is quantitatively related to the fractional
flow-cut gap. In particular this strengthens the well-known conjecture that the flow-cut gap in planar and
minor-free graphs is O(1) [14] to suggest that the integer flow-cut gap is O(1). We give several technical
tools and results on non-trivial special classes of graphs to give evidence for the conjecture and further
explore the “primal” method for understanding flow-cut gaps; this is in contrast to and orthogonal to the
highly successful metric embeddings approach. Our results include the following:

• Let G be obtained by series-parallel operations starting from an edge st, and consider orienting all
edges in G in the direction from s to t. A demand is compliant if its endpoints are joined by a directed
path in the resulting oriented graph. We show that if the cut condition holds for a compliant instance
and G + H is Eulerian, then an integral routing of H exists. This result includes as a special case,
routing on a ring but is not a special case of the Okamura-Seymour theorem.

• Using the above result, we show that the integer flow-cut gap in series-parallel graphs is 5. We also
give an explicit class of routing instances that shows via elementary calculations that the flow-cut gap
in series-parallel graphs is at least 2 − o(1); this is motivated by and simplifies the proof by Lee and
Raghavendra [20].

• The integer flow-cut gap in k-Outerplanar graphs is cO(k) for some fixed constant c.

• A simple proof that the flow-cut gap is O(log k∗) where k∗ is the size of a node-cover in H; this was
previously shown by Günlük via a more intricate proof [13].
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1 Introduction

Given a (undirected) graph G = (V,E) a routing or multiflow consists of an assignment f : P → R+ where P
is the set of simple paths in G and such that for each edge e,

∑
P∈P (e) fP ≤ 1, where P (e) denotes the set of

paths containing e. Given a demand graph H = (V,E(H)) such a routing satisfies H if
∑

P∈P (u,v) fP = 1 for
each g = uv ∈ E(H), where P (u, v) denotes paths with endpoints u and v (one may assume a simple demand
graph without loss of generality). If such a flow exists, we call the instance routable, or say H is routable in G.
Edges of G and H are called supply edges and demand edges respectively. The above notions extend naturally
if each supply edge e is equipped with a capacity ue and each demand edge g is equipped with a demand dg. If
u is an integral vector, we denote by Gu, the graph obtained by making ue copies of each edge e. Hd is defined
similarly. We call the routing f integral (resp. half-integral) if each fP (resp. 2fP ) is an integer.

1 Introduction

Given a graph G = (V,E) a routing or multiflow consists of an assignment f : P → R+ where P
is the set of simple paths in G and such that for each edge e,

∑

P∈P (e) fP ≤ 1, where P (e) denotes
the set of paths containing e.

Given a demand graph H = (V,E(H)) such a routing satisfies H if
∑

P∈P (u,v) fP = 1 for
each f = uv ∈ E(H), where P (u, v) denotes paths from u to v. Edges of G and H are called

supply edges and demand edges respectively.

This definition assumes that G andH are simple graphs, but the notion extends in a natural way

to graphs with multiedges. Similarly, the result extends naturally if each supply and demand edge e
is equipped with a capacity ue. We call the routing f integral (resp. half-integral) if each fP (resp.

2fP ) is an integer.

For any set S ⊆ V we denote by δG(S) the set of edges with exactly one end in S, and the other
in V − S. We define δH(S) similarly. The surplus of such a set is:

σ(S) = |δG(S)|− |δH(S)|.

If G has a routing that satisfies H , then clearly σ(S) ≥ 0 for each set S. The pair G,H is said to

satisfy the cut condition if this holds. The converse is not true however. For example, consider the

instance depicted in Figure 1. In this figure, and for the remainder of this article, G is represented

with solid lines andH is represented by dashed lines. The pair G,H satisfies the cut condition, and

yet there is no routing (integral or otherwise) for the demand graphH . Thus the cut condition is not
sufficient to imply the existence of a multiflow even in the case where G is the bipartite graph K2,3.

Figure 1: A series-parallel graph without routing.

The flow-cut gap for an instance G,H is defined as follows... studied in general graphs,

Leighton-Rao etc. Connection to metric embeddings. Planar conjecture. Sequence of known results

for ser parallel graphs./

A graph is series-parallel if it can be obtained from a single edge graph st by repeated appli-
cation of two operations: series and parallel operations. A parallel operation on an edge e in graph
G = (V,E) consists of replacing e by k ≥ 1 new edges with the same endpoints as e. A series

operation on an edge consists of replacing e by a path of length k ≥ 1 between the same end-
points. In either case if k = 1, the operation is called trivial, and nontrivial otherwise. Since K2,3

is series-parallel, we know that the cut condition is not sufficient for the existence of multiflows
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For any set S ⊆ V we denote by δG(S) the set of edges with exactly one
end in S, and the other in V − S. We define δH(S) similarly. (For graph theory
notation we primarily follow Bondy and Murty [4].) The supply graph G satisfies
the cut condition for the demand graph H if |δG(S)| ≥ |δH(S)| for each S ⊂ V .
We sometimes say that the pair G,H satisfies the cut-condition. Clearly the cut
condition is a necessary condition for the routability of H in G. The cut-condition
is not sufficient as shown by the well-known example where G = K2,3 is a series-
parallel graph with a demand graph (in dotted edges) as shown in the figure.

Given a graph G and a real number α > 0 we use αG to refer to the graph obtained from G by multiplying
the capacity of each edge of G by α. Given an instance G,H that satisfies the cut-condition, the flow-cut gap is
defined as the smallest α ≥ 1 such thatH is routable in αG; we also refer to α as the congestion. We denote this
quantity by α(G,H). Traditional combinatorial optimization literature has focused on characterizing conditions
under which the cut-condition is sufficient for (fractional, integral or half-integral) routing, in other words
the setting in which α(G,H) = 1; see [29] for a comprehensive survey of known results. Typically, these
characterizations involve both the supply and demand graphs. A prototypical result is the Okamura-Seymour
Theorem [24] that states that the cut-condition is sufficient for a half-integral routing if G is a planar graph and
all edges of H are between the nodes of a single face of G in some planar embedding. The proofs of such result
rely on what we will term “primal-methods” in that they try to directly exhibit routings of the demands, rather
than appealing to dual solutions.

On the other hand, since the seminal work of Leighton and Rao [19] on flow-cut gaps for uniform and
product multiflow instances, there has been an intense focus in the algorithms and theoretical computer science
community on understanding flow-cut gap results for classes of graphs. This was originally motivated by
the problem of finding (approximate) sparse cuts. A fundamental and important connection was established
in [22, 3] between flow-cut gaps and metric-embeddings. More specifically, for a graph G, let α(G) be the
largest flow-cut gap over all possible capacities on the edges of G and all possible demand graphs H . Also
let c1(G) denote the maximum, over all possible edge lengths on G, of the minimum distortion required to
embed the finite metric on the nodes of G (induced by the edge lengths) into an `1-space. Then the results
in [22, 3] showed that α(G) ≤ c1(G) and subsequently [14] showed that α(G) = c1(G). Using Bourgain’s
result that c1(G) = O(log |V |) for all G, [22, 3] showed that α(G) = O(log |V (G)|), and further refined it
to prove that α(G,H) = O(log |EH |). Numerous subsequent results have explored this connection to obtain
a variety of flow-cut gap results. The proofs via metric-embeddings are “dual”-methods since they work by
embedding the metric induced by the dual of the linear program for the maximum concurrent multicommodity
flow. The embedding approach has been successful in obtaining flow-cut gap results (amongst several other
algorithmic applications) as well as forging deep connections between various areas of discrete and continuous
mathematics. However, this approach does not directly give us integral routings even in situations when they
do exist.

In this paper we are interested in the integer flow-cut gap in undirected graphs. Given G,H that satisfy the
cut-condition, what is the smallest α such thatH can be integrally routed in αG? Is there a relationship between
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the (fractional) flow-cut gap and the integer flow-cut gap? A result of Nagamochi and Ibaraki relates the two
gaps in directed graphs. Let G = (V,A) and H = (V,R) be a supply and demand digraph, respectively. We
call (G,H) cut-sufficient if for each capacity function u : A→ Z+ and demand function d : R→ Z+, Gu, Hd

satisfying the cut-condition implies the existence of a fractional multiflow for Hd in Gu.

Theorem 1.1 ([23]) If (G,H) is cut-sufficient, then for any integer capacity vector u and integer demand
vector d such that Gu, Hd satisfy the cut condition, there is an integer multiflow for Hd in Gu.

The above theorem does not extend to the undirected case. Consider taking G to be a cycle and H to be a
complete graph. Then it is known that (G,H) is cut-sufficient but we are not guaranteed an integral flow for
integer valued u and d; for example when G is a 4 cycle with unit capacities and H consists of two crossing
edges with unit demands. For integer valued u and d, however, there is always a half-integral routing of Hd

in Gu whenever (Gu, Hd) satisfies the cut-condition. We may therefore ask if a weaker form of Theorem 1.1
holds in undirected graphs. Namely, where we only ask for half-integral flow instead of integral flows. One
case where one does get such a half-integral routing in undirected graphs is the following. Consider the case
when G = H; if the pair (G,G) is cut-sufficient we simply say that G is cut-sufficient. It turns out that this is
precisely the class of K5-minor free graphs (Seymour [30]; cf. Corollary 75.4d [29]). Moreover we have the
following.

Theorem 1.2 (Seymour) If G is cut-sufficient, then for any nonnegative integer weightings u, d on E(G) for
which Gu, Gd satisfies the cut condition, there is a half-integral routing of Gd in Gu. Moreover, if Gu +Gd is
Eulerian, then there is an integral routing of Gd.

In this paper we ask more broadly, whether the fractional and integral flow-cut gaps are related even in
settings where the flow-cut gap is greater than 1. We formulate the conjecture below.

Conjecture 1.3 (Gap-Conjecture) Does there exist a global constant C that satisfies the following. Let G =
(V,E) and H = (V,R) be a supply and demand graph respectively. Suppose that for each capacity function
u : A → Z+ and demand requirement d : R → Z+, Gu, Hd satisfy the cut-condition implies that there is a
fractional multiflow for Hd in Gd with congestion β. Then this implies that there in an integer multiflow for Hd

in Gd with congestion Cβ.

We do not currently know if the statement holds forC = 2 in instances with β = 1 (thus generalizing Seymour’s
theorem mentioned above). There are several natural weakenings of the conjecture that are already unknown.
For instance, one may allowC to depend on a class of instances (such as planar or series parallel supply graphs).
More generally, it would be of interest to bound the integer flow cut gap as some g(β), e.g., g(β) = O(poly(β)).
Previously other conjectures relating fractional and integer multiflows were shown to be false. For instance,
Seymour conjectured that if there is a fractional multiflow for G,H , then it implies a half-integer multiflow.
These conjectures have been strongly disproved (see [29]). Note that our conjecture differs from the previous
ones in that we relate the flow-cut gap values for hereditary classes of instances on G,H .

The Gap-Conjecture has several important implications. First, it would give structural insights into flows
and cuts in graphs. Second, it would allow fractional flow-cut gap results obtained via the embedding-based
approaches to be translated into integer flow-cut gap results. Finally, it would also shed light on the approxima-
bility of the congestion minimization problem in special classes of graphs. In congestion minimization we are
given G,H and are interested in the least α such that αG has an integer routing for H . Clearly, the congestion
required for a fractional routing is a lower bound on α; moreover this lower bound can be computed in poly-
nomial time via linear programming. Almost all the known approximation guarantees are with respect to this
lower bound; even in directed graphs an O(log n/ log logn) approximation is known via randomized rounding
[26]. In general undirected graphs, this problem is hard to approximate to within an Ω(log logn)-factor [1].
However, for planar graphs and graphs that exclude a fixed minor, it is speculated that the problem may admit
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an O(1) approximation. The Gap-Conjecture relates this to the conjecture of Gupta et al. [14] that states that
the fractional flow-cut gap is O(1) for all graphs that exclude a fixed minor. Thus the congestion minimization
problem has an O(1) approximation in planar graphs if the Gupta et al. conjecture and the Gap-Conjecture are
both true. We also note that an O(1) gap between fractional and integer multiflows in planar graphs (or other
families of graphs) would shed light on the Gap-Conjecture.

Our current techniques seem inadequate to resolve the Gap-Conjecture. It is therefore natural to prove the
Gap-Conjecture in those settings where we do have interesting and non-trivial upper bounds on the (fractional)
flow-cut gap. Note that the conjecture follows easily when G and H are unrestricted (complete graphs); in
this case the flow-cut gap is Ω(log n); one may consider G, a bounded degree expander, with H , a uniform
multiflow [19]. On the other side, randomized rounding shows that the integer flow-cut gap is O(log n). Now,
if G is a complete graph and H is a complete graph on a subset of k nodes of G then the flow-cut gap for
such instances is Ω(log k); this easily follows from the above mentioned general result. For these instances
the fractional flow-cut gap improves to O(log k), as shown in [22, 3]. One can obtain an improvement for the
integer flow-cut gap but one cannot employ simple randomized rounding; in [10] it is shown that the integer
flow-cut gap for these instances is O(polylog(k)); this relies on the results in [8, 16].

In a sense, the Gap-Conjecture is perhaps more relevant and interesting in those cases where the flow-cut
gap is O(1). We focus on series-parallel graphs and k-Outerplanar graphs for which we know flow-cut gaps
of 2 [6] and ck (for some universal constant c) [7] respectively. Proving flow-cut gaps for even these restricted
families of graphs has taken substantial technical effort. In this paper we affirm that one can prove similar
bounds for these graphs for the integer flow-cut gap. For instance, in series parallel instances, we show that the
integer flow-cut gap is at most 5 (and we conjecture it is 2).

Overview of results and techniques: In this paper we focus especially on applying primal methods to two
classes of graphs for which the flow-cut gap is known to be O(1): series parallel graphs and k-Outerplanar
graphs.

The first proof that series parallel instances had a constant flow-cut was given in [14]; subsequently a gap
of 2 was shown in [6]. This latter upper bound is tight since it is shown in [20] that there are instances where
the gap is arbitrarily close to 2. We give a simpler proof of the lower bound in this paper that is based on
an explicit (recursive) instance and elementary calculations — our proof is inspired by [20] but avoids their
advanced metric-embeddings machinery.

In Section 4.1 we show that for series-parallel graphs the integer flow-cut gap is at most 5. The primal-
method has generally been successful in identifying restrictions on demand graphs for which the cut-condition
implies routability. We follow that approach and identify several classes of demands in series-parallel graphs
for which cut-condition implies routability (see Sections 3.1 - 3.4). The main class exploited to obtain the
congestion 5 result, are the so-called compliant demands (Section 3.4). However, the critical base case for
compliant demands boils down to determining classes of demands onK2m instances for which the cut condition
implies routability. In fact, forK2m instances, we are able to give a complete characterization of demand graphs
H for which (K2m, H) is cut sufficient - see Section 3.3. Moreover, we conjecture that this forbidden minor
characterization carries over for all series-parallel graphs (it does not completely characterize cut-sufficiency in
general however).

One ingredient we use is a general proof technique for “pushing” demands similar to what has been used
in previous primal proofs; for instance in the proof of the Okamura-Seymour theorem [24]. We try to replace a
demand edge uv by a pair of edges ux, xv to make the instance simpler (we call this pushing to x). Failing to
push, identifies some tight cuts and sometimes these tight cuts can be used to shrink to obtain an instance for
which we know a routing exists. This contradiction means that we could have pushed in the first place.

In [7], an upper bound of ck (for some constant c) is given for the flow-cut gap in k-Outerplanar graphs.
In this paper (Section 4.3), we show that the integer flow cut gap in this case is cO(k). In this effort, we
explicitly employ a second proof ingredient which is a simple rerouting lemma that was stated and used in
[9] (see Section 4.2). Informally speaking the lemma says the following. Suppose H is a demand graph and
for simplicity assume it consists of pairs s1t1, . . . , sktk. Suppose we are able to route the demand graph H ′
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consisting of the edges s1s′1, t1t
′
1, . . . , sks

′
k, tkt

′
k in G where s′1, t

′
1, . . . , s

′
k, t
′
k are some arbitrary intermediate

nodes. Let H ′′ be the demand graph consisting of s′1t
′
1, . . . , s

′
kt
′
k. The lemma states that if G,H satisfies the

cut-condition and the aforementioned routing exists in G then 2G,H ′′ satisfies the cut-condition. Clearly we
can compose the routings for H ′ and H ′′ to route H . The advantage of the lemma is that it allows us to reduce
the routing problem on H to that in H ′′ by choosing H ′ appropriately. This simple lemma and its variants give
a way to prove approximate flow-cut gaps effectively.

The rerouting lemma sometimes leads to very simple and insightful proofs for certain results that may be
difficult to prove via other means — see [9]. In this paper we give two applications of the lemma. We give (in
Section 4.4) a very short and simple proof of a result of Günlük [13]; he refined the result of [22, 3] and showed
that α(G,H) = O(log k∗) where k∗ is the node-cover size of H . Clearly k∗ ≤ |EH | and can be much smaller.
We also show that the integer flow-cut gap for k-Outerplanar graphs is cO(k) for some universal constant c; in
fact we show a slightly stronger result (see Section 4.3). Previously it was known that the (fractional) flow-cut
gap for k-Outerplanar graphs is ck [7].

Our integer flow-cut gap results imply corresponding new approximation algorithms for the congestion
minimization problem on the graph classes considered. Apart from this immediate benefit, we feel that it is
important to complement the embedding-based approaches to simultaneously develop and understand corre-
sponding tools and techniques from the primal point of view. As an example, Khandekar, Rao and Vazirani
[16], and subsequently [25], gave a primal-proof of the Leighton-Rao result on product multicommodity flows
[19]. This new proof had applications to fast algorithms for finding sparse cuts [16, 25] as well as approximation
algorithms for the maximum edge-disjoint path problem [28].

2 Basics and Notation

We first discuss some basic and standard reduction operations in primal proofs for flow-cut gaps and also set
up the necessary notation for series-parallel graphs.

2.1 Some Basic Operations Preserving the Cut Condition

We present several operations that turn an instance G,H satisfying the cut condition into smaller instances
with the same property. We call an instance G,H Eulerian if G+H is Eulerian; we also seek to preserve this
property.

For S ⊆ V , the capacity of the cut δG(S), is just |δG(S)| (or sum of capacities if edges have capacities).
Similarly, the demand of such a cut is |δH(S)|. Hence the surplus is σ(S) = |δG(S)| − |δH(S)|. The set S,
and cut δ(S), is called tight if σ(S) = 0. The cut condition is then satisfied for an instance G,H if σ(S) ≥ 0
for all sets S. One may naturally obtain “smaller” routing instances from G,H by performing a contraction of
a subgraph of G (not necessarily a connected subgraph) and removing loops from the resulting G′, and in the
resulting demand graph H ′. It is easily checked that if G,H has the cut condition, then so does any contracted
instance.

We call a subsetA ⊆ V (G) central if bothG[A] andG[V −A] are connected. The following is well-known
cf. [29].

Lemma 2.1 G,H satisfy the cut condition if and only if the surplus of every central set is nonnegative.

1-cut reduction: This operation takes an instance where G has a cut node v and consists of splitting G into
nontrivial pieces determined by the components of G − v. Demand edges f with endpoints x, y in distinct
components are replaced by two demands xv, yv and given over to the obvious instance. One easily checks
that each resulting instance again satisfies the cut condition. A simple argument also shows that the Eulerian
property is maintained in each instance if the original instance was Eulerian.
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Parallel reduction: This takes as input an instance with a demand edge f and supply edge e, with the same
endpoints. The reduced instance is obtained by simply removing f, e from H and G respectively. Trivially the
new instance satisfies the cut condition and is Eulerian if G,H was.

Slack reduction: This works on an instance where some edge e (in G or H) does not lie in any tight cut. In
this case, if e ∈ G, we may remove e from G and add it to H . If e ∈ H , we may add two more copies of e to
H . Again, this trivially maintains the cut condition and the Eulerian property.

Push operations: Such an operation is usually applied to a demand edge xy whose endpoints lie in distinct
components of G− {u, v} for some 2-cut u, v. Pushing a demand xy to u involves replacing the demand edge
xy by the two new demands xu, uy. Such an operation clearly maintains the Eulerian property but it may not
maintain the cut condition. We have

Fact 2.2 Pushing a demand xy to u maintains the cut condition in an Eulerian instance if and only if there is
no tight cut δ(S) that contains u but none of x, y, v.

We call the preceding four operations basic, and we generally assume throughout that our instance is re-
duced in that we cannot apply any of these operations. In particular, we may generally assume that G is 2-node
connected.

2.2 Series Parallel Instances

A graph is series-parallel if it can be obtained from a single edge graph st by repeated application of two
operations: series and parallel operations. A parallel operation on an edge e in graph G = (V,E) consists
of replacing e by k ≥ 1 new edges with the same endpoints as e. A series operation on an edge consists
of replacing e by a path of length k > 1 between the same endpoints. Series-parallel graphs can also be
characterized as graphs that do not contain K4 as minor.

A capacitated graph refers to a graph where each edge also has an associated positive integer capacity. For
purposes of routing, any such edge may be viewed a collection of parallel edges. Conversely, we may also
choose to identify a collection of parallel edges as a single capacitated edge. In either case, for a pair of nodes
u, v, we refer to the capacity between them as the sum of the capacities of edges with u, v as endpoints. For a
pair of nodes u, v a bridge is either a (possibly capacitated) edge between u, v or it is a subgraph obtained from
a connected component of G − {u, v} by adding back in u, v with all edges between u, v and the component.
In the latter case, the bridge is nontrivial. A strict cut is a pair of nodes u, v with at least 2 nontrivial bridges
and at least 3 bridges.

Lemma 2.3 If G is a 2-node-connected series-parallel graph, then either it is a capacitated ring, or it has a
strict 2-cut.

Proof: Suppose that G has no strict 2-cut. Let e1, e2, . . . , ek be the result of the first parallel operation on the
original edge st. Let Pi = a1, a2, . . . , al be the path obtained after subdividing ei if there is ever a nontrivial
series operation applied to ei (where the aj’s are the edges). Since G is 2-node-connected, k ≥ 2. If k = 2,
then each edge of P1, P2 results in a capacitated edge in G and hence G is a capacitated ring. If this were not
the case, then some aj has a parallel operation followed by a series operation, and hence the ends of aj would
form a strict cut in G. So suppose that k ≥ 3. Clearly at most one ei is subdivided, say P1, or else s, t is a
strict cut. Again, either each edge of P1 becomes a capacitated edge. Otherwise any series operation to some
ap results in its endpoints inducing a strict 2-cut.

The following lemma is useful in applying the push operation (cf. Fact 2.2).

Lemma 2.4 Let u, v be a pair of nodes in a series parallel graph, and let l, r be a 2-cut separating u from v.
Let L be a central set containing l, but not u, r and v; and let R be a central set containing r, but not u, l and
v. Then L \R and R \ L are central.
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Proof: First, we prove that V \ (R \ L) = (V \R) ∪ L is connected. This is the case since (V \R) and L are
each connected, and both contain l.

Then, we prove that R \ L is connected. Let R1 be the connected component of R \ L that contains r.
Assume R \ L contains another connected component R2. The 2-cut l, r separates u from v, so V − l, r
contains at least two connected components Cu and Cv, containing u and v respectively. Since R2 contains
neither l nor r, it is entirely in a connected component C of V − l, r. Assume without loss of generality that
C is not Cu. Since R is connected, there is a path P in R from R1 to R2; choose R2 so that P is minimal. It
follows that P = (r1, Q, r2) where ri ∈ Ri, and Q is a subpath of R∩L. Note that P ∪R2 is disjoint from Cu.

u

R

L

r x

z

l

y

Since R1 and R2 are outside of L, there is a path P ′

outside of L connecting them. This path may have the
form a1, Q1, I2, Q2, . . . , Qp, a2 where ai ∈ Ri, each Qi

is a path in V \ (R ∪ L) and each Ij is a path in some
component (other than R1, R2 in the graph induced by
R\L. Once again P ′ is disjoint fromCu, since it contains
neither l, r and hence is included in C. Since the internal
nodes of P ′ lie entirely in V \ (R∪L) and P ’s lie in R∩
L, the paths are internally node-disjoint paths connecting
R1, R2 in the graph G− Cu.

Since G[L] is connected, there is a path P1 joining l
to an internal node of P within L; since G[V \R] is connected, there is a path P2 in this graph connecting l to
some internal node of P ′. Choose these paths minimal, and let x be the first point of intersection of P1 with P ,
and y be the first intersection of P2 with P ′. Once again, note that P1 ∪P2 \ l does not contain l, r and hence is
contained in G− Cu since y, x ∈ C. Choose z ∈ P1 such that the subpath of P2 from z to y does not intersect
P1. Clearly z ∈ L \ R by construction. We now have constructed a K4 − e minor (in fact a homeomorph) on
the nodes z, x, y and r ∈ R1. This graph is also contained within C, except for r and possibly z if z = l. We
may now extend this to a K4 minor using Cu and the subpath of P1 joining l, z.

So R \ L is connected, so it is central. L \R is central by the same argument.

3 Instances where the Cut Condition is Sufficient for Routing

3.1 Fully Compliant Instances

LetG be a series-parallel supply graph andH a demand graph defined on the same set of nodes. An edge e ofH
is fully compliant if G+ e is also series-parallel. An instance G,H is fully compliant if G+ e is series-parallel
for each e ∈ E(H). We note that H itself may not be series-parallel in fully compliant instances. For instance,
we could take G to be a ring and H to be the complete demand graph.

In this section we prove that fully compliant instances G,H are integrally routable if they satisfy the cut
condition and G + H is Eulerian. This forms one base case in showing that compliant instances (introduced
in Section 3.4) are routable, which in turn will yield our congestion 5 routing result for general series-parallel
instances.

We start with several technical lemmas.

Lemma 3.1 LetG be 2-node-connected series-parallel graph. A demand edge uv is fully compliant if and only
if there is an edge uv in G, or u, v is a 2-cut in G.

Proof: Suppose that there is no edge uv in G, and that u, v is not a 2-cut in G. Since G is 2-connected, it
contains at least 2 node-disjoint paths from u to v. Since there is no edge uv, each of these paths contain at
least one node apart from u and v. And since u, v is not a 2-cut, there is a path connecting these two paths in
G− {u, v}. Therefore, uv is not fully compliant, because G+ uv contains a K4.
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Suppose G + uv contains a K4. Then there is no edge uv in G, since it is series-parallel. Let S1, S2, S3
and S4 be the sets of nodes in G+ uv that form the K4 minor. Without loss of generality u and v are in S1 and
S2 respectively; they have to be in different sets for otherwise G will have a K4 minor. Since S3 and S4 are
adjacent, they are contained in the same connected component ofG−{u, v}, say C. We claim that there cannot
be another connected component C ′ in G− {u, v}. For if it did, then since G is 2-node-connected, both u and
v have an edge to C ′. This implies that there is a path between S1 and S2 in G that avoids C (and hence S3 and
S4); then S1, S2, S3, S4 would form a K4 minor in G which is impossible since G is series-parallel. Therefore,
there is no other connected component in G− {u, v}, and u, v is not a 2-cut.

Lemma 3.2 Let G be 2-node-connected series-parallel graph. If an edge uv is not fully compliant, then there
is a 2-cut separating u from v.

Proof: Suppose an edge uv is not fully compliant, and there is no 2-cut separating u from v. Then there are
three node disjoint paths connecting u and v. Since uv is not fully compliant, there is no edge uv and each of
these paths contain at least one node apart from u and v. By Lemma 3.1, u, v is not a 2-cut, so there are paths
connecting these paths in G− {u, v}. This creates a K4 minor in G, which is impossible.

A 2-Cut Reduction: A partition of G is any pair of graphs (G1, G2) such that: (i) V (G1)∩V (G2) = {u, v},
for distinct nodes u, v (ii) E(G) is the disjoint union of E(G1), E(G2) and (iii) |V (Gi)| ≥ 3 for each i. Thus
any 2-cut admits possibly several partitions, and we refer to any such as a partition for {u, v}. We say that a
demand graph H has no demands crossing a partition for u, v, if H can be written as a disjoint union H1 ∪H2

where for i = 1, 2, Hi is a subgraph of H[V (Gi)], the demand graph induced by one side of the partition. Note
that even if G,H satisfy the cut condition, it may not be the case that Gi, Hi does. It is easily seen however that
we may always add some number ki of parallel edges between u, v in each Gi so that Gi, Hi does have the cut
condition. For i = 1, 2 the smallest such number is called the deficit of the reduced instance Gi, Hi. One easily
checks that the deficit of at least one of the reduced instances is at most 0 if G,H satisfies the cut condition.

Lemma 3.3 Let G,H satisfy the cut condition and let (G1, G2) be a partition for 2-cut {u, v} such that H has
no demands crossing the partition. Let ki be the deficit of Gi, Hi; without loss of generality k1 ≥ 0 = k2. Let
H ′2 be obtained by adding k1 demand edges between u, v in H2. We also let H ′1 = H1. Let G′1 be obtained
by adding k1 supply edges between u, v to G1; we also let G′2 = G2. Then G′i, H

′
i satisfies the cut condition

for i = 1, 2. Moreover, if G + H was Eulerian, then so is G′i + H ′i for i = 1, 2. Finally, if there is an integral
routing for each instance G′i, H

′
i, then there is such a routing for G,H .

Proof: First, let S ⊂ V (G1) which defines G1’s deficit. That is the number of demand edges in δH1(S) is k1
greater than |δG1(S)|. Without loss of generality, u ∈ S. Also, we must have v 6∈ S, for otherwise S ∪ V (G2)
violates the cut condition for G,H . Clearly, G′1, H1 now satisfies the cut condition. Next suppose that G2, H

′
2

does not obey the cut condition. Then there exists some S′ containing u and not v, such that

|δH2(S′)|+ k1 > |δG2(S′)|.
But then S ∪ S′ violates the cut condition for G,H .

Let G + H be Eulerian, and note that all nodes except possibly u, v have even degree in G′i + H ′i (and in
Gi + Hi). It is thus sufficient to show that u, v also have even degree. Let p be the parity of u in G1 + H1.
Since any graph has an even number of odd-degree nodes, v must also have parity p in G1 + H1. Let s =
|δG1(S)|, d = |δH1(S)| and so k1 = d− s. Since S separates u, v we have that d+ s = |δG1+H1(S)| has parity
p and hence k1 = d− s = d+ s− 2s does as well. That is, the deficit k1 has parity p and so u and v have even
degree in G′1 +H ′1. This immediately implies the same for G′2 +H ′2.

The last part of the lemma is immediate, since each demand from H is routed in G1 ∪G2 together with the
k1 new supply edges in G1. However, any such new edge was routed in G2 together with the demands in H2,
so we can simulate the edge by routing through G2.
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Fully Compliant instances are routable: Let G,H satisfy the cut condition where G is series parallel, and
each edge in H is compliant (with G). We now show that if G+H is Eulerian, then there is an integral routing
of H in G. The proof is algorithmic and proceeds by repeatedly applying the reduction described above and
those from Section 2.1. In particular, at any point if there is a slack, parallel or 1-cut reduction we apply the
appropriate operation. Thus we may assume that G is 2-node connected, and that each demand or supply edge
lies in a tight cut, and no demand edge is parallel to a supply edge.

If G is a capacitated ring, then the result follows from the Okamura-Seymour theorem. Otherwise by
Lemma 2.3, there is some strict cut u, v. Thus G has 3 node-disjoint paths P1, P2, P3 between u, v and so there
is a partition G1, G2 for u, v such that either G1 or G2 has 2 node-disjoint paths between u, v. Without loss
of generality, for i = 1, 2 Pi is contained in Gi. But then there could not be any demand edge crossing the
partition. Since if f ∈ E(H) has one end inG1−{u, v} and the other inG2−{u, v}, then we would have aK4

minor in G + f . Thus we may decompose using Lemma 3.3 to produce two smaller instances and inductively
find routings for them. These two routings yield a routing for G,H by the last part of Lemma 3.3.

3.2 Routable K2m Instances

of A, v1 is incident to some long demand edge which by minimality of B can then be pushed to v2.

So we assume that A ∪ B "= V . If A,B are crossing, then we cannot uncross, since A ∩ B would

contradict minimality of B (and A). Hence by Proposition 2.1, there is a demand between B − A
and A − B. But then again, this demand (which must be incident to v1) could be pushed to v2. If

A,B do not cross, by minimality of A, we have that B is not contained in A, and thus A,B are

disjoint, and hence A ∩ F = {v1} and there are demands incident to v1. As before, by minimality

of B any long demand between A,B could be pushed to v2. If there are no demand edges between

A,B, then B ∪ {v1} violates the cut condition, a contradiction.
Notes: Why can we assume in the above that a demand is incident to v1? Suppose v1 does not

have a demand incident to it. If degree of v1 is 2 then we can supress v1. Otherwise we can move

v1 inside the ring by taking out one edge on either side and making that into the the edge between

v0 and v2. The cut condition and the Eulerian property still hold. Do we need this? Can we change

the proof above retaining its simplicity?

3.3 Routable K2m Instances

A K2m-instance consists of a supply graph G = K2m with a 2-cut s, t and m nodes v1, . . . vm of

degree two, each adjacent to s, t. We may possibly also have an edge between s, t. We also have a
demand graph H = (V = V (G), F ) on the same node set V , and edge capacities u on G’s edges.

A tri-source instance is a K2m instance such that if vivj ∈ F , then either i or j is 1. A path-

bipartite instance is one where the demands with both ends in them degree 2 nodes form a bipartite
graph.

Figure 5: A tri-source instance and a path-bipartite instance.

Lemma 3.2 If G,H is a tri-source instance satisfying the cut condition and G + H is Eulerian,

then there is an integral routing of the demands in H .

Proof: We prove the result by induction on |E(G)| + |E(H)|. If any demand edge f is parallel
to an edge e ∈ G, then we may delete f and set ue = ue − 1 to obtain a new Eulerian instance
that one easily checks must satisfy the cut condition. Thus we may assume that every demand edge

either joins s, t or is of the form v1vj for some j > 1. If there is no demand between s, t, then it is

11

AK2m-instance consists of a supply graphG = K2m

with a 2-cut s, t and m nodes v1, . . . vm of degree two,
each adjacent to s, t. We may possibly also have an edge
between s, t. We also have a demand graph H = (V =
V (G), F ) on the same node set V , and edge capacities u
on G’s edges. A path-bipartite instance is one where the
demands with both ends in the m degree 2 nodes form a
bipartite graph. One special case is a so-called tri-source
instance, where if vivj ∈ F , then either i or j is 1. The
figure shows a tri-source and a path-bipartite instance.

Lemma 3.4 If G,H is a path-bipartite instance satisfying the cut condition and G+H is Eulerian, then there
is an integral routing of H in G.

Proof: If any demand edge f is parallel to an edge e ∈ G, then we may delete f and set ue = u1 − 1 to
obtain a new Eulerian instance that one easily checks must satisfy the cut condition. Note that we may also
assume that either there are no st demands, or no st supply for otherwise we could reduce the instance. Thus
we may assume that every demand edge either joins s, t or is of the form vivj for some i 6= j. Suppose first
that some node vi does not define a tight cut. Consider the new instance obtained by adding a new supply edge
between s, t and remove one unit of capacity from each edge incident to vi. The only central cuts whose supply
is reduced is the cut induced by vi; as this cut was not tight, it still satisfies the Eulerian and cut conditions. The
new instance is also smaller in our measure and so we assume that each δ(vi) is tight.

Let X,Y be a bipartition of the degree two nodes for the demands amongst them. Let rj = uvjt and
lj = usvj for each j. For a subset S of the degree two nodes, we also let r(S) =

∑
vi∈S ri (similarly for l(S)).

Hence actual supply out of δG(X) is just r(X)+l(X). We also let d(i) denote the total demand out of vi; hence
we have that d(i) = ri + li for each i. In particular, any subset of X or of Y is tight. Thus if r(Y ) < r(X),
then X ∪ t is a violated cut and so r(Y ) ≥ r(X). Similarly, r(X) ≥ r(Y ). Thus r(X) = r(Y ) and the same
reasoning shows that l(X) = l(Y ). Moreover, the above argument shows that there are no st demands or else
X ∪ t is a violated cut.
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All demands in bipartite instances are pushable Assume we have a K2m

instance with demands between nodes of degree two forming a bipartite graph
between X and Y . Assume that each node of degree two is tight. Assume that
there are two tight cuts S and T separating s from t.

We group the nodes of degree two and contract them in eight nodes, by
appartenance to X or Y , S or V \ S, T or V \ T . Since nodes in X (or Y ) at
not adjacent to each other, each node is still tight. We get the following graph:

s

a

b

c

d

e

f

g

h

t

u

S

T

X Y

Some nodes and demand edges may not actually exist.
We denote by lx (resp. rx) the capacity of the supply edge between a node

x and s (resp. t). We denote by dxy the demand between nodes x and y. We
denote by u the capacity of the st supply edge.

The cut induced by S and T are tight:

la+lb+lc+ld+re+rf +rg+rh−daf−dah−dbe−dbg−dcf−dch−dde−ddg+u = 0,

la+lb+rc+rd+le+lf +rg+rh−dad−dah−dbc−dbg−dcf−dde−deh−dfg+u = 0.

The surplus of cuts induced by {s, d, f, g, h} and {s, c, e, g, h} must be positive:

la+lb+lc+rd+le+rf+rg+rh−dad−daf−dah−dcd−dcf−dch−dde−ddf−ddh−dbg+u ≥ 0,

la+lb+rc+ld+re+lf+rg+rh−dah−dbc−dcd−dcf−dbe−dde−def−dbg−ddg−dfg+u ≥ 0.

If we add these two inequalities and subtract them by the two previous equalities,
we get:

−2dcd − 2def ≥ 0,

and so dcd + def = 0. Therefore, for any two distinct st cuts, there is never a
demand edge which is on the left of one and on the right of the other.

So any demand edge can be pushed to s or t. By induction, any bipartite
instance is routable.

1

Assume that there are two tight cuts S and T separating s
from t. We group the nodes of degree two and contract them
in eight nodes, by inclusion inX or Y , S or V \S, T or V \T .
Since nodes in X (or Y ) are not adjacent to each other, each
node is still tight. The result is shown in the adjacent figure.

Some nodes and demand edges may not actually exist.
We denote by lx (resp. rx) the capacity of the supply edge

between a node x and s (resp. t). We denote by dxy the
demand between nodes x and y. We denote by u the capacity
of the st supply edge.

The cut induced by S and T are tight which implies:

la+lb+lc+ld+re+rf+rg+rh−daf−dah−dbe−dbg−dcf−dch−dde−ddg+u = 0,

la + lb + rc + rd + le + lf + rg + rh − dad − dah − dbc − dbg − dcf − dde − deh − dfg + u = 0.

The surplus of cuts induced by {s, d, f, g, h} and {s, c, e, g, h} must be positive:

la + lb + lc + rd + le + rf + rg + rh − dad − daf − dah − dcd − dcf − dch − dde − def − deh − dbg + u ≥ 0,

la + lb + rc + ld + re + lf + rg + rh − dah − dbc − dcd − dcf − dbe − dde − def − dbg − ddg − dfg + u ≥ 0.

If we add these two inequalities and subtract them by the two previous equalities, we get:

−2dcd − 2def ≥ 0,

and so dcd + def = 0. Therefore, for any two distinct st cuts, there is never a demand edge which is on the left
of one and on the right of the other.

So any demand edge can be pushed to s or t. By induction, any path-bipartite instance is routable.

3.3 K2m instances are cut-sufficient if and only if they have no odd K2p minor

While the preceding result on “bipartite” K2m instances will be sufficient to deduce our congestion 5 result
later, we delve a little more deeply into the structure of general K2m instances. This is because they suggest a
very appealing conjecture on cut-sufficient series parallel instances (given below) and could very likely form a
basis for settling that conjecture.

Recall that a K2m-instance is one whose supply graph is of the form G = K2m with a 2-cut s, t and m
nodes v1, . . . vm of degree two, each adjacent to s, t. We say an instance has an odd K2p minor if it is possible
to delete or contract supply edges of the instance, and delete demand edges, until we get an instance that is
an odd K2p, that is, a K2p supply graph, with p odd, such that the two nodes of degree p are connected by a
demand edge, and such that the p nodes of degree 2 are connected by an odd cycle of demand edges. One easily
sees that an oddK2p instance is not cut-sufficient (refer to the introduction for the definition of cut-sufficiency).
Indeed, setting all demands and capacities to 1 defines an instance that satisfies both Eulerian and cut condition,
but is not routable. In general, if we only obtain this structure as a minor, we can think of assigning 0 demand
(respectively capacity) to the deleted demand (resp. supply) edges, and assign infinite capacity to any contracted
supply edge. Hence for any pair (G,H), if it is cut-sufficient, then it cannot contain an odd K2p minor. For
general graphs this is not sufficient (cf. examples in [29]). However we conjecture the following.

Conjecture 3.5 Let G be series parallel. Then a pair (G,H) is cut-sufficient if and only if it has no odd K2p

minor.
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Together with the results of the previous section, we now prove that the conjecture holds forK2m instances.
In other words, if such an instance has no odd K2p minor, then it is routable. We prove a slightly stronger
statement. Let (G,H) be a K2m instance that satisfies the cut condition, is Eulerian and has no odd K2p minor,
then there is an integral routing for H in G.

The graphs G and H are capacitated. The proof is by induction on total demand. In the following, we may
assume that no demand edge is parallel to a supply edge. Furthermore, we assume as in the proof of Lemma 3.4,
that any cut induced by a middle node vi is tight. If the demand graph does not contain an odd cycle, then it
is bipartite and routable by Lemma 3.4. Let us therefore assume that the demand graph contains at least one
odd cycle. As the graph should not have any odd K2p minor, there is no demand edge from s to t. We will
subsequently prove that at least one demand edge f = vivj can be pushed to s or t, by assuming that none can,
and deducing a contradiction. Here, by pushing the edge f = vivj to s we mean that one unit of demand on
f can be removed and new demand edges svi and svj with unit demand are created (pushing to t is similar).
Pushing allows us to complete the proof by induction as follows. Once we push a demand edge f to s or t, the
resulting instance could possibly have an odd K2p minor. However, the demand edges thus created are parallel
to some supply edges, and have only one unit of demand. If we reduce at once the resulting new demand edges
with the parallel supply edges, we get a new K2m instance with supply and demand edges that all existed in the
original one, and so does not have an odd K2p minor either. As the new instance has a smaller total demand,
we can apply induction.

Now we prove the existence of a demand edge that can be pushed. We call a demand edge a leaf demand
edge if it is the unique demand edge incident to some vi node. The following lemma is useful in showing that
such demand edges can be pushed.

Lemma 3.6 Let (G,H) be a K2m-instance that satisfies the cut condition and such that any cut induced by a
vi is tight. Then any tight cut separating s from t separates every node vi from at least one of its adjacent nodes
in the demand graph.

Proof: Suppose there is some tight cut S which separates a degree 2 node v from none of its adjacent nodes in
the demand graph. We have |δG(S)| = |δH(S)|. Let us consider the cut S′ obtained by flipping the side of v in
the cut S. Then |δH(S′)| = |δH(S)|+ |δH(v)|, but |δG(S′)| < |δG(S)|+ |δG(v)|, because S separates s from t.
Since by assumption |δH(v)| = |δG(v)|, the cut condition is not satisfied on S′, and so we have a contradiction.

As a corollary of the previous lemma, any leaf demand edge in a K2m instance can be pushed to s (or to t),
since no tight cut can separate both its end points from s (or from t).

Recall that the demand graph has an odd cycle. We consider the structure of the demand graph. We call a
graph an edge-K2m-cycle if it can be obtained from a cycle by replacing some edges by K2m subgraphs.

Lemma 3.7 If a K2m instance does not have an odd K2p minor, and the demand graph contains an odd cycle,
but no leaf demand edge, then the demand graph is either an edge-K2m-cycle, or K4.

Proof: Let C be the shortest odd cycle contained in the demand graph. We claim that V (C), the nodes in C,
cover all demand edges. For if a demand edge vivj is not covered, we can get an odd K2p minor by contracting
supply edges incident to vi and vj . Further, if vivj is a demand edge with only one of vi, vj on C, the edge is a
leaf demand edge and hence can be pushed. Therefore we can assume any node vi not in V (C) is adjacent to
at least two nodes of C in the demand graph.

First, suppose that C is a triangle. Then any node vi 6∈ V (C) adjacent to two nodes of C creates another
triangle. It is easy to see that any two nodes vi, vj 6∈ V (C) adjacent to two nodes of C must be adjacent to
the same two nodes of C, otherwise we can find a triangle and an additional edge not connected to it, which
forms an odd K2p minor. Also, if vi, vj 6∈ V (C) are adjacent to the same two nodes of C, neither of vi, vj
is adjacent to the third node of C, because this would again form an odd K2p minor. So there are only two

10



possibilities: Either the demand graph consists of many triangles all sharing the same edge of C, which is an
edge-K2m-cycle, or it is K4.

Now, suppose C is a odd cycle of length at least 5. Suppose a node v 6∈ V (C) is adjacent to two distinct
nodes v1, v2 ∈ V (C) in the demand graph. Then v1v2 is not an edge of the demand graph for otherwise v along
with v1, v2 would form a triangle in the demand graph contradicting the fact that C is the shortest odd cycle.
Suppose the shortest path in C connecting v1 and v2 has length 3 or more. Then the edges vv1 and vv2 create
a shortcut for C, which creates shorter cycles with each of the two paths in C from v1 to v2, one of them odd,
contradicting the choice of C. Therefore, the shortest path in C connecting v1 and v2 must have length 2. This
also implies that v has degree 2, because three nodes in C cannot all be at distance 2 of each other.

So any node v 6∈ V (C) forms a bridge of length 2 between two nodes v1 v2 of C, with v1 and v2 being at
distance 2 in C. Let v′ be the middle node on the length 2 path between v1 and v2 in C. We claim that v′ has
degree 2 in the demand graph. To see this, note that the cycle C ′ obtained by replacing the path v1, v′, v2 in
C by the path v1, v, v2 has the same length as C and v′ 6∈ V (C ′). By the argument in the previous paragraph,
v′ has degree 2. It follows that v1 and v2 form a 2-cut for the demand graph, and all but one of the connected
components obtained by removing v1 and v2 are singletons. As any node v 6∈ C is adjacent to exactly two
nodes v1 and v2 for which this is true, the demand graph is an edge-K2m-cycle.

It is known that all demand graphs on less than five nodes are routable in any graph that satisfies the cut
condition for it (see [29]), and hence K4 is routable. So if we assume that a K2m instance has no odd K2p

minor, but that no demand edge can be pushed, then the demand graph must be an edge-K2m-cycle. We now
show a property of the capacity and demand vectors of such instances.

Lemma 3.8 Let (G,H) be a K2m in which H is an edge-K2m-cycle, no demand edge can be pushed, and any
cut induced by a vi is tight. Then for any node v that has degree 2 in both the demand and supply graph, the
capacity and demand of the four edges incident to v in both graphs is the same.

Proof: Let v be a node of degree 2 in the demand graph, connected to v1 and v2. By assumption, no edge of the
demand graph can be pushed. So there are tight cuts S1, T1 separating vv1 from s and t respectively. Similarly,
there are tight cuts S2, T2 separating vv2 from s and t respectively. By Lemma 3.6, the cuts S1 and T1 must
both separate vv1 from v2. Similarly, S2 and T2 must separate vv2 from v1. Let us consider S1 and T1, and flip
the side of v in both. The total capacity |δG(S1)| + |δG(T1)| of both cuts is the same as before, but the total
demand is modified by replacing the demand of vv2 by that of vv1. Since S1 and T1 were already tight, this
means the demand of vv1 is no greater than that of vv2. Symmetrically, starting from S2 and T2, we prove that
the demand of vv2 is no greater than that of vv1, and so the demand on both edges is the same. By repeating
the argument on the pair of cuts S1 and S2, and the pair T1 and T2, we prove that the capacity of the edge sv is
the same as that of vt. Since the cut induced by v is tight, the capacities and demands are all equal.

In the following, we call a node v bracketed by v1 and v2 if it is of degree 2 in the demand graph, and
connected to v1 and v2. The previous lemma has the following easy corollary:

Corollary 3.9 Let (G,H) be a K2m in which H is an edge-K2m-cycle, no demand edge can be pushed, and
any cut induced by a vi is tight. Let v be a node bracketed by v1 and v2. Let S be a tight cut separating s from
t. Then either S separates v from both v1 and v2, or S separates v1 from v2, in which case the cut obtained by
flipping the side of v in S is also tight.

Proof: If S does not separate v1 from v2, then it must separate them from any node they bracket, because
otherwise we get a tighter cut by flipping the bracketed node. If S does separate v1 from v2, then by Lemma 3.8,
flipping v does not change the surplus of the cut.

The above corollary implies that for any tight cut separating s from t, there is another tight cut such that all
nodes bracketed by a pair v1 and v2 are on the same side of the cut. Let us now consider any demand edge. If
it cannot be pushed then there are tight cuts S and T separating the end points of the demand edge from s and
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t respectively. We flip all bracketed nodes so that they are all on the same side of S, and all on the same side
of T . We can now consider all nodes bracketed by a same pair as a single node, since they are all on the same
side of S and T . If we do so for all bracketed nodes, we reduce the demand graph to a cycle, which is routable,
and hence contradicts the assumption that S and T are tight.

3.4 Compliant Instances

We define in this section the notion of compliant instance, and prove any such instance is routable if it is
Eulerian and satisfies the cut condition. This is the main technical contribution of the paper. Recall that a
demand edge e is called fully compliant if G + e is series-parallel. If G is a series-parallel graph created from
the edge st, we orient the edges of G by orienting the initial st and extending it naturally through series and
parallel operations. We abuse notation and use G to refer to both the undirected graph and the oriented digraph.

In the resulting digraph, s is a unique source, and t is a unique sink; it is easy to see that this property is
not lost by any series or parallel operation. The graph is also acyclic, because we can build an acyclic order
starting from one for the st edge and extending it through the sequence of series and parallel operations. As
a consequence, any directed path can be extended to an st path, because we can always add an edge at the
beginning until it starts from s, and at the end until it ends at t.

We call a demand edge compliant if there is a directed path in G connecting its endpoints. An instance is
compliant if all edges are compliant or fully compliant. (It is easy to show that if the s, t cut has three or more
bridges, then in fact any fully compliant demand edge is also compliant.)

Theorem 3.10 Let G be a series-parallel graph. Further let G,H be a compliant instance with G+H Eule-
rian. If G,H satisfies the cut condition, then H has an integral routing in G.

We start by two technical lemmas on oriented series-parallel graphs and on compliant demand edges.

Lemma 3.11 Any directed path in G crosses at most twice the cut defined by a central set.

Proof: Suppose there is a directed path P that crosses at least three times the cut δ(S) defined by a central set
S. We extend P to an st path P ′, and denote by e1, e2 and e3 the first three edges of P ′ crossing δ(S). P ′

can be decomposed as follows: P ′ = (P1, e1, P2, e2, P3, e3, P4) with P1 starting from s and P4 ending at t.
Without loss of generality, we can assume P1 and P3 do not intersect S, P2 is contained in S, and P4 is partially
in S.

s t

S

e1

e2

e3P1

P2

P3

P4

We show these four parts form a K4, which is a contradiction.
Indeed, P1 and P3 are connected by a path which does not cross
δ(S), because S is central. Similarly, P2 and P4 are connected by
a path contained in S. Since S is a series-parallel graph created
from an st edge, adding an st edge should not create a K4 minor.
However, this would clearly be the case here, and so we have a
contradiction.

Lemma 3.12 Let G be a 2-connected series parallel graph obtained from an edge st. Let uv be a compliant
edge that is not fully compliant. Then there is a directed s-t path P that contains u, v and in addition, there is
a 2-cut l, r in G that separates u, v such that l, r lie on P . Moreover, if P traverses s, l, u, r, v, t in that order,
then l, r can be chosen to separate u from both s and t (and symmetrically, if P traverses s, u, r, v, l, t we can
separate v from s, t).

Proof: Since uv is compliant, there is a directed path which without loss of generality traverses u and then v.
This can be extended to a directed s-t path P traversing s, u, v, t in that order. Since uv is not fully compliant,
there is by Lemma 3.2 a 2-cut l, r in G separating u from v. One node of the 2-cut, say r, has to be on the
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path from u to v. So P traverses s − u − r − v − t in that order. Suppose l is not on P ; then l, r separates s
from t (otherwise, there would be a path u− s− t− v in G− {l, r}). Since G is 2-node connected, there are
two nodes-disjoint paths from s to t, one containing l and the other containing r. This implies that s, t is also a
2-cut separating l from r. If this were not the case, then G− {s, t} would contain a path joining l, r. But then
G+ st would clearly contain a K4 minor, a contradiction. We now claim that s, r is a 2-cut that separates u, v,
and hence choosing l = s gives the desired cut. Suppose not, then there is a u-v path Q in G − {s, r}; this
path Q necessarily has to contain l since l, r is a 2-cut for u, v. Let Q1 be the sub-path of Q from u to l. If Q1

contains t, then we have a u− v path that avoids l, r, by following Q1 and then the portion of P between t and
v, a contradiction. Otherwise, Q1 combined with the portion of P from u to r is an l − r path that avoids s, t,
again a contradiction. Hence we can assume that l also lies on P as claimed.

For the second part, assume that P traverses s, l, u, r, v, t in order. Clearly, there cannot be a path from u
to t in G′ = G− {l, r} for otherwise it can be combined with P to find a u− v path that avoids l, r. Suppose
u is connected to s 6= l in G′. Since G is 2-node-connected, there are two oriented nodes-disjoint s-t paths in
G and one of them avoids l, r; otherwise one contains l and the other r. Hence these two paths along with the
portion of P from l to r yield a K4 in G+ st. Thus s, t are connected in G′ and hence if u can reach s in G′ it
can reach t, and hence v as well, again contradicting that l, r is a 2-cut for u, v.

We are now ready to prove Theorem 3.10.
Proof: Let uv be a demand edge which is compliant, but not fully compliant. We show that we can push uv
into a series of fully compliant demand edges, maintaining the hypotheses for the new instance.

By Lemma 3.12 we have, without loss of generality, a directed s-t path P that traverses nodes s, l, u, r, v, t
in that order (possibly s = l) where the component of G− l, r containing u does not contain v, s or t.

Without loss of generality, we suppose the oriented path connecting u and v is oriented from
u to v. We can extend this path into a path P from s to t passing by u and v. Since uv is not
compliant, there is by Lemma 2.3 a 2-cut l, r in G separating u from v.

We show that we can choose l, r on P . One node of the 2-cut, say r, has to be on the path
from u to v. Suppose l is not on P ; then l, r separates s from t (otherwise, there would be a path
u − s − t − v in G \ {l, r}). So there are two nodes-disjoint paths from s to t passing through l, r
respectively. This means s, t is also a 2-cut separating l from r (or G would not be series-parallel).

So the 2-cuts s, t and l, r cross, which means s, r is also a 2-cut separating u from v. So we can
choose l, r on P . Without loss of generality, we assume P contains l − u − r − v in that order.

L

R

u

v

l

r

u and v are separated by the 2-cut l, r, and the demand uv cannot be pushed to l or r.

We show that we can push the edge uv to l or r. Suppose this is not the case, then there is a tight
cut δ(L) separating l from u and v, and a tight cut δ(R) separating r from u and v. We show that
this is not possible, by contracting the graph into a tri-source or a bipartite-path instance in which

δ(L) and δ(R) have the same surpluses σ(L) and σ(R). Since we know that these types of instances
are routable, the cuts δ(L) and δ(R) cannot both be tight.

Since R is central, there is a path from u to v in V \ R, which goes through l; so l is not in
R, and similarly, r is not in L. We contract L \ R and R \ L, containing l and r respectively, into
vertices l′ and r′. Since l, r is a 2-cut, the vertices V \(L∆R) form different connected components
Ci. We contract each of these connected component into vertices ci. Since L and R are central,

each of the ci is connected to both l′ and r′. The graph is therefore of typeK2m. We know examine

what kind of demand edges the contracted graph has.

Since in G, the path P goes successively through u, r and v, s and t are not in R, because then
P would cross δ(R) three times. Either of two cases can happen:

1. t is not in L. So t is contained in some Ci, say C1. s is not in a Ci different from C1, because

then s, t would not be a 2-cut, so s is either in L or in C1. Since no oriented path crosses

16

Figure 1: u and v are separated by the 2-cut l, r, and the demand uv cannot be pushed to l or r.

We show that we can push the edge uv to l or r. Suppose this is not the case, then since l, r is a 2-cut, by
Fact 2.2 there is a (central) tight cut δ(L) separating l from u, r and v, and a (central) tight cut δ(R) separating
r from u, l and v. We show that this is not possible, by contracting the graph into a tri-source or a path-bipartite
instance which again contains tight cuts corresponding to δ(L) and δ(R). Since we know that such instances
are routable, these tight cuts could not exist.

Recall that L \ R contains l but not r, and R \ L contains r but not l. Hence we can contract L \ R and
R \ L and label the nodes l′ and r′ respectively. (By Lemma 2.4, this is actually a contraction on connected
subgraphs, although it is not critical at this point in the argument that we have a minor as such.) Denote the
resulting instance (after removing loops) by G∗, H∗.

Since {l, r} is a 2-cut separating u, v we have that the graph induced by the nodes V \ (L∆R) has at least
2 components (one containing u and one containing v). Let Ci denote the components in this graph and let
Xi = R ∩ L ∩ Ci, Yi = Ci ∩ (V \ (R ∪ L)). Consider any component K of G[Yi]. Since G− L is connected,
there is a path from K to R \L in the graph induced by K ∪ (R \L). Similarly, there is a path from K to L \R
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in G[K ∪ (L \R)], since G−R is connected. Analogously, if K is a component of G[Xi], then since G[R] is
connected, there must be a path from K to R \L in G[K ∪ (R \L)]. Similarly there is a path from K to L \R.
Now if both Xi, Yi are nonempty, then we may choose a pair of components K,K ′ from Xi, Yi respectively,
and a path joining them in Ci, so that we can form K4 − e in the minor whose nodes are l′, r′,K,K ′. This
together with a path through some other Cj yields a K4. Hence for each i, at most one of Xi or Yi is nonempty.
Moreover, if we shrink each Ci to a node ci, then we have edges cil′, cir′. The shrunken graph is therefore of
type K2m, with possibly an edge from l′ to r′. Since each ci was either of “type” R ∩ L, or type V \ (R ∪ L),
in the shrunken graph we can identify tight cuts induced by sets L′, R′ associated with our original pair L,R.

We next claim that neither s nor t is in R (and hence R \ L); to see this, note that the s-t path P goes
successively through s, u, r, v, t and hence if either s or t is in R, then P would cross δ(R) three or more times.

We now examine two cases based on whether t is in L or not. In each case we examine the structure of the
demand edges in the shrunken graph.

1. t is not in L. So t is contained in some Ci, say C1. Suppose first that s lies in some Ci different from C1.
By Lemma 3.12, l, r separates u from s, t; so u 6∈ Ci ∪C1. But then adding st (i.e., cic1) to the shrunken
graph (which maintains the series-parallel property), would create a K4 on the nodes l′, r′, ci, c1, by
considering the l′ − r′ path through the component Cj containing u. Hence we may assume that s is
either in L or in C1.

Consider next some compliant demand edge u′v′ in the shrunken instance, and suppose that neither of its
endpoints lie in C1; say the endpoints are in Ci, Cj . Consider the directed s-t path P ′ associated with this
demand where P ′ traverses s, u′, v′, t in that order. In the shrunken graph it must cross the cuts induced
by C1, Ci, Cj at least 5 times. Since every edge in any of these cuts lies in either δ(L′) or δ(R′), one
of these two cuts is crossed three times, a contradiction. Hence, any compliant edge that remains in the
shrunken graph, must have one endpoint in C1. Thus the shrunken graph is a tri-source instance where
l′, r′ and c1 are the three sources.

2. t is in L. We claim that s is also in L; P goes successively through l, u and t, and hence if s is not in L,
P would cross δ(L) three times.

Recall that any directed path can be extended into a path starting at s and ending at t, and that this path
should cross the cut of any central set at most twice by Lemma 3.11. We also use Lemma 2.4 to obtain
that bothR\L,L\R are central sets. Thus since s and t are both in L\R, there are two types of directed
s-t paths. The first type does not ever enter R \ L. If such a path ever leaves L \ R, then it must enter
some Ci. It must then leave Ci to reach t, and hence it enters L \R again. Thus the path has crossed the
cut of L \R twice, and hence it can not leave it again. The second type of path may traverse R \L. This
is the only type that can traverse more than one Ci. We claim that a directed s-t path of the second type
goes from L \ R to R \ L, traversing at most one Ci on the way, then goes back from R \ L to L \ R,
traversing at most one Ci on the way. This follows since any s-t directed path cannot cross δ(R \ L)
more than twice, so it can enter at most once, and leave at most once.

Therefore, a directed s-t path of the second type leaves L\R, possibly traverses a Ci, entersR\L, leaves
R \ L, possibly traverses a Ci, and enters L \ R in that order. It cannot leave L \ R again after, as it has
crossed its cut twice. As a consequence, no directed path can traverse more than two Ci’s.

We now show that for any Ci, the arcs (oriented edges of G) connecting Ci to R \ L are all oriented in
the same direction. Assume there is a Ci, say C1, with an arc e1 entering and an arc e2 leaving R \ L.
We can extend e1 into a directed path P1 starting with s. Since P1 ends by entering R \ L with e1, it did
not leave R \L before, so it entered C1 from L \R. We can also extend e2 into a directed path P2 ending
at t. Since P2 starts by leaving R \ L with e2, it can not enter R \ L again, so it leaves C1 for L \R.
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Figure 1: Supply graph for gap example.
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Figure 2: If a connected component of V \ (L∆R) has arcs going in and out ofR \ L, the graph contains aK4.

1

We now show P1 and P2 are node-disjoint inside C1. Suppose that
it is not the case, and that there is some x ∈ C1 contained both in
P1 and P2. Then we can create a directed path leaving R \ L then
entering it again, by following P2 from e2 to x, then following P1

from x to e1. The directed path is simple, since the graph is acyclic.
We can extend it to a directed s-t path which then contradicts our
previous claims. Hence P1 and P2 are node-disjoint inside C1. But
since C1 is connected, these paths are connected by some path. That
is, for any x1 ∈ C1 on P1 and any x2 ∈ C1 on P2, there is a path inside C1 connecting x1 to x2. Also,
since u and v are not in the same Ci, there is at least one other Ci linking L \ R and R \ L. This now
creates a K4 in the graph (with l′, r′ shrunken) on the nodes l′, r′, x1, x2, a contradiction.

Thus for any Ci, the arcs connecting Ci to R\L are all oriented in the same direction. Therefore the Ci’s
are partitioned into two types: out components are those with arcs going into R \ L, and in components
with arcs entering from R \ L. It follows that any directed path traversing two Ci’s traverses one of each
type. Any compliant edge u′v′ that remains in the shrunken graph that is not incident to l′ or r′, must
admit a directed u′v′ with its endpoints in distinct components. Hence exactly one of u′, v′ lies in an in
component, and the other lies in an out component. Thus the shrunken graph is a path-bipartite instance.

In either case, the instance G∗, H∗ obtained is routable by Lemma 3.4. Therefore, the cuts δ(L) and δ(R)
could not have both been tight, and so we can push uv to either l or r. By induction, we can push any compliant
edge into a series of fully compliant edges.

4 Integral Routing with Congestion

4.1 Routing in Congestion 5 in Series Parallel Graphs

Theorem 4.1 Suppose G,H is a series-parallel instance satisfying the cut condition. Then H has an integral
routing with edge congestion 5.

Proof: By the result of [20], there is a fractional routing f of H with congestion 2. For any demand edge
xy, suppose that s′, t′ induce the highest level (with respect to the decomposition of G starting from st) 2-cut
separating x, y. Then at least half of any fractional flow for xy has to go either via s′ or t′. Without loss of
generality, assume it is s′. We push the xy demand edge to s′, i.e., we create demand edges xs′, ys′ and remove
xy. We do this simultaneously for all demand edges - we are pushing demands based on the fractional flow
f . The new instance is compliant. Let us call H ′ the new demand graph. By construction, there is a feasible
fractional flow of 1/2 of each demand from H ′ in 2G. This implies that 4G satisfies the cut condition for H ′.
In order to make the graph Eulerian, we can add a T -join, where T is the set of odd degree nodes in 4G+H ′.
Since we can assume that G is connected by previous reductions, we may choose such a T -join as a subset of
E(G). It follows that we can create an Eulerian, compliant instance G′, H ′ that satisfies the cut condition, and
G′ is a subgraph of 5G. Hence by Theorem 3.10, we may integrally route H ′, and hence H in the graph 5G.

We believe that the above result can be strengthened substantially and postulate the following:

Conjecture 4.2 Let G,H satisfy the cut condition where G is series-parallel and G + H is Eulerian. Then
there is a congestion 2 integral routing for H .

4.2 Rerouting Lemma from [9]

We state the rerouting lemma that we referred to in the introduction. It is useful to refer to the informal version
we described earlier. Let D be a demand matrix in a graph G and let f : V → V be a mapping. We define a
demand matrix Df as follows:

15



Df (xy) =
∑

uv:f(u)=x,f(v)=y

D(uv).

In other words the demand D(uv) for a pair of nodes uv is transferred in Df to the pair f(u)f(v). Thus the
total demand transferred from u to f(u) is

∑
vD(uv). We define another demand matrix D′f which essentially

asks that each node u can send this amount of flow to f(u).

D′f (uf(u)) =
∑
v

D(uv).

Proposition 4.3 IfD′f is (integrally) routable inG with congestion a, andDf is (integrally) routable inG with
congestion b, then D is (integrally) routable with congestion a+ b in G.

We need a cut condition given by the simple lemma below. For completeness, we include a proof in the
appendix (A.1).

Lemma 4.4 ([9]) Let D be a demand matrix on a given graph G and let f : V → V be a mapping. If the cut
condition is satisfied for D, and D′f is routable in γG, then the cut condition is satisfied for Df in (γ + 1) ·G.

We give a useful corollary of the above lemma.

Corollary 4.5 Let G = (V,E) satisfy the cut-condition for H = (V,EH) and let A ⊆ V be a node-cover in
H . Then there exists a demand graph I = (A,F ) such that 2G satisfies the cut-condition for I . Moreover, if I
is (integrally) routable in 2G with congestion α, then H is (integrally) routable in G with congestion (1 + 2α).

Proof: Assume for simplicity that G and H have unit capacities. Let A ⊂ V be a node-cover in H . Shrink
A to a node a to obtain a new supply graph G′ and a new demand graph H ′. Since A is a node-cover all
demand edges in H ′ are incident to a, and so H ′ is a star, and G′, H ′ is a single-source instance. For simplicity
assume that there are no parallel edges in H ′; if node u has d > 1 parallel edges to a, then add d dummy
terminals connected to u with infinite capacity edges in G′ and replace each (u, a) edge by an edge from a
dummy terminal to a. Let S ⊆ V \ A be the set of nodes that have a demand edge to a in H ′. Note that
G′ satisfies the cut-condition for H ′. Therefore by the maxflow-mincut theorem (or Menger’s theorem) H ′ is
routable in G′ with congestion 1 and by our assumption that the demands are unit valued and capacities are
integer valued, the flow corresponds to |S| paths, one from each node in S to a. Now unshrink a to A; thus the
flow corresponds to paths from S to A in G. Define a mapping f : V → V where f(u) = u if u ∈ V \ S
(we only care about u ∈ A), and if u ∈ S then f(u) = v if the path from u to A ends in v ∈ A. Let D be the
demand matrix corresponding to H and Df be demand matrix induced by the mapping f . Let I = (A,F ) be
the demand graph induced by f . Note then that D′f corresponds to the single-sink flow problem determined by
H ′. Hence by Lemma 4.4, Df , and hence I , satisfies the cut condition in 2G. We then apply Proposition 4.3 to
see that if I is (integrally) routable in 2G with congestion α (which is the same as I being routable in G with
congestion 2α), then H is (integrally) routable in G with congestion (1 + 2α) since H ′ is integrally routable in
G with congestion 1.

4.3 k-Outerplanar and k-shell Instances

Let G = (V,E) be an embedded planar graph. We define the outer layer or the 1-layer of G to be the nodes of
G that are on the outer face of G. The k-th layer of G is the set of nodes of V that are on the outer face of G
after the nodes in the first k− 1 layers have been removed. A k-Outerplanar graph is a planar graph that can be
embedded with at most k layers. We let Vi denote the nodes on the i-th layer. We are interested in multiflows
in planar graphs when at least one terminal of each demand pair is lies in one of the outer k layers; we call such
instances k-shell instances. Let H = (V, F ) be a demand graph.
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Theorem 4.6 (Okamura-Seymour [24]) LetG be a planar graph andH be a demand graph with all terminals
on a single face. If H satisfies the cut-condition, then there is a half-integral routing of H in G. Moreover if
G+H is Eulerian, H is integrally routable in G.

Theorem 4.7 ([7]) If G is a k-Outerplanar graph and H satisfies the cut-condition, then H is fractionally
routable in G with congestion ck for some universal constant c.

We can strengthen the above theorem to prove the following on k-shell instances.

Theorem 4.8 LetG be a planar graph and let V ′ = ∪ki=1Vi be the set of nodes in the outer k layers of a planar
embedding of G. Suppose H = (V, F ) is a demand graph where for each demand edge at least one of the end
points is in V ′. If G,H satisfy the cut condition, then H can be fractionally routed in G with congestion ck for
some universal constant c.

The proof of Theorem 4.7 relies on machinery from metric embeddings. Our proof of Theorem 4.8 also
relies on metric embeddings, and in particular uses recent results [21] and [12]. Since these techniques are
some what orthogonal to the primal methods that we use in this paper, we describe a proof of Theorem 4.8 in a
separate manuscript [11]. Below we relate the integer and fractional flow-cut gaps for k-shell instances.

Theorem 4.9 LetG be a planar graph and let V ′ = ∪ki=1Vi be the set of nodes in the outer k layers of a planar
embedding of G. Suppose H = (V, F ) is a demand graph where for each demand edge at least one of the end
points is in V ′. If H is fractionally routable in G, then it can be integrally routed in G with congestion 6k.

Combining the above two theorems, we have:

Corollary 4.10 If G,H is a k-shell instance that satisfies the cut-condition, then H is integrally routable in G
with congestion ck for some universal constant c.

We need the following claim as a base case to prove Theorem 4.9.

Claim 4.11 Let G be a planar graph and H = (V, F ) be a demand graph such that for each demand edge at
least one end point is on the outer face V1. If G,H satisfy the cut-condition, then there is an integral routing of
H in G with congestion 5.

Proof: We observe that V1 is a node cover in H = (V, F ). Therefore, by Corollary 4.5 there is a demand graph
I = (V1, F

′) such that 2G, I satisfy the cut condition. By the Okamura-Seymour theorem (Theorem 4.6), I
is integrally routable in 2G with congestion 2. Therefore, by Corollary 4.5, H is integrally routable in G with
congestion 5.

Proof:[of Theorem 4.9] We prove the theorem by induction on k. The base case of k = 1 follows from
Claim 4.11.

Assuming the hypothesis for j < k, we prove it for j = k. Let H = (V, F ) be a demand graph that
is fractionally routable in G and such that each demand edge is incident to a node in the outer k layers. Let
Hk = (V, Fk) be the subgraph of H induced by the demand edges Fk ⊆ F that are incident to at least one
node in Vk and moreover the other end point is not in V1 ∪ . . . ∪ Vk−1. We obtain a new supply graph G′ by
shrinking the nodes in ∪k−1i=1 Vi to a single node v. Note that Hk is fractionally routable in G′ as well. Fix some
arbitrary routing of Hk in G′. Partition Fk into F a

k and F b
k as follows. F a

k is the set of all demands that route
at least half their flow through v in G′. F b

k = Fk \ F a
k . Thus a demand in F b

k routes at least half its flow in the
graph G′′ = G[V \ ∪k−1i=1 Vi]. We claim that the demand graph Hb

k = (V \ ∪k−1i=1 Vi, F
b
k) is integrally routable in

G′′ with congestion 10. For this we note that Hb
k is fractionally routable in 2G′′ which implies that (2G′′, Hb

k)
satisfies the cut-condition. Moreover Vk is the outer-face of G′′ and each demand in F b

k has at least one end
point in Vk and hence we can apply Claim 4.11.
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Now consider demands in F a
k and their flow in G′. For simplicity assume that the end points of F a

k are
disjoint and let T be the set of end points. By doubling the fractional flow in G′ of each demand f ∈ F a

k we get
a feasible routing for sending one unit of flow from each t ∈ T to v. Thus in G′ there are paths Pt, t ∈ T where
Pt is a path from t to v and no edge has more than two paths using it. These paths imply that the terminals in
T can be integrally routed to nodes in ∪k−1i=1 Vi with congestion 2 in G (simply unshrink v). For each demand
f = (u, v) ∈ F a

k let f ′ = (u′, v′) be a new demand where u′ and v′ are the nodes in ∪k−1i=1 Vi that u and v
are routed to. Let these demands be F c

k . We claim that F c
k is fractionally routable in G with congestion 3 -

simply concatenate the routing of F a
k with the paths that generated F c

k from F a
k . Now consider the demand

graph H ′ = (V, (F \Fk)∪F c
k). Since H = (V, F ) is fractionally routable in G and F c

k is fractionally routable
in 3G, we have that H ′ is fractionally routable in 4G. Also, each demand in H ′ has an end point in ∪k−1i=1 Vi.
Therefore, by the induction hypothesis, H ′ is integrally routable in G with congestion 4 · 6k−1.

Routing H as above consists of routing H ′, the routing of F a
k , and the routing of the demands in F b

k to
the outer k − 1 layers; adding up the congestion for each of these routings as shown above, we see that H is
routable in G with congestion 4 · 6k−1 + 10 + 2 ≤ 6k for k ≥ 2. This proves the hypothesis for k.

4.4 Flow-Cut Gap and Node Cover size of Demand Graph

Linial, London and Rabinovich [22] and Aumann and Rabani [3] showed that if the supply graph G = (V,E)
satisfies the cut condition for a demand graph H = (V,EH), then H is routable in G with congestion O(log k)
where k = |EH |; to obtain this refined result (instead of an O(log n) bound), [22, 3] rely on Bourgain’s proof
of the distortion required to embed a finite metric into `1. Günlük [13] further refined the bound and showed
that the flow-cut gap is O(log k∗) where k∗ is the size of the smallest node cover in H; recall a node cover is
a subset S of nodes for which every edge of H has at least one endpoint in S. For example if k∗ = 1, then
H induces a single-source problem for which the flow-cut gap is 1. Günlük’s argument requires a fair amount
of technical reworking of Bourgain’s proof. Here we give a simple and insightful proof via Lemma 4.4, in
particular Corollary 4.5.

Theorem 4.12 Let G = (V,E) satisfy the cut-condition for H = (V,EH) such that H has a node-cover of
size k∗. Then H is routable in G with congestion O(log k∗).

Proof: Let A ⊂ V be a node-cover in H such that |A| = k∗. We now apply Corollary 4.5 which implies that
there is a demand graph I = (A,F ) such that 2G satisfies the cut-condition for I . Moreover if I is routable in
2G with congestion α then H is routable in G with congestion (1 + 2α). Note that I is a demand graph with at
most (k∗)2 edges, therefore, it is routable in 2G with congestion O(log k∗) [22, 3]. Hence H is routable in G
with congestion O(log k∗).

4.5 Multiflows with terminals on k faces of a planar graph

Lee and Sidiropoulos [21] recently gave a powerful methodology via their peeling lemma to reduce the flow-cut
gap question for a class of instances to other potentially simpler class of instances. Using this they reduced the
flow-cut gap question for minor-free graphs to planar graphs and graphs closed under bounded clique sums.
One of the applications of their peeling lemma is the following result. Let G be an embedded planar graph
and H be a demand graph such that the endpoints of edges in H lie on at most k faces of G. If G satisfies
the cut-condition, then H is (fractionally) routable in G with congestion eO(k). Their proof extends to graphs
of bounded genus and relies on the non-trivial peeling lemma. Here we give a simple proof with a stronger
guarantee for the planar case, again using Lemma 4.4.

Theorem 4.13 Let G = (V,E) be an embedded planar graph and H = (V, F ) be a demand graph such that
the endpoints of edges in H lie on at most k faces of G. If G satisfies the cut-condition, then H is routable in
G with congestion 3k. Moreover if G and H have integer capacities and demands respectively, then there is an
integral flow with congestion 5k.
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Proof: Let V1, . . . , Vk be the node sets of the k faces on which the demand edges are incident to. Let Fi ⊆ F
be the edges in H that have at least one end point incident to a node in Vi and let Hi = (V, Fi) be the demand
graph induced by Fi. Note thatG satisfies the cut-condition forHi. Clearly Vi is a node-cover forHi = (V, Fi)
and hence by Corollary 4.5, there is a demand graph Ii = (Vi, F

′
i ) such that 2G satisfies the cut-condition for

Ii. Note, however, that Ii is an Okamura-Seymour instance in that all terminals lie on a single face. Hence Ii is
routable in 2Gwith congestion 1 and is integrally routable in 2Gwith congestion 2. Hence, by Corollary 4.5,Hi

is routable in G with congestion 3 and integrally routable in G with congestion 5. By considering H1, . . . ,Hk

separately, H is routable in G with congestion 3k and integrally with congestion 5k.

Remark: We observe that a bound of k is easy via the Okamura-Seymour theorem if for each demand edge the
two end points are incident to the same face. The rerouting lemma allows us to easily handle the case when the
end points may be on different faces; in fact the proof extends to the case when nodes on k faces in G form a
node cover for the demand graph H . The above proof can be easily extended to graphs embedded on a surface
of genus g to show a flow-cut gap of 3αgk where αg is the gap for instances in which all terminals are on a
single face.

5 Lower-bound on flow-cut gap in series-parallel graphs

Lee and Raghavendra have shown in [20] that the flow-cut gap in series-parallel graph can be arbitrarily close
to 2; this lower bound matches an upper bound found previously [6]. They introduce a family of supply graphs
and prove the required congestion using the theory of metric embeddings. In particular, their lower bound is
shown by a construction of a series parallel graph and a lower bound on the distortion required to embed the
shortest path metric on the nodes of the graph into `1.

In this section we give a different proof of the lower bound. We use the same class of graphs and the
recursive construction of Lee and Raghavendra [20]. However, we use a primal and direct approach to proving
the lower bound by constructing demand graphs that satisfy the cut-condition but cannot be routed. We lower
bound the congestion required for the instances by exhibiting a feasible solution to the dual of the linear program
for the maximum concurrent multicommodity flow in a given instance. This is captured by the standard lemma
below which follows easily from LP duality.

Lemma 5.1 Let G = (V,E) and H = (V, F ) be undirected supply and demand graphs respectively with ce
denoting the capacity of e ∈ E and df denoting the demand of f ∈ F . Then the minimum congestion r required
to route H in G is given by

min
`:E→R+

∑
f∈F df `f∑
e∈E ce`e

where `f is the shortest path distance between the end points of f in G according to the non-negative length
function ` : E → R+.

Corollary 5.2 By setting `e = 1 for each e ∈ E, the minimum congestion required to route H in G is at least
D/C where C =

∑
e∈E ce, and D =

∑
f∈F df `f , where `f is the shortest path distance in G between the end

points of f (with unit-lengths on the edges).

We refer to C and D as defined in the corollary above as the total capacity and the total demand length
respectively. We refer to the lower bound D/C as the standard lower bound.

Construction of the Lower Bound Instances: The family of graphs presented in [20] is obtained from
a single edge by a simple operation, which consists in replacing every edge by a K2,m graph, as shown in
Figure 2.

Assuming m is even, consider the following demands and capacities for a K2,m graph: a complete demand
graph on the m nodes of degree 2, with demand 1 on each edge, and a capacity (m−1)/2 on each supply edge.
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s t s t s t

Figure 1: Supply graph for gap example.

L \ R R \ L

Figure 2: If a connected component of V \ (L∆R) has arcs going in and out ofR \ L, the graph contains aK4.

1

Figure 2: Supply graph for gap example. Replace each edge by K2,m, here m = 3.

Appendix

Fractional instances routable in congestion up to 2

Lee and Raghavendra have proven in [1] that congestion arbitrarily close to 2 can be necessary
to route, even fractionally, some series-parallel graph. This lower bound matches an upper bound

found previously. They introduce a family of supply graphs and prove the necessary congestion

using the theory of metric embeddings.

In this section, we present actual instances of demand graphs associated with this family of

supply graphs and prove the necessary congestion, by showing that the sum of demands multiplied

by the length of the shortest path routing them is equal to the total capacity of the graph multiplied

by the congestion factor. Any routing with this congestion is therefore necessarily optimal. We say

such a routing is tight.

The family presented by Lee and Raghavendra consists in graphs obtained from a single edge

by a simple operation, which consists in replacing every edge by aK2m graph:

s t s t s t

Assumingm is even, we propose the following demands and capacities for aK2m graph: a complete

demand graph on the m nodes of degree 2, with demand 1. If we give each supply edge a capacity
of (m − 1)/2, it is easy to check that the cut condition holds. Each node of degree 2 is tight.
Furthermore, this instance can be routed in congestion 1, routing half of each demand arc through s
and half through t. This uses exactly the capacity of each supply edge, and so the routing is tight.

m−1

2

s t

Assume we want to route an additional demand c from s to t. This can be done if each supply
edge can route an additional demand of c

m , i.e. if the demand between s and t is routed equally
through each node of degree 2. This amounts to a congestion of 1 + 2c

m(m−1) . Furthermore, since

each demand must be routed through at least two supply edges of the graph, we can easily see that

the total congested capacity in the 2m supply edges of the graph is exactly equal to the necessary

minimum:

2m
m − 1

2

(

1 +
2c

m(m − 1)

)

= 2

(

m(m − 1)

2
+ c

)

.
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Figure 3: Building block for gap example.

See Figure 3. One easily checks that the cut condition holds for this instance. Moreover, the total capacity
is 2m · (m − 1)/2 = m(m − 1), and the total demand length is 2 · m(m − 1)/2 = m(m − 1); hence the
standard lower bound D/C = 1, and in fact the instance is routable. The simple yet important observation is
that for any central cut separating s from t, the surplus of the cut is equal to m(m−1)/2−k(m−k), when the
cut separates the degree 2 nodes into sets of cardinality k and m − k. The minimum surplus is attained when
k = m/2, where it is m(m − 2)/4. We call this instance I(s, t). Based on this we define an instance Ic(s, t)
for any real c > 0 as the instance obtained from I(s, t) by multiplying all demands and capacities of I(s, t) by

c
m(m−2)/4 . The effect of this is that Ic(s, t) satisfies the cut condition, has a standard lower bound of 1 and is
routable, and the surplus of any central cut separating s and t is at least c.

We summarize the properties of Ic(s, t) in the following lemma, with the last property being a crucial one.

Lemma 5.3 The instance Ic(s, t) has the following properties:

1. It has 2m supply edges, each of capacity c
m(m−2)/4

m−1
2 , and it has m(m−1)

2 demand edges, each with
demand c

m(m−2)/4 .

2. The standard lower bound for Ic(s, t) is 1 and the instance is routable.

3. The minimum surplus of any cut separating s from t is equal to c.

4. Adding an st demand edge of demand c to Ic(s, t) preserves the cut condition but the standard lower
bound for this modified instance is (1 + m−2

2(m−1)).

Proof: The first three facts follow directly from the description of Ic(s, t). The surplus of any st cut in Ic(s, t)
is c, and Ic(s, t) satisfies the cut condition. Hence, it follows that adding an st demand edges with demand c
preserves the cut condition. We note that for Ic(s, t), the total capacity C = 2m · c

m(m−2)/4
m−1
2 = 4c(m−1)

(m−2) ,
this is also equal to the total demand length D for Ic(s, t). Adding an st demand edge with demand value c
increases the total demand length by 2c, and therefore the standard lower bound for the modified instance is
C+2c
C = (1 + m−2

2(m−1)).

As in [20], the goal is to show that the congestion lower bound obtained in the construction above can be
amplified by iteration. As a first step, the next lemma shows that replacing an edge of the supply graph by an
instance of type Ic(s, t) maintains the cut condition. Given a multiflow instance G,H and a supply edge uv in
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G we can obtain a new instance G′, H ′ by replacing uv by the instance Ic(s, t) where we identify u with s and
t with v. Note that all H ′ contains all the demand edges of H and the demand edges of Ic(s, t).

Lemma 5.4 Let I = G,H be a multiflow instance that verifies the cut condition. Let uv be a supply edge in
G with capacity c > 0. Let I ′ = G′, H ′ be a new instance obtained by replacing uv by Ic(s, t). Then G′, H ′

verifies the cut condition.

Proof: The surplus of any cut separating u from v in I ′ is at least as big as the surplus of the corresponding
cut in I , since the surplus of any cut separating s from t in Ic(s, t) is at least c. Also, the surplus of any cut
in I ′ that does not separate u from v is equal to the surplus of the corresponding cut in I , plus the nonnegative
surplus of some cut in Ic(u, v).

From any instance, we build an instance requiring a larger congestion using the following transformation:
We replace each supply edge by an instance of type Ic(u, v). The next theorem gives a lower bound on the
required congestion in the transformed instance.

Theorem 5.5 Let I = G,H be an instance verifying the cut condition, with total capacity C and total demand
length D. Let I ′ be the instance obtained by replacing each supply edge uv of capacity cuv by an instance
Icuv(u, v). Then the transformed instance I ′ = G′, H ′ verifies the cut condition, and the standard lower bound
for I ′ is 1 + D

C · m−2
2(m−1) .

Proof: The fact that I ′ verifies the cut condition is a direct consequence of Lemma 5.4.
Let us first compute the total capacity of G′. Since each supply edge of capacity c in I is replaced with 2m

supply edges of capacity c
m(m−2)/4

m−1
2 , the total capacity of G′ is C ′ = C 2m

m(m−2)/4
m−1
2 = C 4(m−1)

m−2 .
The demand edges in H ′ either exist in H , or are added by the transformation, i.e. they are internal to some

Ic(u, v) instance that replaces a supply edge uv. The total demand length in I ′ can therefore be decomposed
into the part corresponding to the demand edges that exist in I , and the total demands internal to each Ic(u, v)
instance. In each Ic(u, v) instance, the total demand length is equal to the total capacity. So the sum of demand
lengths internal to each Ic(u, v) instance is equal to the total capacity, which is the total capacity of G′. On the
other hand, the demand edges that exist in I have the same demand, but the shortest path of each such edge has
exactly doubled in the transformed instance. It follows that D′ = C ′ + 2D.

Therefore, the standard lower bound for I ′ is is D′

C′ = C′+2D
C′ = 1 + 2D

C
m−2

4(m−1) = 1 + D
C

m−2
2(m−1) .

And so, the routing is tight again.

We will build our instances on this K2m graph. If we multiply all demands and capacities

by 4c
m(m−2) , we get a graph connecting s and t, with a minimum st cut of c, but which needs a

congestion higher than a simple supply edge of capacity c in order to route a demand from s to t.
We use the graph as a “virtual edge”, which will replace supply edges of capacity c. The graph

contains 2m supply edges of capacity 4c
m(m−2)

m−1
2 and

m(m−2)
2 demand edges of demand 4c

m(m−2) .

Assume we have an instance with n supply edge of capacity c, which has a tight routing in
congestion r. If we replace each edge by the virtual edge described above, then it is necessary to
multiply the capacity of its supply edges by

f(r) = 1 +
rc
m

(

4c
m(m−2)

m−1
2

) = 1 + r
m − 2

2m − 2

in order to route the demand of the original instance as well as the internal demand of the virtual

edges. Again, it is easy to check that the routing is tight:

2mn
m − 1

2

4c

m(m − 2)

(

1 + r
m − 2

2m − 2

)

= 2n
m(m − 1)

2

4c

m(m − 2)
+ 2ncr

That is, the total congested capacity in the 2mn supply edges is equal to the total demand necessary
to route the internal demands of the virtual edges, plus twice the total congested capacity of the

orignal graph.

In the transformed instance, all supply edges have the same capacity, and there is a tight routing

in congestion f(r). We can therefore execute the same operation again and get an instance which
has a tight routing in congestion f(f(r)), and so on.

s t s t s t

r = 1 r = f(1) r = f(f(1))

If we start with an instance of a single supply edge of capacity 1 with a parallel demand of 1,
routable in congestion 1, then the instance obtained after executing k times the operation is f (k)(1),
which tends to a limit arbitrarily close to 2:

lim
k→∞

f (k)(1) = 2 −
2

m
.
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Figure 4: The flow-cur gap r grows bigger with each iteration.

Thus, Theorem5.5 can be used to amplify the flow-cut gap. In particular, if the standard lower bound
yields a gap of x for an instance I then, one obtains an instance with standard lower bound yielding a gap of
f(x) = 1 + x m−2

2(m−1) . We can iterate this process k times yielding instances with flow-cut gap f (k)(x) where

f (k) is the function f composed k times. We note that

f (k)(x) = 1 +
(m− 2)

2(m− 1)
+ · · ·+

(
(m− 2)

2(m− 1)

)k−1
+ x

(
(m− 2)

2(m− 1)

)k

,
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and that this converges to

lim
k→∞

f (k)(x) = 2− 2

m
,

for any x.

Theorem 5.6 For any ε > 0, there is a series-parallel graph instance for which the flow-cut gap is 2− ε.

Proof: We apply the iterated construction starting with the instance consisting of a single edge of capacity 1 as
the supply graph, and a demand graph consisting of the same edge with demand 1; clearly, the standard lower
bound for this instance is 1. See Figure 4. We observe that the construction preserves the property that the
supply graphs are series parallel. Thus, if we set m = d4/εe in I(s, t), the iterated construction yields a series
parallel graph instance with flow-cut gap arbitrarily close to 2 − ε/2, and hence one can choose a sufficiently
large k such that iterating the construction k times gives an instance with gap at least 2− ε.
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A Appendix

A.1 Proof of the Rerouting Lemma [9]

For completeness we give the proof from [9].
Proof: Consider a cut δG(S) in G for some S ⊂ V . Let D(S) denote the total demand across this cut. Since D
satisfies the cut condition |δG(S)| ≥ D(S) for all S ⊂ V . Also, sinceD′f is routable in γG, γ|δG(S)| ≥ D′f (S)
for all S ⊂ V .

To prove the lemma we need to show that (γ+1)|δG(S)| ≥ Df (S). From the above inequalities, it suffices
to show that Df (S) ≤ D(S) + D′f (S). Let XS denote the set of all unordered pairs of nodes uv such that u
and v are separated by S, that is |{u, v} ∩ S| = 1. We can write Df (S) as

∑
uv:f(u)f(v)∈XS

D(uv). For each
pair uv such that f(u)f(v) ∈ XS , we charge D(uv) to either D(S) or D′f (S) such that there is no overcharge.
This will complete the argument.

We consider two cases. If uv ∈ XS then we charge D(uv) to D(S). Note that
∑

uv∈XS
D(uv) = D(S)

and hence we do not over charge D(S). If uv 6∈ XS , then either uf(u) ∈ XS or vf(v) ∈ XS but not both.
In uf(u) ∈ XS we charge D(uv) to u, otherwise to v. We observe that the total charge to a node u is at most
D′f (uf(u)) and it is charged only if uf(u) ∈ XS . Hence the total charge to D′f (S) is not exceeded either.
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